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Abstract

What is the smallest number τ = τ(n) such that for any collection of n pairwise
disjoint convex sets in d-dimensional Euclidean space, there is a point such that
any ray (half-line) emanating from it meets at most τ sets of the collection? This
question of Urrutia is closely related to the notion of regression depth introduced
by Rousseeuw and Hubert (1996). We show the following:

Given any collection C of n pairwise disjoint compact convex sets in d-
dimensional Euclidean space, there exists a point p such that any ray emanating
from p meets at most dn+1

d+1 members of C .
There exist collections of n pairwise disjoint (i) equal length segments or (ii)

disks in the Euclidean plane such that from any point there is a ray that meets at
least 2n

3 −2 of them.
We also determine the asymptotic behavior of τ(n) when the convex bodies

are fat and of roughly equal size.
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1 Introduction

Suppose we have a field scattered with obstacles, and we want to set up a mobile
wireless sensor network to monitor this environment. The base station has to be placed
so that it can easily communicate with the sensor nodes, no matter where they are
situated. According to a model recently patented by Liu and Hung [8], the signal
transmitted by a sensor can penetrate only at most a certain number, τ, of obstacles
and will not be received by the base station if more than τ obstacles block the visibility
between the sensor and the base station. They call this predetermined threshold the
obstacle number of the network.

Based on this model, Jorge Urrutia [11] asked the following question: What is the
smallest number τ = τ(n) such that for any system of n > 0 pairwise disjoint segments
in the plane, there is a point such that any ray (half-line) emanating from it meets at
most τ segments? It has been conjectured (by Urrutia and others) that the right order
of magnitude of this function should be around n

2 . The aim of this note is to show that
τ(n) is roughly 2n

3 . In fact, we will consider the more general case of arbitrary convex
bodies in Rd .

Definitions and statement of results. Let C be a collection of n pairwise disjoint
convex sets in d-dimensional Euclidean space (Rd). For any point p ∈ Rd , denote
by R (p) the set of all rays emanating from p. Let h(r,C ) denote the number of sets
intersected by the ray r. We define

τ(p,C ) = max
r∈R (p)

h(r,C ),

that is, the maximal number of sets from C that can be intersected by a ray emanating
from p. The obstacle number of a given collection C of pairwise disjoint convex sets
is defined as

τ(C ) = min
p∈Rd

τ(p,C ).

Finally, we define
τd(n) = max

|C |=n
τ(C ),

that is, the maximum value of τ(C ) as C varies over all collections of n pairwise
disjoint convex sets in Rd .

We are interested in studying the asymptotic growth of the functions τd(n). Our most
general bound on τd(n), d ≥ 2, is given by the following.

Theorem 1. For d ≥ 2, τd(n)≤ dn+1
d+1 .

For the particular case d = 2 we were able to show that the bound of Theorem 1 is
asymptotically tight. We will give constructions that show the following.
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Theorem 2. For every k > 0 there exists

1. a collection CS of 3k pairwise disjoint equal length segments in the Euclidean
plane such that τ(CS) = 2k−1.

2. a collection CD of 3k pairwise disjoint disks in the Euclidean plane such that
τ(CD) = 2k−2.

We were not able to find an example showing that the bound in Theorem 1 is tight for
dimensions greater than 2, but it would be surprising if this is not the correct bound.

In view of Theorem 2, the value of τ2(n) is not affected by bounding the ratio of the
diameters of the sets (Theorem 2.1), or by bounding the fatness1 of the sets (Theorem
2.2). However, if we bound the ratio of the diameter of the sets and the fatness, i.e. if
the convex bodies are γ-fat of roughly equal size, then the asymptotic behavior of the
obstacle number is quite different. For 0 < γ < 1, we call a convex body γ-round if it
is contained in a disk of unit radius and it contains a disk of radius γ. We then have:

Theorem 3. For any collection C of n > 0 pairwise disjoint γ-round convex bodies in
the plane there exists a point p such that τ(C ) = O(

√
n logn).

Theorem 4. For every n > 0 there exists a collection C of n pairwise disjoint unit disks
in the plane such that τ(C ) = Ω(

√
n logn) for all p ∈ R2.

Our proof of Theorem 1, which resembles Chakerian’s proof of Helly’s theorem, re-
lies on two classical theorems: Brouwer’s fixed point theorem and Carathéodory’s
theorem. Brouwer’s fixed point theorem states that any continuous function from the
d-dimensional ball to itself must have a fixed point. Carathéodory’s theorem claims
that a point p is contained in the convex hull of a set S in d-dimensional Euclidean
space if and only if p is contained in a simplex spanned by points of S. The proofs of
Theorems 3 and 4 are based on results by Alon et al. [1] and Besicovitch [3].

It should be noted that the obstacle number is closely related to the notions of re-
gression depth and, dually, depth in hyperplane arrangements, which have been ex-
tensively studied the last decade (see for instance [2], [7], [10]). We will comment
further on this connection, and address some computational aspects of these problems
in Section 4.

Theorems 1 and 2 will be proved in Sections 2 and 3, respectively. Theorems 3 and 4
will be proved in Section 4.

1One can measure “fatness” by the ratio of the diameters of smallest circumscribed circle and largest
inscribed circle.
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2 Proof of Theorem 1

Preliminaries. A ray R from the point p is the set of points

R = {p+ t(s− p) : t > 0}

where p and s are distinct points of Rd . The point p will be referred to as the starting
point of R, and the point s− p will be referred to as the direction of R. There are of
course infinitely many directions that correspond to the same ray. We say that the ray
R meets the convex body A if R∩A 6= /0. Here a convex body means a compact convex
set with non-empty interior.

In what follows let C be a given collection of n convex bodies in Rd . After rescal-
ing (if necessary) we may assume that 0 < µ(A) < 1 for every A ∈ C where µ is the
Lebesgue measure on Rd . We let | · | denote the Euclidean distance. When we speak
of convergence of sequences of convex bodies we mean with respect to the Hausdorff
metric.

For a given point p ∈ Rd and A ∈ C , let

KA(p) = conv({p}∪A)

and
KC (p) =

\
A∈C

KA(p).

Note that every KA(p) is a convex body and that p ∈ KC (p). It follows that KC is
compact and convex, but the interior of KC may be empty.

The ray R = {p+ t(s− p) : t ≥ 0} meets every member of C if and only if there exist
real numbers 0 < t1 ≤ ·· · ≤ tn such that each member of C contains one of the points
p+ ti(s− p). By convexity p+ t1(s− p) ∈ KC (p). Thus we have established:

Claim 5. If there exists an s ∈ KC (p) such that s 6= p, then there exists a ray with
direction s− p that meets every member of C . Conversely, if there exists a ray starting
at p in the direction s− p 6= 0 that meets every member of C , then there exists a t > 0
such that the point p+ t(s− p) ∈ KC (p).

When µ(KC (p)) > 0 let mC (p) ∈ Rd denote the center of mass of KC (p), and when
µ(KC (p)) = 0 let mC (p) = p. We have the following:

Claim 6. Let {pk}∞
k=1 be an infinite sequence of points in Rd converging to p ∈ Rd .

We then have, as k tends to infinity,

1. KA(pk)→ KA(p).

2. If µ(KC (p)) > 0, then KC (pk)→ KC (p).
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3. µ(KC (pk))→ µ(KC (p)).

4. If µ(KC (p)) > 0, then mC (pk)→ mC (p).

Proof. Claim 6.1 should intuitively be quite clear. Let |p− pk|= ε, and suppose there
exists a point q∈KA(pk) such that the ball Bε of radius ε centered at q does not contain
any point of KA(p). Then there exists a hyperplane H that strictly separates KA(p) from
conv({pk}∪Bε), which implies that the distance from pk to H is strictly less than ε.
But this is impossible since the translate of H that passes through pk would strictly
separate A from q, which implies that q 6∈ KA(pk). Thus the distance between KA(pk)
and KA(p) (in the Hausdorff metric) is bounded from above by |p− pk|= ε.

Claim 6.2 follows from 6.1 since KC (pk) =
T

A∈C KA(pk), and Claim 6.4 follows im-
mediately from Claim 6.2.

Finally, if µ(KC (p)) > 0, then Claim 6.3 follows immediately from 6.2. If µ(KC (p)) =
0, then KC (p) is empty or contained in some affine hyperplane of Rd , and then it is
easily verified that µ(KC (p))→ 0 as k→ ∞. (We leave the details to the reader).

Now define the function gC : Rd → Rd as

gC (p) = µ(KC (p))(mC (p)− p).

Consider a sequence {pk}∞
k=1 in Rd converging to p∈Rd . If µ(KC (p)) > 0, Claims 6.3

and 6.4 imply that gC (pk) converges to gC (p) as k tends to infinity. If µ(KC (p)) = 0
it is not necessarily true that mC (pk) converges to mC (p), because µ(KC (pk)) may be
positive for all k. On the other hand, by Claim 6.3 µ(KC (pk)) converges to 0 as k tends
to infinity. This guarantees that gC (pk)→ 0 = gC (p) as k→ ∞. Therefore, Claims 5
and 6 imply:

Claim 7. The function gC is continuous. If gC (p) 6= 0, then there exists a ray from p
with direction mC (p)− p that meets every member of C in an interior point.

Let F be a finite set whose elements are finite collections of convex bodies. Note that
we allow repetitions, that is, the same body could belong to several different collec-
tions. For each C ∈ F we can define the function gC as described above.

Now define the function GF : Rd → Rd as

GF (p) = ∑
C∈F

gC (p),

which is continuous by Claim 7. Since F is finite and every C ∈ F is finite, the
union of the convex bodies represented by F is contained in a d-dimensional ball
B. It follows that if B is sufficiently large, and the union of the convex bodies are
sufficiently close to the center of B, then p + GF (p)

|GF (p)|+1 ∈ B for every p ∈ B. Clearly,

the function p+ GF (p)
|GF (p)|+1 is also continuous, so it satisfies the hypothesis of Brouwer’s
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fixed point theorem. Therefore there exists a fixed point, i.e., a point p ∈ B ∈ Rd such
that p+ GF (p)

|GF (p)|+1 = p. In other words, we have:

Claim 8. For any finite set F whose elements are finite collections of convex bodies in
Rd , there exists a point p ∈ Rd such that GF (p) = 0.

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Let 1 ≤ τ ≤ n be the greatest integer such that from any point
there is a ray that meets at least τ members of C .

Using a standard compactness argument, we inflate every A ∈ C by some small ε > 0
to a body (1+ε)A such that A⊂ int (1+ε)A for all A∈ C , and the sets (1+ε)A, A∈ C ,
are pairwise disjoint. Let C ′ denote the collection of (1 + ε)A, A ∈ C . It is clear that
any ray that meets A will meet the interior of (1+ ε)A, so from any point p ∈Rd there
is a ray that meets at least τ members of C ′ in interior points.

Let F be the set of all subcollections of C ′ on τ elements. By Claim 8, there exists a
point p∈Rd such that the function GF (p) = 0. Let F ′ ⊂F be the subset of all C ∈F
such that gC (p) 6= 0. As a consequence of inflating the sets (described in the previous
paragraph) the subcollection F ′ is non-empty. The equation

GF (p) = ∑
C∈F

gC (p) = ∑
C∈F ′

µ(KC (p))(mC (p)− p) = 0

implies that

p ∈ conv

( [
C∈F ′
{mC (p)}

)
,

where mC (p) 6= p for every C ∈ F ′. By Carathéodory’s theorem, there exists an F ′′ ⊂
F ′, with |F ′′| ≤ d +1, such that

p ∈ conv

( [
C∈F ′′

{mC (p)}
)

.

By Claim 7, for every C ∈ F ′′ there exists a ray from p with direction mC (p)− p that
meets the members of C in interior points. Therefore, if a convex body A belongs to
all C ∈ F ′′, then p ∈ A. Hence, by using the fact that the members of C ′ are pairwise
disjoint, at most one member of C ′ can have this property.

If no A belongs to all C ∈ F ′′, then

|F ′′|τ = ∑
C∈F ′′

|C | ≤ (|F ′′|−1)n

which implies τ≤ (|F ′′|−1)n
|F ′′| ≤ dn

d+1 .
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If some A belongs to all C ∈ F ′′, then letting C = C \{C}, we obtain

|F ′′|(τ−1) = ∑
C∈F ′′

|C | ≤ (|F ′′|−1)(n−1),

which implies τ ≤ (|F ′′|−1)(n−1)
|F ′′| + 1 ≤ dn+1

d+1 , as required. This completes the proof of
Theorem 1.

3 Proof of Theorem 2: Constructions

In this section we prove Theorem 2. Before proceeding with the constructions we must
clarify some terms. Given a point p in the plane, let R1 and R2 be rays with starting
point at p. Apart from the two exceptions, R1 = R2 and R1 =−R2

2, the two rays will
form a positive angle less than π. The convex hull of R1∪R2 is a wedge, and we will
say that R1 and R2 bound a wedge with apex at p, and that R1 and R2 are the boundary
rays of the wedge. Let A be a convex body. We will say that A is tangent to the wedge
W if A is contained in W and tangent to both of the boundary rays of W . Two sets in the
plane are said to be separable if there exists a line L such that the sets are contained
in opposite open halfplanes bounded by L. The following observation is simple but
crucial for our constructions.

Claim 9. Let W be a wedge with apex p and C a compact set that contains p and at
least one point of the interior of W. We can find

1. a segment

2. a disk

that is tangent to W and separable from C.

Proof. It follows from the separation theorem for convex sets that X and Y are sep-
arable if and only if convX and convY are separable. We may therefore assume that
C = conv C.

Since C is compact, it is bounded, therefore there exists a line l that intersects the
boundary rays of W and is disjoint from C. The intersection l∩W gives us the desired
segment. This proves Claim 9.1.

For every r > 0 there is a unique disk, Dr, of radius r which is tangent to W . The
distance from p to Dr is an increasing function in terms of r which tends to infinity
as r→ ∞, so for a sufficiently large r, Dr is disjoint (and therefore separable) from C.
This yields the desired disk, which proves Claim 9.2.

2For a given ray R, we denote by −R the ray with the same starting point and opposite direction as
R.
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R1 R2

R3

a1a2a3 q

p

b1

b2

b3

S1

S2

S3

c
L2 ⊂ L1

Figure 1: The construction of A for k = 3.

3.1 Construction 1: Equal length segments

We first describe a collection A = {S1, . . . ,Sk} of k ≥ 1 pairwise disjoint segments in
the plane where the segment Si = conv({ai,bi}).
Start with a non-degenerate segment S1 (which determines the points a1 and b1), let p
be a point in the interior of S1, and q a point which is not on the line determined by
S1. Let R1 be the ray that starts at q and passes through p, and L1 the ray that starts
at q and has direction q− a1. Let W1 be the wedge bounded by the rays R1 and L1.
By Claim 9.1 we can find a segment, S2, which is tangent to W1 and separable from
S1∪{q}, such that a2 ∈ L1 and b2 ∈ R1.

For 1 < i < k, let Ri be the ray that starts at ai and passes through p, and Li the ray
that starts at ai and is contained in the ray Li−1. Let Wi be the wedge bounded by the
rays Ri and Li. By Claim 9.1 we can find a segment, Si+1, which is tangent to Wi and
separable from S1 ∪ ·· · ∪ Si, such that ai+1 ∈ Li and bi+1 ∈ Ri. Finally, let Rk be the
ray that starts at ak and passes through p, and let c be the projection in the direction
a1−b1 of the point bk onto the line determined by the ai. (See Figure 1.)

Claim 10. Let z be a point which is separable from S1∪·· ·∪Sk. The ray starting at z
which passes through p meets all but at most one of the members of A .

Proof. Let K = conv(S1 ∪ ·· · ∪ Sk). First we observe (allthough not crucial for the
proof) that for 1 ≤ i ≤ k, starting at the point ai the ray Ri intersects the members
of A in the order Si Si−1 · · ·S1 Si+1 Si+2 · · ·Sk. If we extend each ray Ri to a line λi,
R2 \ (K∪λ1∪·· ·∪λk) is a collection of 2k open, connected regions.

For 1 ≤ i < k, it follows by the construction of A that if z is contained in a region
bounded by λi and λi+1, the ray starting at z which passes through p will intersect
every member of A \{Si+1}. If z is in a region bounded by λ1 and λk, the ray starting
at z which passes through p will intersect every member A .
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Note that Claim 10 is invariant under affine transformations of the plane, as well as
reflections. Let T be the triangle with vertices u = (−ε,0), v = (0,h), and w = (0,0),
where 0 < ε < h < 1 are to be specified later. After a reflection, if necessary, we apply
an affine transformation that maps the points ak 7→ u, bk 7→ v, c 7→ w. Let B denote
the resulting collection of segments. Note that the convex hull of the segments of B is
contained in T . Let T0, T1, and T2 be congruent copies of T , where Ti is a 2iπ

3 clockwise
rotation of T , and let B0, B1, and B2 be the corresponding collections of segments.

Now, let v0v1v2 be an equilateral triangle of side length 1. For each i = 0,1,2 translate
the triangle Ti (and thus also the collections Bi) such that the vertex v ∈ Ti coincides
with the vertex vi and the edge vw ⊂ Ti is contained in the edge vivi−1 (indices are
taken mod 3; see Figure 2).

By construction it is clear that we may extend the segments in each collection Bi arbi-
trarily far while they remain disjoint (the directions which we can extend are uniquely
determined). Thus we can make all the segments of equal length. Let Mi be the ray that
starts at the center of the triangle v0v1v2 and passes through the midpoint of the edge
vivi−1. Consider a point z belonging to the wedge bounded by Mi and Mi−1. If ε and
h are chosen sufficiently small (say h < 1

10 and ε� h), and the segments are extended
sufficiently far, then any ray starting from z that meets the (translated) triangle Ti will
also meet every member of Bi+1. Therefore, by Claim 10, B0∪B1∪B2 is a collection
of 3k equal length, pairwise disjoint segments such that from any point there is a ray
that meets at least 2k−1 segments. (See Figure 2 for an illustration). This completes
the proof of Theorem 2.1.

3.2 Construction 2: Disks

We first describe a collection C1 = {D1, . . . ,Dk} of k≥ 2 pairwise disjoint closed disks
in the plane. (This part of the construction is essentially the same as the construction
of A .)

Start with a disk D1 centered at the point p, and tangent to a line L at the point a1.
Let R1 be the ray starting at a1 that passes through p, and L1 a ray starting at a1 which
is contained in L. The rays R1 and L1 bound the wedge W1. By Claim 9.2 we can
find a disk, D2, which is tangent to W1 and separable from D1. Let a2 be the point of
tangency between D2 and L1.

For 1 < i < k, let Ri be the ray starting at ai that passes through p, and Li the ray starting
at ai which is contained in Li−1. The rays Ri and Li bound the wedge Wi. Furthermore,
let bi−1 be the point where the ray Ri enters the disk Di−1. By Claim 9.2 we can find
a disk, Di+1, which is tangent to Wi and separable from D1∪ ·· ·∪Di. Let ai+1 be the
point of tangency between Di+1 and Li. Finally, let Rk be the ray starting at ak which
passes through p, and for 1 < i < k let Mi be the ray that starts at a1 and passes through
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M1

M2

B0

B1

B2

v0

v1

v2

v

εu w

hT0

Figure 2: The collection B0∪B1∪B2

bi. (See Figure 3). The reader will easily verify that the ray Mi is contained in the
interior of the wedge bounded by Mi−1 and Mi+1 (2 < i < k−1).

Claim 11. Let z be a point in the plane. We then have the following.

1. If z is separable from D1∪·· ·∪Dk by the line L, then the ray starting at z passing
through the point p meets all but at most one member of C1.

2. If z is contained in the wedge bounded by L1 and Mk−1 then the ray starting at z
passing through the point p meets all but at most two members of C1.

3. If z is contained in the wedge bounded by Mk−1 and R1 then one of the rays
starting at z passing through a1 or ak meets at least half the members of C1.

4. If z is contained in the wedge bounded by R1 and −L1, then there exists a ray
starting at z that intersects the segment with endpoints a1 and ak that meets at
least half the members of C1.

Proof. The proof of Claim 11.1 is basically the same as the proof for Claim 10, so it
is omitted.

For the remainder of the proof of Claim 11, the reader may find it helpful to refer to
Figure 4. Each arc represents a disk in the family C1, and it follows by Claim 9.2 that
this arrangement is in fact realizable by a collection of pairwise disjoint disks.

To prove Claim 11.2, note that the rays R2, . . . ,Rk divide the wedge bounded by L1 and
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M1

L

R1

R2

p

a1a2

b1
L2 ⊂ L1

D1

D2

Figure 3: First two disks of C1.

Mk−1 into k convex regions. For 1 < i < k, if z belongs to the region between Ri and
Ri+1, the ray starting at z passing through p meets every member of C1 \ {Di,Di+1}.
If z belongs to the region bounded by the rays Mk−1, L1, and R2, the ray starting at z
passing through p meets every member of C1 \{D2}. Finally, if z belongs to the region
bounded by the rays Mk−1, L1, and Rk, the ray starting at z passing through p meets
every member of C1 \{Ck}.
For Claim 11.3, note that the line through z and a1 meets every member of C1. There-
fore, either the ray starting at z passing through a1, or its negative, meets at least half
the members of C1. In the latter case, the ray starting at z passing through ak also meets
at least half the members of C1.

For Claim 11.4, note that the line through z and p meets all but at most one member of
C1. If z lies between Rk and L, then the ray starting at z passing through ak meets every
member of C1. If z lies between Rk and R1, then the ray starting at z passing through p,
or its negative, meets at least half the members of C1. In the latter case the ray starting
at z passing through ak also meets at least half the members of C1.

Next, we define a collection C2 = {E1, . . . ,Em} of m≥ 1 pairwise disjoint closed disks
which will be appended to the collection C1 such that, C1∪C2 is a collection of pairwise
disjoint disks. Let W be the wedge with apex at a1, bounded by the rays L1 and−Mk−1
(where a1, L1, and Mk−1 are from the construction of C1). By Claim 9.2 we can find a
disk, E1, which is tangent to W and separable from {a1,ak}. For 1 < i ≤ m, let Ei be
a disk which is tangent to W and separable from {a1}∪E1∪ ·· ·∪Ei−1, which we can
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a1a2a3a4a5a6a7

R1

R2

R3

R4 R5

R6

R7

z1
z2

p

M6

· · · ⊂ L2 ⊂ L1

M5

M3

M4

M2

Figure 4: Schematic representation of C1. The ray from the point z1 meets every members of
C1 \{D5,D6}. The ray from the point z2 meets every members of C1 \{D4}.
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find by Claim 9.2.

Claim 12. Let z be a point contained in the wedge bounded by Mk−1 and −L1. Then
any ray starting at z that intersects the segment with endpoints a1 and ak meets every
member of C2.

Proof. This follows since every disk of C2 is tangent to the wedge bounded by−Mk−1
and L1, and since ak lies between a1 and Ei∩L1, for every 1≤ i≤ m.

Now set k = 2m and C = C1∪C2. Thus, |C |= 3m, and it follows from Claims 11 and
12 that from any point in the plane there is a ray that meets all but at most two members
of C1 or a ray that meets at least half the members of C1 and every member of C2. This
completes the proof of Theorem 2.2.

Remark. Note that Construction 2 can be carried out for other convex sets as well,
in particular for segments. The rotational symmetry of Construction 1 is not possible
with disks.

It is also worth noting that Construction 2 also implies that there is a convex subdivi-
sion of the plane which has obstacle number at least as large as that of Construction
2. This follows by considering the so-called power diagram: For a family of disks in
the plane the power diagram is an associated convex subdivision of the plane (see e.g.
[9] for details). An important property of the power diagram is that if the disks are
non-overlapping, then each cell of the power diagram contains exactly one disk.

4 Concluding remarks

We end with some remarks on the obstacle number for some restricted classes of con-
vex sets. We also discuss some computational aspects of this problem.

4.1 Collections of segments and disks

When we restrict our attention to collections of disjoint segments or disks there are
much simpler proofs of Theorem 1.

Collections of segments. As pointed out in the introduction the questions we consider
here are closely related to the notion of depth in an arrangement of hyperplanes or,
dually, regression depth. In the plane, the depth of a simple arrangement of lines A
is the maximum number d = d(A) for which there exists a point p such that any path
from p to infinity crosses at least d lines of A . It was shown by Rousseeuw and Hubert
[10] that any simple arrangement of lines has depth at least n

3 .
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Using the result from [10], it is simple to argue that for any collection S of pairwise
disjoint segments in the plane, τ(S)≤ 2

3 |S |. First we note that a slight perturbation of
the segments will not affect the value of τ(S). Thus we can make sure that when we
extend each segment to a line, the resulting arrangement of lines is a simple one. By
the Rousseeuw-Hubert result there exists a point p such that any path from p to infinity
crosses at least n

3 of the lines. Therefore any ray from p crosses at most n− n
3 = 2n

3 of
the segments of S .

Collections of disks. We now consider collections of pairwise disjoint disks in the
plane. In this case there is also a simple argument that shows that τ(D) ≤ 2

3 |D|. Our
argument relies on Rado’s center point theorem which states that for any finite set of
points P in the plane, there exists a point c (not necessarily in P) such that for any
half-plane H that contains c, we have |H ∩P| ≥ 1

3 |P|. The point c is called a center
point of P.

Now we make a simple geometric observation: If the center of a disk D lies on or
below the x-axis and D does not contain the origin, then the positive y-axis does not
intersect D. Let D be a collection of pairwise disjoint disks, and let c be a center point
with respect to the centers of the disks in D . Since any line L through c has at least n

3
centers on either side, and at most one disk can contain p, a ray from p orthogonal to
L meets at most 2

3 |D|+1 disks of D .

4.2 Computational questions

Here we address the following computational problems: Given a collection C of pair-
wise disjoint compact convex sets in R2, we want to (1) find a point that witnesses the
general upper bound of Theorem 1, or (2) find a point p∈R2 for which τ(p,C ) = τ(C ).
We will restrict our attention to restricted classes of convex sets in the plane: segments,
disks, and convex polygons of bounded complexity.

Problem (1). Consider a collection S of pairwise disjoint segments in the plane. We
want to find a point p for which τ(p,S)≤ 2

3 |S |, that is, which witnesses the bound of
Theorem 1. By the argument in Section 4.1 we can extend the segments to lines and
obtain an arrangement A , thus reducing the problem to finding a point that witnesses
the depth of the arrangement A . This can be done by a recent result by Langerman
and Steiger [7]. They give an optimal O(n logn) deterministic algorithm for finding
the depth and a witness point in an arrangement of lines in the plane.

Next, consider a collection D of pairwise disjoint disks in the plane. As above, we
want to find a point p for which τ(p,D)≤ 2

3 |D|. We first recall the notion of the Tukey
median: Given a finite set of points in the plane, the Tukey median is a point p which
maximizes the minimum number of points of P belonging to a closed half-space that
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contains p. (Thus the center point theorem states that the Tukey median of a point
set P is at least 1

3 |P|). By the argument in Section 4.1, we need only consider the set
of centers of the disks in D , and we can reduce our problem to finding a point that
witnesses the Tukey median of the set of centers. In this case there is an O(n logn)
randomized algorithm for computing the Tukey median of a collection of points in the
plane due to Chan [5].

Remark. For both of the cases considered above there are simple examples C (of
segments or disks) which show that for the given output point p, the value of τ(p,C )
may be quite far from the value of τ(C ).

Problem (2). In this case we will restrict our attention to collections C of pairwise
disjoint convex sets in the plane for which we can efficiently compute the common
tangents for each pair of sets of the collection. We also require that we can efficiently
compute the intersection points of a given line with an object in C . Examples are
collections of polygons or collections of disks. We will outline an algorithm that pro-
duces in polynomial time a point p ∈R2 for which τ(p,C ) is minimal. This algorithm
is based on the work of the first author and for more details we refer the reader to [6].

Let A be a collection of closed arcs on the unit circle (S1). When we orient the unit
circle it is natural to speak of the start- and endpoint of an arc of A . Let A = {I1, . . . , In}
and A ′ = {I′1, . . . , I′n} be collections of closed arcs on S1. We say that A and A ′ have
the same combinatorial type if for every subset J ⊂ [n] we have

T
j∈J I j 6= /0 if and only

if
T

j∈J I′j 6= /0. Note that the combinatorial type depends only on the cyclic order of the
start- and endpoints of the arcs of the collection.

For a given collection of arcs A and a point x∈ S1, let πA(x) denote the number of arcs
containing the point x. It is a simple fact that the maximum of πA(x) is attained for an
endpoint of some arc of A , and therefore depends only on the cyclic order of the start-
and endpoints of the arcs in A . In other words, the maximum of πA(x) is determined
by the combinatorial type of A .

Now consider a collection C = {C1, . . . ,Cn} of pairwise disjoint convex sets in the
plane. For a given point p ∈ R2 we centrally project each C j ∈ C to obtain an arc
I j on the unit circle centered at p. We denote by AC (p) = {I1, · · · , In} the resulting
collection of arcs. Clearly we have

τ(p,C ) = max
x∈S1

π(x).

Since two disjoint convex sets have exactly four common tangents (two outer and two
inner tangents), by taking the common tangents of each pair of sets in C , we obtain
an arrangement of lines LC of size O(n2). The crucial observation is that for any
two points p and p′ belonging to the same cell of the arrangement LC , the collections
AC (p) and AC (p) will have the same combinatorial type. Therefore, if we choose a
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point p in each cell of the arrangement LC , it suffices to compute τ(p,C ) and take the
minimum which gives us a point which witnesses τ(C ).

Remark. If C is a collection of convex sets for which we can efficiently compute
the common tangents and intersection points between objects and lines, the above
argument can be turned into an algorithm that has a total running time of O(n4 logn).
Here the complexity is expressed in the total complexity of the input, e.g. in the case
of polygons: the total number of sides.

4.3 k-wise disjoint objects

A collection of convex sets is called k-wise disjoint if no k members have a point in
common. It follows immediately from our proof of Theorem 1 that for collections of
k-wise disjoint convex sets that τ(n)≤ dn+(k−1)

d+1 .

4.4 Helly’s theorem

Here we note that our proof of Theorem 1 can be modified to obtain a proof of Helly’s
theorem. First one must slightly modify our definition of the function gC : rather
than considering KC (p) as defined in the proof of Theorem 1, we consider K(p) :=
KC (p)\{A}A∈C , thus when p is contained in a member of C we have K(p) = /0. When
µ(K(p)) > 0 let mC (p) be the center of mass of K(p), and when µ(K(p)) = 0 let
mC (p) = p (this definition of gC (p) would have worked just as well for the proof of
Theorem 1). Next, one proceeds as in the proof of Theorem 1 except that instead of
considering all subcollections of size τ, we simply consider all subcollections consist-
ing of a single convex body. The key observation is that if mA(p) 6= p then there exists
a hyperplane orthogonal to mA(p)− p that strictly separates A from p. This yields a
proof of Helly’s theorem of similar flavor to the proof given by Chakerian [4].

4.5 Collections of γ-round objects

Here we consider collections of convex bodies that can be inscribed in a circle of unit
radius and contain a circle of radius γ (0 < γ < 1). We will refer to such convex bodies
as γ-round. (In other words we are speaking of fat objects of roughly equal size). It
turns out that the order of magnitude of τ(n) for the class of γ-round convex bodies is
Θ(
√

n logn). Both the upper and lower bound can be derived as simple corollaries of
the work by Alon-Katchalski-Pulleyblank [1]. They studied the asymptotic behavior
of the minimum integer f = f (n) such that for any collection of n pairwise disjoint
γ-round convex bodies, there exists a direction such that any line in this direction in-
tersects at most f of the convex bodies. The proof of the upper bound of f (n) is by
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a simple counting argument, that could be applied to our case as well. However, in
our argument we actually use only the existence of this bound. The construction for
the lower bound is more involved and relies heavily on the famous construction due to
Besicovitch [3] from his solution of the Kakeya problem.

Proof of Theorem 3. Let D be a disk that contains every member of C . By the above
mentioned result by Alon et al. (see Theorem 1.1 and the concluding remarks of [1])
we may assume that any horizontal line intersects f (n) ∈ O(

√
n logn) sets of C . Let

β = arctan( γ

diamD). We choose a point p on the horizontal line through the center of D
such that any ray starting at p which intersects D makes an angle with the horizontal
direction that is less than β.

Now, it is enough to show that any ray R from p that intersects D, meets O(
√

n logn)
elements in C . Indeed, if R intersects D in the points q1 and q2, the distance between
the horizontal lines that pass through q1 and q2 is at most γ. Therefore any set of C
that is met by R must meet at least one of the horizontal lines through q1 or q2. Thus
R intersects O(

√
n logn) sets of C , which finishes the proof.

Proof of Theorem 4. Let C be the collection of bn
2c pairwise disjoint disks of unit

radius from the proof of the lower bound in Theorem 1.1 of [1]. The collection C has
the property that for every direction α in the plane, there exists a line with direction α

that meets Ω(
√

n logn) of the disks of C . Let D be a disk that contains every member
of C , and β = arctan( 1

diamD). We then have:

Claim 13. Let z be a point in the plane such that any ray from z that intersect D and
the ray from z that passes through the center of D form an angle less than β. There
exists a ray from z that meets Ω(

√
n logn) of the disks of C .

Proof. Assume that the direction of the line through z and the center of D is the hori-
zontal one. There exists a horizontal line L that meets Ω(

√
n logn) of the disks of C .

The line L intersects D in two points q1 and q2. For i = 1,2 let Ri be the ray from z that
passes through qi, and let W be the wedge bounded by R1 and R2. By our choice of β

it follows that the distance from any point in L∩D to Ri is less than 1 (i = 1,2). This
implies that any disk of C that meets L must also meet R1 or R2, and therefore one of
these rays must meet at least half of the disks that meet L.

To complete the proof of Theorem 4 we consider two distinct copies C1 and C2 of
the collection C contained in disks D1 and D2, respectively. By placing D1 and D2
sufficiently far apart, we can ensure that for any point in the plane the hypothesis of
Claim 13 is satisfied for at least one of the collections Ci, which concludes the proof.
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4.6 Dimensions greater than two

The approaches sketched in Section 4.1 to bound τd(n) also works in dimensions
greater than two:

For collections of pairwise disjoint (d− 1)-dimensional convex sets in Rd , using the
notion of hyperplane depth [2] yields the bound τd(n)≤ dn

n+1 .

For collections of pairwise disjoint balls, using the center point theorem on the centers
of the balls yields the bound τd(n)≤ dn

d+1 .

As pointed out in the introduction, for d > 2, we do not have any construction of
a collection C of convex bodies in Rd for which τ(C ) ≈ d

d+1 |C |. There is however a
simple construction C of pairwise disjoint convex bodies in Rd for which τ(C )≈ 1

2 |C |:
Consider a simple arrangement A = {H1, . . . ,Hk} of hyperplanes through the origin.
For the hyperplane H1 we associate a pair of d-dimensional balls {B1,B′1} disjoint from
H1, with centers that are antipodal about the origin and whose connecting segment is
orthogonal to H1. By making the distance between B1 and H1 (and thus also B′1 and
H1) sufficiently small, we are guaranteed that any line through the origin which does
not meet B1 and B′1 makes a small angle with H1. This can be repeated for H2 and balls
{B2,B′2}, and by using a higher-dimensional analogue of Claim 9.2, we can make B2
and B′2 disjoint from B1 and B′1 and guarantee that any line through the origin that
misses B2 and B′2 makes a small angle with H2. This process can be repeated for every
Hi ∈ A , resulting in a collection of 2k pairwise disjoint balls in Rd for which any line
through the origin misses at most 2(d− 1) balls, thus from any point in Rd there is a
ray that meets at least k−d +1 of the balls.

We did find a collection T of pairwise disjoint triangles in R3 such that τ(T ) = 2
3 |T |−

3. We do not give the explicit construction here but mention that it comes from ‘lifting’
Construction 2 (Section 3).

Problem 14. For every n > 0 and d ≥ 3 provide a lower bound on τ3(n) greater than
2n
3 +O(1), and τd(n) greater than n

2 +O(1), or an upper bound less than nd
d+1 +O(1).
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