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Abstract

A semi-algebraic graph G = (V,E) is a graph where the vertices are points in Rd, and the edge
set E is defined by a semi-algebraic relation of constant complexity on V . In this note, we estab-
lish the following Ramsey-Turán theorem: for every integer p ≥ 3, every Kp-free semi-algebraic

graph on n vertices with independence number o(n) has at most 1
2

(
1− 1

dp/2e−1 + o(1)
)
n2 edges.

Here, the dependence on the complexity of the semi-algebraic relation is hidden in the o(1) term.
Moreover, we show that this bound is tight.

1 Introduction

Over the past decade, several authors have shown that many classical theorems in extremal graph
theory can be significantly improved if we restrict our attention to semi-algebraic graphs, that is,
graphs whose vertices are points in Euclidean space, and edges are defined by a semi-algebraic
relation of constant complexity [1, 5, 8, 11, 9, 4]. In this note, we continue this sequence of works
by studying Ramsey-Turán numbers for semi-algebraic graphs.

More formally, a graph G = (V,E) is a semi-algebraic graph with complexity at most t, if its
vertex set V is an ordered set of points in Rd, where d ≤ t, and if there are at most t polynomials
g1, . . . , gs ∈ R[x1, . . . , x2d], s ≤ t, of degree at most t and a Boolean formula Φ such that for vertices
u, v ∈ V such that u comes before v in the ordering,

(u, v) ∈ E ⇔ Φ(g1(u, v) ≥ 0; . . . ; gs(u, v) ≥ 0) = 1.

At the evaluation of g`(u, v), we substitute the variables x1, . . . , xd with the coordinates of u, and
the variables xd+1, . . . , x2d with the coordinates of v. Here, we assume that the complexity t is a
fixed parameter, and n = |V | tends to infinity.

The classical theorem of Turán gives the maximum number of edges in a Kp-free graph on n
vertices.

Theorem 1.1 (Turán, [13]). Let G = (V,E) be a Kp-free graph with n vertices. Then

|E| ≤ 1

2

(
1− 1

p− 1
+ o(1)

)
n2.
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The only graph for which this bound is tight is the complete (p− 1)-partite graph whose parts are
of size as equal as possible. This graph can easily be realized as an intersection graph of segments
in the plane, which is a semi-algebraic graph with complexity at most four. Therefore, Turán’s
theorem cannot be improved by restricting it to semi-algebraic graphs.

Let H be a fixed graph. The Ramsey-Turán number RT(n,H, α) is defined as the maximum
number of edges that an n-vertex graph of independence number at most α can have without
containing H as a (not necessarily induced) subgraph. Ramsey-Turán numbers were introduced
by Andrásfai [2] and were motivated by the classical theorems of Ramsey and Turán and their
connections to geometry, analysis, and number theory. According to one of the earliest results in
Ramsey-Turán theory, which appeared in [7], for every p ≥ 2, we have

RT(n,K2p−1, o(n)) =
1

2

(
1− 1

p− 1

)
n2 + o(n2). (1)

For excluded K4, a celebrated result of Szemerédi [12] and Bollobás-Erdős [3] states that

RT(n,K4, o(n)) =
1

8
n2 + o(n2).

This was generalized by Erdős, Hajnal, Sós, and Szemerédi [6] to all cliques of even size. For every
p ≥ 2, we have

RT(n,K2p, o(n)) =
1

2
· 3p− 5

3p− 2
n2 + o(n2). (2)

For more results in Ramsey-Turán theory, consult the survey of Simonovits and Sós [10].
In the present note, we establish asymptotically tight bounds on Ramsey-Turán numbers for

semi-algebraic graphs. We define RTt(n,Kp, o(n)) as the maximum number of edges that n-vertex
Kp-free semi-algebraic graphs with complexity at most t can have, if their independence number
is o(n). Strictly speaking, this definition and all above results apply to sequences of graphs with n
vertices, as n tends to infinity.

It turns out that if the size of the excluded clique is even, then the answer to the Ramsey-Turán
question significantly changes when the graphs are required to be semi-algebraic. However, in the
odd case, we obtain the same asymptotics for the Ramsey-Turán function as in (1). More precisely,
we have

Theorem 1.2. For any fixed integers t ≥ 10 and p ≥ 2, we have

RTt(n,K2p−1, o(n)) = RTt(n,K2p, o(n)) =
1

2

(
1− 1

p− 1

)
n2 + o(n2).

2 Proof of Theorem 1.2

The aim of this section is to prove Theorem 1.2. One of the main tools used in the proof is
the following regularity lemma for semi-algebraic graphs. Given a graph G = (V,E), a vertex
partition is called equitable if any two parts differ in size by at most one. Given two disjoint subsets
Vi, Vj ⊂ V , we say that the pair (Vi, Vj) is homogeneous if Vi × Vj ⊂ E or (Vi × Vj) ∩ E = ∅.

Lemma 2.1 ([9]). For any positive integer t, there exists a constant c = c(t) > 0 with the following
property. Let 0 < ε < 1/2 and let G = (V,E) be a semi-algebraic graph with complexity at most t.
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Then V has an equitable partition V = V1 ∪ · · · ∪ VK into K part, where 1/ε < K < (1/ε)c, such
that all but an ε-fraction of the pairs of parts are homogeneous.

The upper bound in Theorem 1.2 follows from

Theorem 2.2. Let ε > 0 and let G = (V,E) be an n-vertex semi-algebraic graph with complexity

at most t. If G is K2p-free and |E| > 1
2

(
1− 1

p−1 + ε
)
n2, then G has an independent set of size

γn, where γ = γ(t, p, ε).

Proof. We apply Lemma 2.1 with parameter ε/4 to obtain an equitable partition P : V = V1 ∪
· · · ∪ VK such that 4

ε ≤ K ≤
(
4
ε

)c
, where c = c(t) and all but an at most ε

4 -fraction of all pairs of
parts in P are homogeneous (complete or empty with respect to E). If n ≤ 10K, then G has an
independent set of size one, and the theorem holds trivially. So, we may assume n > 10K.

By deleting all edges inside each part, we have deleted at most

K

(
dn/Ke

2

)
≤ 4n2

5K
≤ εn

2

5

edges. Deleting all edges between non-homogeneous pairs of parts, we lose an additional at most⌈ n
K

⌉2 ε
4

K2

2
≤ εn

2

5

edges. In total, we have deleted at most 2εn2/5 edges of G. The only edges that remain in G are

edges between homogeneous pairs of parts, and we have at least 1
2

(
1− 1

p−1 + ε/5
)
n2 edges. By

Turán’s theorem (Theorem 1.1), there is at least one remaining copy of Kp, and its vertices lie in
p distinct parts Vi1 , . . . , Vip ∈ P that form a complete p-partite subgraph. If any of the parts Vij
forms an independent set in G, then there is an independent set of order |Vij | ≥ bn/Kc ≥ γn,
where γ = γ(t, ε, p), and we are done. Otherwise, there is an edge in each of the p parts, and the
endpoints of these p edges form a K2p in G, a contradiction.

The lower bound on RT(n,K2p−1, o(n)) and RT(n,K2p, o(n)) in Theorem 1.2 is constructive
and is based on the following result of Walczak.

Lemma 2.3 ([14]). For any pair of positive integers n and p, where n is a multiple of p− 1, there
is a collection S of n/(p − 1) segments in the plane whose intersection graph GS is triangle-free
and has no independent set of size cpn/ log log n. Here cp is a suitable constant.

The construction. Take p− 1 dilated copies of a set S meeting the requirements in Lemma 2.3,
and label them as S1, . . . , Sp−1, so that Si lies inside a ball with center (i, 0) and radius 1/10. Set
V = S1 ∪ · · · ∪ Sp−1. Note that |Si| = n/(p − 1) so that |V | = n. Let G = (V,E) be the graph
whose vertices are the elements of V , and two vertices (that is, two segments) are connected by an
edge if and only if they cross or their left endpoints are at least 1/2 apart. The graph G consists
of a complete (p− 1)-partite graph, where each part induces a copy of the triangle-free graph GS .
Clearly, G is K2p−1-free and does not contain any independent set of size cpn/ log logn. Moreover,

|E(G)| ≥ 1

2

(
1− 1

p− 1

)
n2.

Since every segment can be represented by a point in R4 and the intersection and distance relations
have bounded description complexity (see [1]), E is a semi-algebraic relation with complexity at
most c, where c is an absolute constant.
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