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Abstract

A semi-algebraic graph G = (V, E) is a graph where the vertices are points in R?, and the edge
set E is defined by a semi-algebraic relation of constant complexity on V. In this note, we estab-
lish the following Ramsey-Turdn theorem: for every integer p > 3, every K,-free semi-algebraic
graph on n vertices with independence number o(n) has at most 3 (1 - W + 0(1)) n? edges.

Here, the dependence on the complexity of the semi-algebraic relation is hidden in the o(1) term.
Moreover, we show that this bound is tight.

1 Introduction

Over the past decade, several authors have shown that many classical theorems in extremal graph
theory can be significantly improved if we restrict our attention to semi-algebraic graphs, that is,
graphs whose vertices are points in Euclidean space, and edges are defined by a semi-algebraic
relation of constant complexity [1, 5, 8, 11, 9, 4]. In this note, we continue this sequence of works
by studying Ramsey-Turan numbers for semi-algebraic graphs.

More formally, a graph G = (V, E) is a semi-algebraic graph with complexity at most ¢, if its
vertex set V is an ordered set of points in R?, where d < t, and if there are at most ¢ polynomials
91y, 9s € Rlxy, ..., x94], s < t, of degree at most t and a Boolean formula ® such that for vertices
u,v € V such that v comes before v in the ordering,

(u,v) e E <  ®(g1(u,v) >0;...;95(u,v) >0) =1.

At the evaluation of gys(u,v), we substitute the variables z1,...,z4 with the coordinates of u, and
the variables z 441, ..., 29 with the coordinates of v. Here, we assume that the complexity ¢ is a
fixed parameter, and n = |V| tends to infinity.

The classical theorem of Turdn gives the maximum number of edges in a K)-free graph on n
vertices.

Theorem 1.1 (Turén, [13]). Let G = (V, E) be a K,-free graph with n vertices. Then

B <1 (1 _ 1. 0(1)> n2.
2 p—1
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The only graph for which this bound is tight is the complete (p — 1)-partite graph whose parts are
of size as equal as possible. This graph can easily be realized as an intersection graph of segments
in the plane, which is a semi-algebraic graph with complexity at most four. Therefore, Turdn’s
theorem cannot be improved by restricting it to semi-algebraic graphs.

Let H be a fixed graph. The Ramsey-Turdn number RT(n, H, «) is defined as the maximum
number of edges that an n-vertex graph of independence number at most « can have without
containing H as a (not necessarily induced) subgraph. Ramsey-Turdn numbers were introduced
by Andrasfai [2] and were motivated by the classical theorems of Ramsey and Turdn and their
connections to geometry, analysis, and number theory. According to one of the earliest results in
Ramsey-Turdn theory, which appeared in [7], for every p > 2, we have

1 1

RT(n, Kop—1,0(n)) = = (1 — ) n? + o(n?). (1)
2 p—1

For excluded Ky, a celebrated result of Szemerédi [12] and Bollobds-Erdés [3] states that

RT(n, K4,0(n)) = énQ + o(n?).

This was generalized by Erdds, Hajnal, Sés, and Szemerédi [6] to all cliques of even size. For every
p > 2, we have

1 3p—-5 4 9
=—- . 2
5 3p_2n + o(n”) (2)

RT(n, Ky,,0(n))

For more results in Ramsey-Turdn theory, consult the survey of Simonovits and Sés [10].

In the present note, we establish asymptotically tight bounds on Ramsey-Turdn numbers for
semi-algebraic graphs. We define RT(n, K, 0o(n)) as the maximum number of edges that n-vertex
K -free semi-algebraic graphs with complexity at most ¢ can have, if their independence number
is o(n). Strictly speaking, this definition and all above results apply to sequences of graphs with n
vertices, as n tends to infinity.

It turns out that if the size of the excluded clique is even, then the answer to the Ramsey-Turan
question significantly changes when the graphs are required to be semi-algebraic. However, in the
odd case, we obtain the same asymptotics for the Ramsey-Turdn function as in (1). More precisely,
we have

Theorem 1.2. For any fized integers t > 10 and p > 2, we have

RT:(n, Kop—1,0(n)) = RT¢(n, Kop,0(n)) = 1 (1 — 1) n? + o(n?).

2 Proof of Theorem 1.2

The aim of this section is to prove Theorem 1.2. One of the main tools used in the proof is
the following regularity lemma for semi-algebraic graphs. Given a graph G = (V, E), a vertex
partition is called equitable if any two parts differ in size by at most one. Given two disjoint subsets
Vi, V; C V., we say that the pair (V;, V) is homogeneous if V; x V; C E or (V; x V;) N E = ).

Lemma 2.1 ([9]). For any positive integer t, there exists a constant ¢ = c(t) > 0 with the following
property. Let 0 < e < 1/2 and let G = (V, E) be a semi-algebraic graph with complezity at most t.



Then V' has an equitable partition V = Vi U---U Vi into K part, where 1/e < K < (1/¢)¢, such
that all but an e-fraction of the pairs of parts are homogeneous.

The upper bound in Theorem 1.2 follows from

Theorem 2.2. Let ¢ > 0 and let G = (V, E) be an n-vertex semi-algebraic graph with complexity
at most t. If G is Kop-free and |E| > % (1 — ]ﬁ + 5) n?, then G has an independent set of size
yn, where v = v(t, p,e).

Proof. We apply Lemma 2.1 with parameter /4 to obtain an equitable partition P : V = V; U
.-+ U Vk such that % <K< (%)C, where ¢ = ¢(t) and all but an at most i—fraction of all pairs of
parts in P are homogeneous (complete or empty with respect to E). If n < 10K, then G has an
independent set of size one, and the theorem holds trivially. So, we may assume n > 10K.

By deleting all edges inside each part, we have deleted at most

[n/K] 4n? n?
K < — <e—
( 2 )5k =5

edges. Deleting all edges between non-homogeneous pairs of parts, we lose an additional at most

2

Kl 12 =%
edges. In total, we have deleted at most 2en?/5 edges of G. The only edges that remain in G are

n2e K2 n
x| a7 s

edges between homogeneous pairs of parts, and we have at least % (1 — p%l +e /5) n? edges. By

Turdn’s theorem (Theorem 1.1), there is at least one remaining copy of K, and its vertices lie in
p distinct parts V;,,...,V;, € P that form a complete p-partite subgraph. If any of the parts V;,
forms an independent set in G, then there is an independent set of order |V; | > |n/K]| > 7n,
where v = 7(t, €,p), and we are done. Otherwise, there is an edge in each of the p parts, and the
endpoints of these p edges form a Ky, in G, a contradiction. 0

The lower bound on RT(n, Ko,_1,0(n)) and RT(n, K2p,0(n)) in Theorem 1.2 is constructive
and is based on the following result of Walczak.

Lemma 2.3 ([14]). For any pair of positive integers n and p, where n is a multiple of p— 1, there
is a collection S of n/(p — 1) segments in the plane whose intersection graph Gg is triangle-free
and has no independent set of size cp,n/loglogn. Here ¢, is a suitable constant.

The construction. Take p — 1 dilated copies of a set S meeting the requirements in Lemma 2.3,
and label them as Si,...,Sy—1, so that S; lies inside a ball with center (¢,0) and radius 1/10. Set
V =5U---USp_1. Note that |S;| = n/(p — 1) so that |V| = n. Let G = (V, E) be the graph
whose vertices are the elements of V', and two vertices (that is, two segments) are connected by an
edge if and only if they cross or their left endpoints are at least 1/2 apart. The graph G consists
of a complete (p — 1)-partite graph, where each part induces a copy of the triangle-free graph Gg.
Clearly, G is Ky,_1-free and does not contain any independent set of size ¢,n/loglogn. Moreover,

1 1
EG)|>=(1-——|n%
B@) 25 (15 )
Since every segment can be represented by a point in R* and the intersection and distance relations
have bounded description complexity (see [1]), E is a semi-algebraic relation with complexity at

most ¢, where ¢ is an absolute constant.
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