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Abstract

Let P, P,,...,P;:1 be pairwise disjoint n-element point sets in
general position in d-space. It is shown that there exist a point O and
suitable subsets Q; C P; (i = 1,2,...,d + 1) such that |Q;| > cq|Pil,
and every d-dimensional simplex with exactly one vertex in each Q);
contains O in its interior. Here ¢4 is a positive constant depending
only on d.

1 Introduction

Let Py, P,,..., P; be pairwise disjoint n-element point sets in general po-
sition in Euclidean d-space R?. If two points belong to the same P;, then we
say that they are of the same color. A d-dimensional simplex is called multi-
colored, if it has exactly one vertex in each P; (1 =1,2,...,d+1). Answering
a question of Barany, Fiiredi, and Lovdsz [BFL90], Vredica and Zivaljevié
[ZV92], proved the following Tverberg-type result. For every k, there ex-
ists an integer n(k,d) such that if n > n(k,d), then any pairwise disjoint
n-element point sets Py, Ps, ..., P;y1 C R¢ in general position induce at least
k multicolored vertex disjoint simplices with an interior point in common.
(For some special cases, see [BL92], [JS91], [VZ94].) This theorem can be
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used to derive a nontrivial upper bound on the number of different ways one
can cut a finite point set into two (roughly) equal halves by a hyperplane.

The aim of this note is to strengthen the above result by showing that
there exist “large” subsets of the sets P; such that all multicolored simplices
induced by them have an interior point in common.

Theorem. There exists cq > 0 with the property that for any disjoint
n-element point sets Py, Py, ..., Py, C R in general position, one can find
a point O and suitable subsets Q; C P;, |Q;i| > ¢g|Ps| (i =1,2,...,d+1) such

that every d-dimensional simplex with exactly one vertex in each QQ; contains
O 1in 1its interior.

The proof is based on the k£ = d + 1 special case of the Vreéica-Zivaljevi¢
theorem (see Theorem 2.1). It uses three auxiliary results, each of them
interesting on its own right. The first is Kalai’s fractional Helly theorem
[K84], which sharpens and generalizes some earlier results of Katchalski and
Liu [KL79] (see Theorem 2.2). The second is a variation of Szemerédi’s
regularity lemma for hypergraphs [S78] (Theorem 2.3), and the third is a
corollary of Radon’s theorem [R21], discovered and applied by Goodman
and Pollack [GPW96] (Theorem 2.4).

In the next section, we state the above mentioned results and also include
a short proof of Theorem 2.3, because in its present form it cannot be found
in the literature. Our argument is an adaptation of the approach of Komlos
and Sés [KS96]. For some similar results, see [C91],[FR92],[KS95]. The proof
of the Theorem is given in Section 3. It shows that the statement is true for
a constant ¢y > 0 whose value is triple-exponentially decreasing in d.

2 Auxiliary results

Theorem 2.1 [ZV92] Let Ay, Ay, ..., Ags1 be disjoint 4d-element sets in
general position in d-space. Then one can find d + 1 verter disjoint sim-
plices with a common interior point such that each of them has exactly one
verter in every A;, 1 <i<d+1.

A family of sets is called intersecting if they have an element in common.



Theorem 2.2 [K84] For any o > 0, there exists f = B(«,d) > 0 satisfying
the following condition. Any family of N conver sets in d-space, which con-
tains at least a( d]—i\fl intersecting (d+1)-tuples, has an intersecting subfamily
with at least BN members.

In fact, if NV is sufficiently large, then Theorem 2.2 is true for any [ <
1 — (1 — )Y+ In particular, it holds for 8 = a/(d + 1).

Let H be a (d + 1)-partite hypergraph whose vertex set is the union of
d + 1 pairwise disjoint n-element sets, P, P, ..., Py.1, and whose edges are
(d+1)-tuples containing precisely one element from each P;. For any subsets
S;CP(1<i<d+1),lete(Si,...,S4:1) denote the number of edges of H
induced by S1U...U Sgy1. In this notation, the total number of edges of H
is equal to e(Py, ..., Pj1).

It is not hard to see that for any sets S; and for any integers t; < [S;|, 1 <
1<d+1,

e(S1 -+, 8a11) _ 3 G(Tl,---,Td+1)/(|S1\> <|Sd+1‘) (1)
1S1] -~ [Surr] Tl T '\t ) e )

where the sum is taken over all #;-element subsets T; C S;, 1 <1 <d+ 1.

Theorem 2.3 Let H be a (d + 1)-partite hypergraph on the verter set P, U
o oUPg, [Pl =n (1 <i<d+1), and assume that H has at least fn!
edges for some 3> 0. Let 0 < e < 1/2.

Then there exist subsets S; C P; of equal size |S;| = s > ﬁl/szdn (1<i<
d+ 1) such that
(’L) 6(51, . ,Sd_|_1) Z ﬂSd—H,
(i1) e(Q1,...,Qa+1) > 0 for any Q; C S; with |Q;| >es (1 <i<d+1).

Proof: Let S; C P; (1 <i<d+ 1) be sets of equal size such that

e(Sla R Sd—f—l)
|Gy [d+1-e2
is mazimum, and denote |S1| = ... = [S41| by s.
For this choice of S;, condition (i) in the theorem is obviously satisfied,
because
e(Sla---,Sd—H) > 6(P1,---,Pd+1) N ﬂ > ﬁ
|Sl|d—|—1—62d - nd+1—e% T opet = g



Taking into account the trivial relation

6(81, ey Sd_|_1) < £2d
|Sl|d+1—s2d - ?

the above inequalities also yield that s > g/ .
It remains to verify (ii). To simplify the notation, assume that €s is an
integer, and let @); be any es-element subset of S; (1 <i < d+ 1). Then

e(Q1,...,Qay1) =e(S1,...,S41)
—e(S1 — Q1,S2,53, ..., Sar1)
—e(Q1,S2 — Q2, S5, -+, Say1)
—e(Q1, Q2,53 — Q3, .., Say1)

_e(Q17 Q?a Q?)a teey Sd—|—1 - Qd—l—l)-

In view of (1), it follows from the maximal choice of S; that

6(51 - Q1,S2,---,Sd+1)
S1— Q1,89 -.-; Sar1)
=(1—¢ Sd—|—1€( 1 ) y weey Pd+
O T e N IEA A

_ (1 o)ttt 5 dsy—QhI;n”ﬂHg/<s)d

T;C8;, 1T =(1—¢)s [(1—g)s]*H €S
2<i<d+1
6(51,52,...,Sd+1) Y
< (1) WIS By -

= (S, ..., Sap1) (1 — €)=

Similarly, for any 7, 2 <17 < d+ 1, we have

e(Qla cey Qi—la SZ - Qi: Si—l—la sy Sd+1)
2d

S 6(51, ceny Sd_|_1)€i_1_g (1 — 8).

Summing up these inequalities, we obtain
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d+1

e(@Q1y---,Qay1) > e(S, .-, Sa1)(1 — (1 =)= =3 15" (1 — ¢))
=2

2d

> e(Sl, ... an—H)(l _ (1 _ 6)175 _ 8175261 + €d+1752d) S 0,

as required. 0O

A (d + 1)-tuple of convex sets in d-space is called separated if any j of
them can be strictly separated from the remaining d+ 1 — j by a hyperplane,
1 < j < d. An arbitrary family of at least d + 1 convex sets in d-space is
separated if every (d + 1)-tuple of it is separated.

Theorem 2.4 [GPW96] A family of convex sets in d-space is separated if
and only if no d + 1 of its members can be intersected by a hyperplane.

Let n > d 4+ 1. Two sequences of points in d-space, (pi,...,p,) and
(¢1,---,Gn), are said to have the same order type if for any integers 1 <
i1 < ... <'ig41 < n, the simplices p;, ...p;,,, and g;, ...¢q;, , have the same
orientation [GPW93]. It readily follows from the last result that if Cy, ..., C,
form a separated family of convex sets, then the order type of (p1,...,pn)
will be the same for every choice of elements p; € C;, 1 <i <n.

3 Proof of Theorem

Let P, ..., P;1 be pairwise disjoint n-element point sets in general posi-
tion in d-space. If a simplex has precisely one vertex in each P;, we call it
multicolored. The number of multicolored simplices is N = nd*!.

By Theorem 2.1, any collection of 4d-element subsets A; C P;, 1 < i <
d + 1, induce d + 1 vertex disjoint multicolored simplices with a common
interior point. Thus, the total number of intersecting (d + 1)-tuples of mul-
ticolored simplices is at least

e e 1)

(o)™ ” Bd)® \d+1

3d—1

Hence, we can apply Theorem 2.2 with oo = 1/(5d)%". We obtain that there
is a point O contained in the interior of at least AN = £(1/(5d)?, d)n*
multicolored simplices.



Let H denote the (d + 1)-partite hypergraph on the vertex set P, U...U
P, 1, whose edge set consists of all multicolored (d + 1)-tuples that induce a
simplex containing O in its interior.

Sete =1/ 2d2d, and apply Theorem 2.3 to the hypergraph H to find S; C
P, 1 <4< d+ 1, meeting the requirements. By throwing out some points
from each S;, but retaining a positive proportion of them, we can achieve
that the convex hulls of the sets S; are separated. Indeed, assume e.g. that
there is no hyperplane strictly separating S;U...US; from S;1 1 U...US4;1.
By the ham-sandwich theorem [B33], one can find a hyperplane h which
simultaneously bisects Si,...,S; into as equal parts as possible. Assume
without loss of generality that at least half of the elements of 54,1 are “above”
h. Then throw away all elements of S; U... U S; that are above A and all
elements of S; 1 U...USg that are below h. We can repeat this procedure
as long as we find a non-separated (d + 1)-tuple. In each step, we reduce the
size of every set by a factor of at most 2.

Notice that in the same manner we can also achieve that e.g. the (d+1)-
tuple {{O}, conv(S)),..., conv(Sy)} becomes separated. In this case, h will
always pass through the point O, therefore O will never be deleted.

After at most (d+ 2)2¢ steps we end up with Q; C S;, [Q;| > es (1 <i <
d + 1) such that {{O}, conv(S;),...,conv(Sys1)} is a separated family. It
follows from the remark after Theorem 2.4 that there are only two possibili-
ties: either every multicolored simplex induced by ()1 U ... U (441 contains
O in its interior, or none of them does. However, this latter option is ruled
out by part (ii) of Theorem 2.3. This completes proof. O

Instead of applying Theorem 2.2, we could have started the proof by refer-
ring to the following result of Alon, Bardny, Fiiredi, and Kleitman [ABFK92],
which is also based on Theorem 2.1. For any 8 > 0 there is a 5:1 > 0 such
that any family of 3n?*! simplices induced by n points in d-space has at least
B;n%! members with non-empty intersection.

Our proof easily yields the following.

Theorem 3.1 For any [ > 0 there is a ﬂ; > 0 with the property that given
any family S of An®*t simplices induced by an n-element set P C R?, one can
find a point O and pairwise disjoint subsets @Q; C P (i =1,2,...,d+ 1) such
that every d-dimensional simplex with exactly one vertex in each @QQ; contains
O, and at least ,B;nd“ of them belong to S.
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