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Abstract

An ordered graph is a graph with a linear ordering on its vertex set. We prove that for every

positive integer k, there exists a constant ck > 0 such that any ordered graph G on n vertices with

the property that neither G nor its complement contains an induced monotone path of size k, has

either a clique or an independent set of size at least nck . This strengthens a result of Bousquet,

Lagoutte, and Thomassé, who proved the analogous result for unordered graphs.

A key idea of the above paper was to show that any unordered graph on n vertices that does

not contain an induced path of size k, and whose maximum degree is at most c(k)n for some small

c(k) > 0, contains two disjoint linear size subsets with no edge between them. This approach

fails for ordered graphs, because the analogous statement is false for k ≥ 3, by a construction of

Fox. We provide some further examples showing that this statement also fails for ordered graphs

avoiding other ordered trees.

1 Introduction

Erdős and Hajnal [11] proved that graphs avoiding some fixed induced subgraph or subgraphs

have very favorable Ramsey-theoretic properties. In particular, they contain surprisingly large

homogeneous (that is, complete or empty) subgraphs and bipartite subgraphs. According to the

celebrated Erdős-Hajnal conjecture, every graph G on n vertices which does not contain some fixed

graph H as an induced subgraph, has a clique or an independent set of size at least nc, where

c = c(H) > 0 is a constant that depends only on H. There is a rapidly growing body of literature

studying this conjecture (see, e.g., [1, 2, 5, 6, 8, 12, 14, 16, 24]).

For any graph G and any disjoint subsets A,B ⊂ V (G), we say that A is complete to B if

ab ∈ E(G) for every a ∈ A, b ∈ B. If |A| = |B| = k and A is complete to B, then A and B are said to

form a bi-clique of size k. Denote the maximum degree of the vertices in G by ∆(G). Following [14],

a family of graphs G is said to have the Erdős-Hajnal property if there exists a constant c = c(G) > 0

such that every G ∈ G has either a clique or an independent set of size at least |V (G)|c. The

family G has the strong Erdős-Hajnal property if there exists a constant b = b(G) > 0 such that for

every G ∈ G, either G or its complement G has a bi-clique of size b|V (G)|. It was proved in [1]

that if a hereditary family (that is, a family closed under taking induced subgraphs) has the strong

Erdős-Hajnal property, then it also has the Erdős-Hajnal property.
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The aim of this paper is to discuss Erdős-Hajnal type problems for ordered graphs. An ordered

graph is a graph with a total ordering on its vertex set. With a slight abuse of notation, in every

ordered graph, we denote this ordering by ≺. If the vertex set of G is a subset of the integers, then ≺
stands for the natural ordering. An ordered graph H is an ordered subgraph (or simply subgraph) of

G if there exists an order preserving embedding from V (H) to V (G) that maps edges to edges. If, in

addition, non-edges are mapped into non-edges, then H is called an induced ordered subgraph of G.

If G does not have H as induced ordered subgraph, then we say that G avoids H. The ordered path

with vertices 1, . . . , k and edges {i, i+ 1}, for i = 1, . . . , k − 1, is called a monotone path of size k.

Our main result is the following.

Theorem 1. For any positive integer k, there exists c = c(k) > 0 with the following property. If

G is an ordered graph on n vertices such that neither G nor its complement contains an induced

monotone path of size k, then G has either a clique or an independent set of size at least nc.

One can deduce from our proof that c(k) = k−5−o(1) suffices, but in order to make the paper

more readable, we will not include the computations. Our theorem obviously implies the analogous

statement for unordered graphs, which was first established by Bousquet, Lagoutte, and Thomassé

[5]. The idea of their proof was the following. We call a family of graphs, H, lopsided if there exists

a constant c = c(H) > 0 with the following property: any graph G on n vertices which does not

contain any element of H as an induced subgraph, and for which ∆(G) < cn, the complement of G

has a bi-clique of size at least cn. If H consists of a single graph H, then H is called lopsided. They

proved that the (unordered) path of size k is lopsided. It follows from the arguments of Bousquet

et al. that if H is lopsided, then the family of all graphs which avoid every element of H as an

induced subgraph, and whose complements also avoid them, has the strong Erdős-Hajnal and, thus,

the Erdős-Hajnal property.

Since then, this idea has been exploited to prove the Erdős-Hajnal conjecture for various other

families of graphs: the family of graphs avoiding a tree T and its complement [8], the family of graphs

avoiding all subdivisions of a graph H and the complements of these subdivisions [9], the family of

graphs avoiding a graph H as a vertex minor [7], families of graphs avoiding a fixed cycle as a pivot

minor [17], etc.

However, for ordered graphs, this method does not work even in the simplest case: for monotone

paths. A construction of Fox [13] shows that, for every n and δ > 0, there exists an ordered graph G

with |V (G)| = n and ∆(G) < nδ which avoids the monotone path of size 3, and whose complement

does not contain a bi-clique of size larger than cn
logn , for a suitable constant c = c(δ) > 0. Hence,

using the above terminology, the monotone path of size at least 3 is not lopsided.

Although monotone paths are not lopsided, they satisfy a somewhat weaker property, as is shown

by the following theorem of the authors.

Theorem 2. ([20]) For any positive integer k, there exists a constant c = c(k) > 0 with the following

property. If G is an ordered graph on n vertices that does not contain an induced monotone path of

size k, and ∆(G) < cn, then the complement of G contains a bi-clique of size at least cn
logn .

Unfortunately, Theorem 1 cannot be deduced from this weaker property. Our approach is based

on a technique in [25], where it was shown that the family of string graphs has the Erdős-Hajnal

property.
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Recently, Seymour, Scott, and Spirkl [24] extended our Theorem 2 from monotone paths to all

ordered forests T , albeit with a weaker bound n1−o(1) in place of cn
logn . They proved that for any

0 < c < 1, there exists ε = ε(T, c) > 0 with the following property. If G is an ordered graph

on n vertices that does not contain T as an induced ordered subgraph and ∆(G) < εn, then the

complement of G contains a bi-clique of size at least εn1−c. Therefore, if we want to guarantee a

bi-clique of size n1−o(1) in G, we need to assume that the maximum degree of G is o(n). This is

definitely a stronger condition than the one we had for monotone paths.

Our next construction shows that this stronger condition is indeed necessary. We also provide

new examples of ordered trees T (that do not contain a monotone path of size 3), for which one

cannot expect to find linear size bi-cliques.

Theorem 3. For any ε > 0 there exist δ = δ(ε) > 0 and n0 = n0(ε) with the following property.

For any positive integer n ≥ n0, there is an ordered graph G with n vertices and ∆(G) ≤ εn

such that the size of the largest bi-clique in G is at most n1−δ, and G does not contain either of the

following ordered trees as an induced ordered subgraph:

S :
1 2 3 4

P :
1 2 3 4

The investigation of bipartite variants of the problems considered in this paper were initiated

in [18]; see also [3, 23].

Our paper is organized as follows. In Section 2, we introduce the key concept needed for the

proof of Theorem 1 and reduce Theorem 1 to another statement (Theorem 6). Sections 3 and 4 are

devoted to the proof of this latter statement. The construction proving Theorem 3 will be presented

in Sections 5.

Throughout this paper, we use the following notation, which is mostly conventional. For any

graph G and any subset U ⊂ V (G), we denote by G[U ] the subgraph of G induced by U . The

neighborhood of U is defined as NG(U) = N(U) = {v ∈ V (G) \ U : ∃u ∈ U, uv ∈ E(G)}. If U = {u},
instead of N(U), we simply write N(u). For a vertex v ∈ V (G), let G − v stand for the graph

obtained from G by deleting the vertex v. Also, if G is an ordered graph, the forward neighbourhood

of a vertex v ∈ V (G), denoted by N+
G (y) = N+(y) is the set of neighbours y such that x ≺ y.

For easier readability, we omit the use of floors and ceilings, whenever they are not crucial.

2 The quasi-Erdős-Hajnal property

After introducing some notation and terminology, we outline our proof strategy for Theorem 1.

For any k ≥ 3, let Pk denote the family of all ordered graphs G such that neither G nor its

complement contains a monotone path of size k as an induced subgraph. Instead of proving that Pk
has the Erdős-Hajnal property, we prove that it has the quasi-Erdős-Hajnal property. This concept

was introduced by the second named author in [25], in order to show that the family of string graphs

has the Erdős-Hajnal property.
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Definition 4. A family of graphs, G, has the quasi-Erdős-Hajnal property if there is a constant

c = c(G) > 0 with the following property. For every G ∈ G with at least 2 vertices, there exist t ≥ 2

and t pairwise disjoint subsets X1, . . . , Xt ⊂ V (G) such that t ≥ ( |V (G)|
|Xi| )c holds for every i ∈ [t], and

(i) either there is no edge between Xi and Xj for 1 ≤ i < j ≤ t,

(ii) or Xi is complete to Xj for 1 ≤ i < j ≤ t.

It was proved in [25] that in hereditary families, the quasi-Erdős-Hajnal property is equivalent to

the Erdős-Hajnal property. We somewhat relax the definition of the quasi-Erdős-Hajnal property,

and with a slight abuse of notation, we overwrite the previous definition as follows.

Definition 5. A family of graphs, G, has the quasi-Erdős-Hajnal property if there are two constants,

α, β > 0, with the following property. For every G ∈ G with at least 2 vertices, there exist t ≥ 2 and

t pairwise disjoint subsets X1, . . . , Xt ⊂ V (G) such that t ≥ α( |V (G)|
|Xi| )β holds for every i ∈ [t], and

(i) either there is no edge between Xi and Xj for 1 ≤ i < j ≤ t,

(ii) or Xi is complete to Xj for 1 ≤ i < j ≤ t.

It is easy to verify that the two definitions are in fact equivalent. If G satisfies Definition 4, then,

obviously, it also satisfies Definition 5. In the reverse direction, setting c = β
1−log2 α

if α ≤ 1, and

c = β if α > 1, if the inequality t ≥ α( |V (G)|
|Xi| )β holds for some t ≥ 2, then we also have t ≥ ( |V (G)|

|Xi| )c.

Therefore, it is enough to show that Pk has the quasi-Erdős-Hajnal property. The advantage of

the quasi-Erdős-Hajnal property over the Erdős-Hajnal property is that it allows us to establish the

following lopsided statement, which will imply Theorem 1.

Theorem 6. For every positive integer k, there exist two constants ε, α > 0 with the following

property.

Let G be an ordered graph on n vertices with maximum degree at most εn such that G does not

contain a monotone path of size k as an induced subgraph. Then there exist t ≥ 2 and t pairwise

disjoint subsets X1, . . . , Xt ⊂ V (G) such that t ≥ α( n
|Xi|)

1/2 holds for every i ∈ [t], and there is no

edge between Xi and Xj for 1 ≤ i < j ≤ t.

Our proof shows that ε = 2−O(k) and α = 2−O(k) suffice. In the inequality t ≥ α( n
|Xi|)

1/2, the

exponent 1/2 has no significance: the statement remains true with any 0 < β < 1 instead of 1/2

(with the cost of changing ε and α). However, it is not true with β = 1, as it would contradict the

aforementioned construction of Fox [13].

In the rest of this section, we show how Theorem 6 implies Theorem 1. Very similar ideas were

used in [5, 8, 9]. The next two sections are devoted to the proof of Theorem 6.

By a classical result of Rödl [21], any graph G avoiding some fixed graph H contains a linear size

subset that is either very dense or very sparse. A quantitatively stronger version of this result was

proved by Fox and Sudakov [15].
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Lemma 7. [21] For every graph H and ε0 > 0, there exists δ0 > 0 with the following property.

For any graph G with n vertices that does not contain H as an induced subgraph, there is a subset

U ⊂ V (G) such that |U | ≥ δ0n, and either |E(G[U ])| ≤ ε0
(|U |

2

)
or |E(G[U ])| ≥ (1− ε0)

(|U |
2

)
.

Lemma 7 applies to unordered graphs, but it can be easily extended to ordered graphs, using the

following statement.

Lemma 8. [22] For every ordered graph H, there exists an unordered graph H0 with the property

that introducing any total ordering on V (H0), the resulting ordered graph H ′0 always contains H as

an induced ordered subgraph.

By the combination of these two lemmas, we obtain the following.

Lemma 9. For every ordered graph H and ε > 0, there exists δ > 0 with the following property.

For any ordered graph G with n vertices that does not contain H as an induced ordered subgraph,

there exists a subset U ⊂ V (G) such that |U | ≥ δn, and either ∆(G[U ]) ≤ ε|U | or ∆(G[U ]) ≤ ε|U |.

Proof. By Lemma 8, there exists a graph H0 such that introducing any total ordering on V (H0), the

resulting ordered graph H ′0 contains H as an induced ordered subgraph. Let ε0 = ε
2 , and let δ0 be

the constant given by Lemma 7 with respect to H0 and ε0.

Let G be an ordered graph with n vertices that does not contain H as an induced ordered

subgraph. Then the underlying unordered graph of G does not contain H0 as an induced subgraph.

Hence, there exists U ′ ⊂ V (G) such that |U ′| ≥ δ0n, and either |E(G[U ′])| ≤ ε0
(|U ′|

2

)
or |E(G[U ′])| ≥

(1− ε0)
(|U ′|

2

)
. Suppose that |E(G[U ′])| ≤ ε0

(|U ′|
2

)
, the other case can be handled similarly. Let W be

the set of vertices in U ′ whose degree in G[U ] is larger than 2ε0|U |. Then

1

2
(2ε0|W |)|U ′| ≤ |E(G[U ′])| ≤ ε0

(
|U ′|
2

)
,

so that |W | ≤ |U
′|

2 . Setting U = U ′ \W , we have ∆(G[U ]) ≤ 2ε0|U ′| ≤ ε|U | and

|U | ≥ |U
′|

2
≥ δ0

2
n.

Hence, δ = δ0
2 will suffice.

After this preparation, it is easy to deduce from Theorem 6 that Pk has the quasi-Erdős-Hajnal

property and, therefore, the Erdős-Hajnal property.

Proof of Theorem 1. Let ε, α > 0 be the constants given by Theorem 6, and let δ > 0 be the constant

given by Lemma 9, where H is the monotone path of size k.

Let G be an ordered graph on n vertices such that neither G nor its complement contains a

monotone path of length k as an induced subgraph. Then there exists U ⊂ V (G) such that |U | ≥ δn,

and either ∆(G[U ]) < ε|U | or ∆(G[U ]) < ε|U |. Suppose that ∆(G[U ]) < ε|U |, the other case can

be handled similarly. Applying Theorem 6 to G[U ], we obtain that there exist t ≥ 2 and t pairwise

disjoint sets X1, . . . , Xt ⊂ U such that

t ≥ α
(
|U |
|Xi|

)1/2

≥ αδ1/2

(
n

|Xi|

)1/2
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for i = 1, . . . , t, and there is no edge between Xi and Xj for 1 ≤ i < j ≤ t.
Thus, the family Pk has the quasi-Erdős-Hajnal property with parameters α := αδ1/2 and β :=

1/2. Therefore, Pk also has the Erdős-Hajnal property, see Lemma 8. in [25].

In the next two sections, we present the proof of Theorem 6.

3 The main lemma

The backbone of the proof of Theorem 6 is the following technical lemma, whose proof is already

contained in [25], within the proof Lemma 7. For convenience and to make this paper self-contained,

it is also included here. Recently, our lemma was also utilized by Chudnovsky et al. [10], who

provided a different proof as well.

Lemma 10. There exist two constants 0 < ε, α < 1
4 with the following property. Let H be a bipartite

graph with vertex classes A and B, |A| = |B| = n. Then at least one of the following three conditions

is satisfied.

(i) There exist t ≥ 2 and 2t pairwise disjoint sets W1, . . . ,Wt ⊂ A and X1, . . . , Xt ⊂ B such that

t ≥ α( n
|Xi|)

1/2, and Xi ⊂ N(Wi) for i = 1, . . . , t, but Xi ∩N(Wj) = ∅ for i 6= j.

(ii) There exist X ⊂ A and Y ⊂ B such that |X|, |Y | > n
4 , and there is no edge between X and Y .

(iii) There exists v ∈ A such that |N(v)| ≥ εn.

Let us briefly outline the idea of the proof. We want to find an induced subgraph H ′ of H with

vertex classes A′ ⊂ A and B′ ⊂ B such that

� H ′ is almost bi-regular, more precisely, the degree of every vertex in A′ is at most ∆, and the

degree of every vertex in B′ is within a constant factor of some d,

� |A′| and |B′| are large with respect to d and ∆.

If we can find such an H ′, we construct our sets W1, . . . ,Wt and X1, . . . , Xt as follows. By a

probabilistic argument, we find S ⊂ A′ such that Ω(|B′|) vertices in B′ have exactly one neighbor

in S. Then we can group the vertices in S into sets W1, . . . ,Wt such that Xi := NH′(Wi) has size

roughly ∆ for i ∈ [t]. The 2t sets W1, . . . ,Wt and X1, . . . , Xt will satisfy (i). We find a suitable H ′

algorithmically: we either found our desired A′ or B′, or there are too few vertices with too large

degrees, in which case we remove these vertices and continue. We show that if we cannot find H ′,

then at least one of (ii) or (iii) must hold.

Proof of Lemma 10. We show that ε = 1
2000 and α = 1

200 meet the above requirements.

Suppose that (iii) does not hold. Then the number of edges of H is at most εn2, so the number of

vertices w ∈ B such that |N(w)| > εn is at most n/2. Deleting all such vertices, and some more, we

obtain a bipartite graph H ′ with vertex classes A′ and B′ of size n′ = n/2 such that the maximum

degree of H ′ is at most 2εn = 4εn′.
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Let ε′ = 4ε = 1
500 and α′ = 1

100 . From now on, we shall only work with H ′, so with a slight abuse

of notation, write H := H ′, A0 := A′, B0 := B′, n := n′, ε := ε′ and α := α′. Therefore, we have

∆(H) ≤ εn.

In what follows, we describe an algorithm, which will be referred to as the main algorithm. It

will output

(i)’ either an integer t ≥ 2 and 2t pairwise disjoint sets W1, . . . ,Wt ⊂ A and X1, . . . , Xt ⊂ B such

that t ≥ α( n
|Xi|)

1/2, and Xi ⊂ N(Wi) for i = 1, . . . , t, but Xi ∩N(Wj) = ∅ for i 6= j;

(ii)’ or two subsets X ⊂ A and Y ⊂ B such that |X|, |Y | > n
2 and there is no edge between X and

Y .

We declare the following constants for the main algorithm. Let J0 := blog2 εnc + 1, and for

j = 1, . . . , J0, let tj := n1/22j/2. Then

J0∑
i=1

ti =

J0∑
i=1

n1/22i/2 ≤ 2nε1/2
1

1− 2−1/2
<
n

4
. (1)

Also, let A∗0 := ∅ and B∗0 := ∅.
In the q-th step of the main algorithm, we define Aq, A

∗
q , Bq, B

∗
q , Jq. We will think of A∗q and B∗q

as a set of “leftovers”. That is, we get Aq and A∗q by transferring certain elements from Aq−1 to

A∗q−1, and we get Bq and B∗q by transferring certain elements from Bq−1 to B∗q−1. Also, Jq will keep

track of the maximum degree in Bq, and it will decrease after each step. We make sure that the

following properties are satisfied:

1. Aq, A
∗
q , Bq, B

∗
q are pairwise disjoint and Aq ∪A∗q = A, Bq ∪B∗q = B,

2. |A∗q |, |B∗q | ≤ 2

J0∑
i=Jq+1

ti,

3. for every v ∈ Bq, |N(v) ∩Aq| < 2Jq .

Note that by (1) and conditions 1 and 2, we have |Aq|, |Bq| ≥ n
2 . Also, the conditions 1-3 are certainly

satisfied for q = 0. Next, we describe the q-th step of our main algorithm.

Main algorithm. If Jq−1 = 0, then stop the main algorithm, and output X := Aq−1, Y := Bq−1.

In this case, there is no edge between Aq−1 and Bq−1 by condition 3, and |Aq−1|, |Bq−1| ≥ n
2 by

condition 2. This output satisfies condition (ii)’.

Suppose next that Jq−1 ≥ 1. For i = 1, . . . , Jq−1, let Vi be the set of vertices v ∈ Bq−1 such that

2i−1 ≤ |N(v) ∩ Aq−1| < 2i, and let V0 be the set of vertices v ∈ Bq−1 such that N(v) ∩ Aq−1 = ∅.
Then, by condition 3, we have Bq−1 =

⋃Jq−1

i=0 Vi.

Let 1 ≤ k ≤ Jq−1 be the largest integer for which tk < |Vk|. First, consider the case where there

is no such k. Then

n−
J0∑

i=Jq−1+1

ti − |V0| ≤ n− |B∗q−1| − |V0| = |Bq−1| − |V0| =
Jq−1∑
i=1

|Vi| ≤
Jq−1∑
i=1

ti,
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where the first inequality follows from condition 2, and the first equality is the consequence of

condition 1. Comparing the left-hand and right-hand sides, and using (1), we get |V0| ≥ n/2. In this

case, stop the algorithm and output X := Aq−1 and Y := V0. This output satisfies condition (ii)’.

Suppose that there exists k with the desired property. Let Bq,0 = Bq−1 \ (
⋃Jq−1

i=k+1 Vi), and let

B∗q,0 = B∗q−1 ∪ (
⋃Jq−1

i=k+1 Vi). Then |B∗q,0| ≤ |B∗q−1| +
∑Jq−1

i=k+1 ti holds. Also, set J ′q := k, Aq,0 = Aq−1

and A∗q,0 = A∗q−1. Note that properties 1-3 are satisfied with Aq,0, A
∗
q,0, Bq,0, B

∗
q,0, J

′
q instead of

Aq, A
∗
q , Bq, Bq

∗, Jq, respectively.

Now we shall run a sub-algorithm. Let Z0 = Vk. With help of the sub-algorithm, we construct a

sequence Z0 ⊃ · · · ⊃ Zr satisfying the following properties. During the `-th step of the sub-algorithm,

we either find an output satisfying (i)’, or we will transfer certain elements of Aq,`−1 to A∗q,`−1,

resulting in the sets Aq,` and A∗q,`. At the end of the `-th step of this algorithm, Z` will be the set

of vertices in Bq,0 that still have at least 2k−1 neighbours in A. We stop the algorithm if Z` is too

small. Let us describe the `-th step of the algorithm.

Sub-algorithm. Suppose that Z`−1, Aq,`−1, A
∗
q,`−1 have already been defined. If |Z`−1| < 2tk, then

let r = `− 1, stop the sub-algorithm. Set Bq := Bq,0 \ Z`−1, B∗q := B∗q,0 ∪ Z`−1, Aq := Aq,`−1,

A∗q := A∗q,`−1, and Jq := k − 1. Move to the next step of the main algorithm. Note that

conditions 1 and 3 are satisfied, and B∗q satisfies condition 2. Later, we will see that A∗q
satisfies 2. as well.

On the other hand, if |Z`−1| ≥ 2tk, we define Z` as follows. Let x` =
|Z`−1|
tk

. Say that a vertex

v ∈ Aq,`−1 is heavy if

|N(v) ∩ Z`−1| ≥
x`−12k

tk
|Z`−1| =

(
|Z`−1|
tk

)2

2k =
|Z`−1|2

n
=: ∆`,

and let K` be the set of heavy vertices. Counting the number of edges f between K` and Z`−1

in two ways, we can write

|K`| ·∆` ≤ f < |Z`−1| · 2k,

which gives

|K`| <
|Z`−1| · 2k

∆`
=
tk
x`
,

where the equality holds by the definition of ∆`. Set Aq,` := Aq,`−1 \K` and A∗q,` = A∗q,`−1∪K`.

Examine how the degrees of the vertices in Z`−1 changed, and consider the following two cases:

Case 1. At least
|Z`−1|

2 vertices in Z`−1 have at least 2k−1 neighbors in Aq,`.

Let T be the set of vertices in Z`−1 that have at least 2k−1 neighbors in Aq,`, so |T | ≥ |Z`−1|
2 .

Pick each element of Aq,` with probability p = 2−k, and let S be the set of selected vertices.

We say that v ∈ T is good if |N(v) ∩ S| = 1, and let D be the set of good vertices. We

have

P(v is good) = |N(v) ∩Aq,`|p(1− p)|N(v)∩Aq,`|−1 ≥ 1

2
(1− 2−k)2k ≥ 1

6
,
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so that E(|D|) ≥ |T |6 ≥
|Z`−1|

12 . Therefore, there exists a choice for S such that |D| ≥ |Z`−1|
12 .

Let us fix such an S. For each v ∈ S, let Dv be the set of elements w ∈ D such that

N(w) ∩ S = {v}. Also, note that

|Dv| ≤ |N(v) ∩ Z`| ≤ min{εn,∆`} =: ∆′`.

In other words, the sets Dv for v ∈ S partition D into sets of size at most ∆′`. Here, we

have
|D|
∆′`
≥ |Z`−1|

12∆′`
≥ max

{
n

12|Z`−1|
,
|Z`−1|
εn

}
.

By the choice of ε, the right-hand side is always at least 6. But then we can partition S

into t ≥ |D|
3∆′`
≥ 2 parts W1, . . . ,Wt such that the sets Xi =

⋃
v∈Wi

Dv have size at least

∆′` for i = 1, . . . , t. The integer t and the resulting sets X1, . . . , Xt satisfy that

t ≥ |D|
3∆′`

≥ n

36|Z`−1|
≥ 1

36

(
n

∆`

)1/2

≥ 1

36

(
n

|Xi|

)1/2

.

Stop the main algorithm, and output t and the 2t pairwise disjoint sets W1, . . . ,Wt and

X1, . . . , Xt. By the choice of α, this output satisfies (i)’.

Case 2. At most
|Z`−1|

2 vertices in Z`−1 have at least 2k−1 neighbours in Aq,`.

In this case, define Z` as the set of elements of Z`−1 with at least 2k−1 neighbours in Aq,`
(then Z` is the set of all elements in Bq,0 with at least 2k−1 neighbours in Aq,` as well).

Also, move to the next step of the sub-algorithm.

We show that that conditions 1-3 are still satisfied for Aq,`, A
∗
q,`, B`,0, B

∗
`,0, J

′
q instead of

Aq, A
∗
q , Bq, B

∗
q , Jq. Conditions 1 and 3 are clearly true, and 2 holds for B∗q,0. It remains

to show that 2 holds for A∗q,` as well. Note that, as |Zj | ≤ |Zj−1|
2 for j = 1, . . . , `, and

|Z`−1| ≥ 2tk, we have |Zj | ≥ 2`−jtk, and xj ≥ 2`+1−j . Therefore,

|A∗q,`| = |A∗q−1|+
∑̀
j=1

|Kj | ≤ |A∗q−1|+
∑̀
j=1

tk
xj
≤ |A∗q−1|+

∑̀
j=1

tk
2`+1−j < |A

∗
q−1|+ tk.

Hence, condition 2 is also satisfied.

As we have J0 > J1 > · · · ≥ 0, the main algorithm will stop after at most J0 steps. When the

algorithm stops, its output will satisfy either (i)’ or (ii)’.

Let us remark that if (i) holds, then the 2t sets W1 . . . ,Wt and X1, . . . , Xt have the additional

property that every vertex in
⋃t
i=1Xi has exactly one neighbor in

⋃t
i=1Wi.

4 The proof of Theorem 6

Now we are in a position to prove Theorem 6. Let G be an ordered graph. The transitive closure of

G is the ordered graph G′ on the vertex set V (G) in which x and y are connected by an edge if and

only if there exists a monotone path in G with endpoints x and y.

9



Let us briefly outline the proof idea. We assume that for G there is no integer t ≥ 2 and t sets

X1, . . . , Xt with the desired properties. Then we show that G contains a monotone path x1, . . . , xk
with the following additional property. For s = 1, . . . , k, there are Ω(n) vertices in G that can be

reached by a monotone path from xs, which avoids all the neighbors of x1, . . . , xs−1. This additional

property lets us do induction on s, allowing us to find x1, . . . , xk one-by-one.

Proof of Theorem 6. Let 0 < ε1, α1 <
1
4 be the constants given by Lemma 10 as ε, α, respectively.

Furthermore, define the following constants: c1 = ε1
2 , ci+1 = ε1ci

4 (for i = 1, 2, . . . ), ε = ck
2 , and

α =
α1c

1/2
k

2 .

Let G be an ordered graph on n vertices such that

1. the maximum degree of G is at most εn,

2. there exists no t ≥ 2 such that for some pairwise disjoint sets X1, . . . , Xt ⊂ V (G) we have

t ≥ α( n
|Xi|)

1/2 and there is no edge between Xi and Xj for 1 ≤ i < j ≤ t.

Then we show that G contains a monotone path of size k as an induced subgraph. In particular, we

find k vertices x1 ≺ · · · ≺ xk with the following properties. For s = 1, . . . , k,

(a) x1, . . . , xs form an induced monotone path.

(b) Let

Us = V (G) \

(
s−1⋃
i=1

N(xi)

)
,

let Gs = G[Us ∪ {xs}], and let G′s be the transitive closure of Gs. Then the forward degree of

xs in G′s is at least csn.

First, we find a vertex x1 with the desired properties, that is, if G′ is the transitive closure of G,

then the forward degree of x1 must be at least c1n. Let A0 be the set of the first n/2 elements of

V (G), and set B0 = V (G) \A0. Also, let H0 denote the bipartite subgraph of G′ with parts A0 and

B0. By Lemma 10, at least one of the following three conditions is satisfied.

(i) There exist t ≥ 2 and 2t pairwise disjoint sets W1, . . . ,Wt ⊂ A0 and X1, . . . , Xt ⊂ B0 such that

t ≥ α1

(
|A0|
|Xi|

)1/2

= 2−1/2α1

(
n

|Xi|

)1/2

≥ α
(

n

|Xi|

)1/2

,

and Xi ⊂ NH0(Wi) for i = 1, . . . , t, but Xi ∩NH0(Wj) = ∅ for i 6= j.

(ii) There exist X ⊂ A0 and Y ⊂ B0 such that |X|, |Y | ≥ n
8 , and there is no edge between X and

Y .

(iii) There exists v ∈ A0 such that |NH0(v)| ≥ ε1|A0| = c1n.

10



As the non-edges of G′ are also non-edges of G, (ii) cannot hold. Otherwise, t = 2 and X1 =

X,X2 = Y contradicts property 2 of G. Suppose that (i) holds. Note that there is no edge between

Xi and Xj in G, for 1 ≤ i < j ≤ t. Suppose for contradiction that x ∈ Xi and y ∈ Xj are joined by

an edge in G, for some x ≺ y. Then there exists w ∈ Wi such that wx ∈ E(G′), but wy 6∈ E(G′).

This is a contradiction, as this means that there is a monotone path from w to x in G, so there is a

monotone path from w to y as well. Hence, there is no edge between Xi and Xj for 1 ≤ i < j ≤ t,

which contradicts 2. Therefore, (iii) must hold: there exists a vertex x1 ∈ V (G) whose forward

degree in G′ = G′1 is at least c1n.

Suppose that we have already found x1, . . . , xs with the desired properties, for some 1 ≤ s ≤ k−1.

Then we define xs+1 as follows. Let Fs be the forward neighbourhood of xs in Gs, let Ks be the

forward neighbourhood of xs in G′s, and let Ls = Ks \ Fs. As |Fs| ≤ εn and |Ks| ≥ csn, we have

|Ls| ≥ cs
2 n. Let As be the set of the first |Ls|

2 elements of Ls with respect to ≺, and let Bs = Ls \As.
A monotone path in Gs is said to be good if none of its vertices, with the possible exception of the first

one, belongs to Fs. For every v ∈ As, there exists at least one element x ∈ Fs such that v ∈ N+
G′s

(x);

assign the largest (with respect to ≺) such element x to v. Then there is a good monotone path

from x to v.

Define a bipartite graph Hs between As and Bs as follows. If v ∈ As and y ∈ Bs, and x ∈ Fs is

the vertex assigned to v, then join v and y by an edge if there is a good monotone path from x to y.

Applying Lemma 10 to Hs, we conclude that at least one of the following three statements is true.

(i) There exist t ≥ 2 and 2t pairwise disjoint sets W1, . . . ,Wt ⊂ As and X1, . . . , Xt ⊂ Bs such that

t ≥ α1

(
|As|
|Xi|

)1/2

>
α1c

1/2
s

2

(
n

|Xi|

)1/2

≥ α
(

n

|Xi|

)1/2

,

and Xi ⊂ NHs(Wi) for i = 1, . . . , t, but Xi ∩NHs(Wj) = ∅ for i 6= j.

(ii) There exist X ⊂ As and Y ⊂ Bs such that |X|, |Y | ≥ |As|
4 ≥

csn
16 , and there is no edge between

X and Y in Hs.

(iii) There exists v ∈ As such that |NHs(v)| ≥ ε1|As| = ε1cs
4 n = cs+1n.

Suppose first that (i) holds. Then, as before, we show that there is no edge between Xi and Xj

in G for 1 ≤ i < j ≤ t. Suppose that u ∈ Xi and w ∈ Xj are joined by an edge in G, for some u ≺ w.

Then there exists v ∈Wi such that vu ∈ E(Hs), but vw 6∈ E(Hs). Let x ∈ Fs be the vertex assigned

to v. Then we can find a good monotone path from x to u. Since uw is an edge of G, there is a good

monotone path from x to w, contradicting the assumption vw 6∈ E(Hs). Therefore, there cannot be

any edge between Xi and Xj in G, which means that (i) contradicts 2.

Suppose next that (ii) holds. Again, we can show that there is no edge between X and Y in G,

which then contradicts 2. by setting t = 2 and X1 = X,Y1 = Y . Suppose that v ∈ X and y ∈ Y are

joined by an edge in G, and let x ∈ Fs be the vertex assigned to v. There is a good monotone path

from x to v in Gs, so there is a good monotone path from x to y, contradicting the assumption that

vy is not an edge of Hs.
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Therefore, we can assume that (iii) holds. Let v ∈ As be a vertex of degree at least cs+1n in Hs,

and let xs+1 ∈ Fs be the vertex assigned to v. We show that xs+1 satisfies the desired properties.

We have Us+1 = Us \ Fs, and the forward degree of xs+1 in G′s+1 is exactly the number of vertices y

such that there is a good monotone path from xs+1 to y. That is, the forward degree of xs+1 is at

least |NHs(v)| ≥ cs+1n, as required. This completes the proof.

5 The construction—Proof of Theorem 3

In this section, we present our construction for Theorem 3. The construction involves expander

graphs, which are defined as follows.

The closed neighborhood of U in a graph H is defined as U ∪NH(U), and is denoted by N [U ] =

NH [U ]. The graph H is called an (n, d, λ)-expander if H is a d-regular graph on n vertices, and

for every U ⊆ V satisfying |U | ≤ |V |/2, we have |NH [U ]| ≥ (1 + λ)|U |. By a well-known result of

Bollobás [4], a random 3-regular graph on n vertices is a (n, 3, λ0)-expander with high probability

for some absolute constant λ0 > 0. In the rest of this section, we fix such a constant λ0. For explicit

constructions of expander graphs see, e.g., [19].

For any positive integer r, let Hr denote the graph with vertex set V (H) in which two vertices are

joined by an edge if there exists a path of length at most r between them in H. Here we allow loops,

so that in Hr every vertex is joined to itself. We need the following simple property of expander

graphs.

Claim 11. Let H be an (n, d, λ)-expander graph and let r ≥ 1. For any subsets X,Y ⊆ V (H) such

that there is no edge between X and Y in Hr, we have |X| · |Y | ≤ n2(1 + λ)−r.

Proof. Let Xi = NHi [X] and Yi = NHi [Y ] for i = 1, . . . , r, and let X0 = X,Y0 = Y . It follows from

the definition of expanders that, if |Xi| ≤ n
2 , then

|X| ≤ 1

2
n(1 + λ)−i.

Similarly, if |Yi| ≤ n
2 , then |Y | ≤ 1

2n(1 + λ)−i. If X and Y are not connected by any edge in Hr,

then Xi and Yr−i must be disjoint for every i. Let ` be the largest number in {0, 1, . . . , r} such that

|X`| ≤ n/2.

If ` = r, then |X| < n(1 + λ)−r, and hence |X||Y | ≤ n2(1 + λ)−r.

If ` < r, then |X`+1| > n/2 and |Yr−`−1| ≤ n/2. Therefore, we have |Y | ≤ n(1 + λ)−(r−`−1).

Using the inequality 1 + λ ≤ 2, we obtain

|X| · |Y | ≤ 1

4
n2(1 + λ)−r+1 ≤ n2(1 + λ)−r.

Claim 12. For any d-regular graph H and r ≥ 1, we have ∆(Hr) ≤ (d+ 1)r.

Our construction is based on the following key lemma.
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Lemma 13. Let k,m, f be positive integers. Let A1, . . . , Ak be pairwise disjoint sets of size m, and

suppose that there exists an (m, 3, λ0)-expander.

Then there is a graph G on the vertex set V =
⋃k
i=1Ai such that

1. ∆(G) ≤ 4f2k ;

2. if x, y, z ∈ V such that x ∈ Aa, y ∈ Ab, z ∈ Ac for some a < b < c, and xy, xz ∈ E(G), then

yz ∈ E(G) as well;

3. for any a 6= b and any pair of subsets X ⊂ Aa and Y ⊂ Ab that are not connected by any edge

of G, we have |X| · |Y | ≤ m2(1 + λ0)−f .

Proof. Let H be an (m, 3, λ0)-expander. Let φ : V → V (H) be an arbitrary function such that φ is

a bijection when restricted to the set Ai, for i = 1, . . . , k. Define the graph G, as follows. Suppose

that x ∈ Aa and y ∈ Ab for some a < b. Join x and y by an edge if there exists a path of length

at most f2a−1 between φ(x) and φ(y) in H. By Claim 12, the maximum degree of G is at most∑k−1
i=1 4f2i ≤ 4f2k , so that G has property 1.

To see that G also has property 2, consider x ∈ Aa, y ∈ Ab, z ∈ Ac such that a < b < c and

xy, xz ∈ E(G). We have to show that yz ∈ E(G). By definition, there exists a path of length at

most f2a−1 between φ(x) and φ(y) in H, and there exists a path of length at most f2a−1 between

φ(x) and φ(z). But then there exists a path of length at most f2a ≤ f2b−1 between φ(y) and φ(z),

so yz is also an edge of G.

It remains to verify that G has property 3. If 1 ≤ a < b ≤ k and X ⊂ Aa and Y ⊂ Ab are not

connected by any edge in G, then there is no edge between φ(X) and φ(Y ) in Hf2a−1
. By Claim 11,

we have |X| · |Y | ≤ m2(1 + λ0)−f2a−1 ≤ m2(1 + λ0)−f .

Now we are in a position to prove Theorem 3.

Proof of Theorem 3. Let k = 2
ε , f = log2 n

2·2k , and m = n
k . We show that the theorem holds with

δ = log2(1+λ0)
2k

.

Let A1, . . . , Ak be pairwise disjoint sets of size m. By Lemma 13, there exists a graph G0 on

V =
⋃m
i=1Ai satisfying conditions 1-3 with the above parameters.

Define the ordered graph G on the vertex set V as follows. Let ≺ be any ordering on V satisfying

A1 ≺ · · · ≺ Ak. For any x ∈ Aa and y ∈ Ab, join x and y by an edge of G if xy ∈ E(G0), or a = b.

Then the maximum degree of G is at most n
k + ∆(G0) ≤ εn. Notice that the complement of G does

not contain a bi-clique of size n1−δ. Indeed, if (X,Y ) is a bi-clique in G, then there exists a 6= b such

that |X ∩Aa| ≥ |X|k and |Y ∩Ab| ≥ |Y |k = |X|
k . Thus,

|X|2

k2
≤ |X ∩Aa| · |Y ∩Ab| ≤ m2(1 + λ0)−f =

m2

n2δ
,

which implies that |X| ≤ n1−δ.

It remains to show that G contains neither S, nor P as an induced ordered subgraph. Let us start

with S. Suppose that there are four vertices, v0 ≺ v1 ≺ v2 ≺ v3, in G such that v0v1, v0v2, v0v3 ∈
E(G), but v1v2, v2v3, v1v3 6∈ E(G). Let v0 ∈ Aa, v1 ∈ Ab, v2 ∈ Ac, and v3 ∈ Ad, then a ≤ b ≤ c ≤ d.
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If c = a, then b = a, which implies v1v2 ∈ E(G), contradiction. Therefore, a < c ≤ d. As

v2v3 6∈ E(G), we must have c < d as well. But then the three vertices v0, v2, v3 contradict property

2, so that G does not contain S an induced ordered subgraph.

To show thatG does not contain P , we can proceed in a similar manner. Suppose for contradiction

that there are four vertices, v0 ≺ v1 ≺ v2 ≺ v3, in G such that v0v2, v0v3, v1v2 ∈ E(G), but

v0v1, v1v3, v2v3 6∈ E(G). Let v0 ∈ Aa, v1 ∈ Ab, v2 ∈ Ac, and v3 ∈ Ad, where a ≤ b ≤ c ≤ d. We have

a < b, otherwise v0v1 ∈ E(G). In the same way, c < d, otherwise v2v3 ∈ E(G). Therefore, a < c < d,

and the vertices, v0, v2, and v3, contradict condition 2 of Lemma 13.
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[11] P. Erdős, A. Hajnal, Ramsey-type theorems, Discrete Applied Mathematics 25 (1-2) (1989):

37–52.
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