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Abstract. The problem of finding “small” sets that meet every straight-
line which intersects a given convex region was initiated by Mazurkiewicz
in 1916. We call such a set an opaque set or a barrier for that region.
We consider the problem of computing the shortest barrier for a given
convex polygon with n vertices. No exact algorithm is currently known
even for the simplest instances such as a square or an equilateral triangle.
For general barriers, we present a O(n) time approximation algorithm

with ratio 1

2
+ 2+

√

2

π
= 1.5867 . . .. For connected barriers, we can achieve

the approximation ratio π+5

π+2
= 1.5834 . . . again in O(n) time. We also

show that if the barrier is restricted to the interior and the boundary
of the input polygon, then the problem admits a fully polynomial-time
approximation scheme for the connected case and a quadratic-time ex-
act algorithm for the single-arc case. These are the first approximation
algorithms obtained for this problem.

1 Introduction

The problem of finding small sets that block every line passing through a unit
square was first considered by Mazurkiewicz in 1916 [27]; see also [3, 18]. Let C
be a convex body in the plane. Following Bagemihl [3], we call a set B an opaque
set or a barrier for C, if it meets all lines that intersect C. A rectifiable curve (or
arc) is a curve with finite length. A barrier may consist of one or more rectifiable
arcs. It does not need to be connected and its portions may lie anywhere in the
plane, including the exterior of C; see [3], [5].

What is the length of the shortest barrier for a given convex body C? In spite
of considerable efforts, the answer to this question is not known even for the sim-
plest instances of C, such as a square, a disk, or an equilateral triangle; see [6],
[7, Problem A30], [10], [12], [13], [16, Section 8.11]. The three-dimensional ana-
logue of this problem was raised by Martin Gardner [17]; see also [2, 5]. Some
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entertaining variants of the problem appeared in different forms [20, 23, 24], for
instance: What should a swimmer at sea do in a thick fog if he knows that
he is within a mile of a straight shoreline? The shortest known solution resem-
bles the shortest known single-arc barrier for a disk of radius one mile; see [7,
Problem A30].

A barrier blocks any line of sight across the region C or detects any ray
that passes through it. Motivated by potential applications in guarding and
surveillance, the problem of short barriers has been studied by several research
communities. Recently, it circulated in internal publications at the Lawrence
Livermore National Laboratory. The shortest barrier known for the square is
illustrated in Figure 1(right). It is conjectured to be optimal. The best lower
bound we know is 2, established by Jones [19].
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Fig. 1: Four barriers for the unit square. From left to right: 1: single-arc; 2–3: connected;
4: disconnected. The first three from the left have lengths 3, 2

√

2 = 2.8284 . . ., and
1 +

√

3 = 2.7320 . . .. Right: The diagonal segment [(1/2, 1/2), (1, 1)] together with

three segments connecting the corners (0, 1), (0, 0), (1, 0) to the point ( 1
2
−

√

3

6
, 1

2
−

√

3

6
)

yield a barrier of length
√

2 +
√

6

2
= 2.639 . . ..

Related work. The type of curve barriers considered may vary: the most re-
stricted are barriers made from single continuous arcs, then connected barriers,
and lastly, arbitrary (possibly disconnected) barriers. For the unit square, the
shortest known in these three categories have lengths 3, 1+

√
3 = 2.7320 . . . and√

2+
√
6
2 = 2.6389 . . ., respectively. They are depicted in Figure 1. Interestingly,

it has been shown by Kawohl [21] that the barrier in Figure 1(right) is optimal
in the class of curves with at most two components (there seems to be an ad-
ditional implicit assumption that the barrier is restricted to the interior of the
square). For the unit disk, the shortest known barrier consists of three arcs. See
also [12, 16].

If instead of curve barriers, we want to find discrete barriers consisting of
as few points as possible with the property that every line intersecting C gets
closer than ε > 0 to at least one of them in some fixed norm, we arrive at
a problem raised by László Fejes Tóth [14, 15]. The problem has been later
coined suggestively as the “point goalie problem” [31]. For instance, if C is
an axis-parallel unit square, and we consider the maximum norm, the problem
was studied by Bárány and Füredi [4], Kern and Wanka [22], Valtr [35], and



Richardson and Shepp [31]. Makai and Pach [26] considered another variant of
the question, in which we have a larger class of functions to block.

The problem of short barriers has attracted many other researchers and has
been studied at length; see also [6, 11, 25]. Obtaining lower bounds for many of
these problems appears to be notoriously hard. For instance in the point goalie
problem for the unit disk (with the Euclidean norm), while the trivial lower
bound is 1/ε, as given by the opaqueness condition in any one direction, the
best lower bound known is only 1.001/ε as established in [31] via a complicated
proof.

Our Results. Even we have so little control on the shape or length of optimal
barriers, for any convex polygon, barriers whose lengths are somewhat longer
can computed efficiently. Let P be a given convex polygon with n vertices.

1. A (possibly disconnected) segment barrier for P , whose length is at most
1
2 + 2+

√
2

π
= 1.5867 . . . times the optimal, can be computed in O(n) time.

2. A connected polygonal barrier whose length is at most π+5
π+2 = 1.5834 . . .

times the optimal can be also computed in O(n) time.
3. For interior single-arc barriers we present an algorithm that finds an optimal

barrier in O(n2) time.
4. For interior connected barriers we present an algorithm that finds a barrier

whose length is at most (1 + ε) times the optimal in polynomial time.

It might be worth mentioning to avoid any confusion: the approximation
ratios are for each barrier class, that is, the length of the barrier computed is
compared to the optimal length in the corresponding class; and of course these
optimal lengths might differ. For instance the connected barrier computed by
the the approximation algorithm with ratio π+5

π+2 = 1.5834 . . . is not necessarily
shorter than the (possibly disconnected) barrier computed by the the approxi-

mation algorithm with the larger ratio 1
2 + 2+

√
2

π
= 1.5867 . . ..

2 Preliminaries

Definitions and notations. For a polygonal curve γ, let |γ| denote the length (or
weight) of γ. Similarly, if Γ is a set of polygonal curves, let |Γ | denote the total
length of the curves in Γ . As usual, when there is no danger of confusion, we also
denote by |A| the cardinality of a set A. We call a barrier consisting of segments
(or polygonal lines) a segment barrier. In order to be able to speak of the length
ℓ(B) of a barrier B, we restrict our attention to barriers that can be obtained
as the union of finitely many simple rectifiable curves. We first show (Lemma 1)
that the shortest segment barrier is not much longer than the shortest rectifiable
one. Due to space limitations we omit the proof of Lemma 1.

Lemma 1. Let B be a barrier of length ℓ(B) < ∞ for a convex body C in the
plane. Then, for any ε > 0, there exists a segment barrier Bε for C, consisting
of finitely many straight-line segments, such that ℓ(Bε) ≤ ℓ(B) + ε.



Denote by per(C) the perimeter of a convex body C in the plane. The fol-
lowing lemma providing a lower bound on the length of an optimal barrier for
C in terms of per(C), is used in the analysis of our approximation algorithms.
Its proof is folklore; see e.g. [13].

Lemma 2. Let C be a convex body in the plane and let B be a barrier for C.
Then the length of B is at least 1

2 · per(C).

Proof. By Lemma 1, we can assume w.l.o.g. that B is a segment barrier. Let
B = {s1, . . . , sn} consist of n segments of lengths ℓi = |si|, where L = |B| =
∑n

i=1 ℓi. Let αi ∈ [0, π) be the angle made by si with the x-axis. For each
direction α ∈ [0, π), the blocking (opaqueness) condition for a convex body C
can be written as

n
∑

i=1

ℓi| cos(α− αi)| ≥ W (α), (1)

where W (α) is the width of C in direction α. By integrating this inequality over
the interval [0, π], one gets:

n
∑

i=1

ℓi

∫ π

0

| cos(α− αi)| dα ≥
∫ π

0

W (α) dα. (2)

According to Cauchy’s surface area formula [28, pp. 283–284], for any planar
convex body C, we have

∫ π

0

W (α) dα = per(C). (3)

Since
∫ π

0

| cos(α − αi)| dα = 2,

we get

2L =

n
∑

i=1

2ℓi ≥ per(C) ⇒ L ≥ 1

2
· per(C), (4)

as required. ⊓⊔
For instance, for the square, per(C) = 4, and Lemma 2 immediately gives

L ≥ 2, the lower bound of Jones [19]).
A key fact in the analysis of the approximation algorithm is the following

lemma. This inequality is implicit in [36]; another proof can be found in [9].

Lemma 3. Let P be a convex polygon. Then the minimum-perimeter rectangle
R containing P satisfies per(R) ≤ 4

π
per(P ).

Let P be a convex polygon with n vertices. Let OPTarb(P ), OPTconn(P ) and
OPTarc(P ) denote optimal barrier lengths of the types arbitrary, connected, and
single-arc. Let us observe the following inequalities:

OPTarb(P ) ≤ OPTconn(P ) ≤ OPTarc(P ). (5)

We first deal with connected barriers, and then with arbitrary (i.e., possibly
disconnected) barriers.



3 Connected Barriers

Theorem 1. Given a convex polygon P with n vertices, a connected polygonal
barrier whose length is at most π+5

π+2 = 1.5834 . . . times longer than the optimal
can be computed in O(n) time.

Proof. Consider the following algorithm A1 that computes a connected barrier
consisting of a single-arc; refer to Figure 2. First compute a parallel strip of
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Fig. 2: The approximation algorithm A1 returns B2 (in bold lines).

minimum width enclosing P . Assume w.l.o.g. that the strip is bounded by the
two horizontal lines ℓ1 and ℓ2. Second, compute a minimal orthogonal (i.e.,
vertical) strip enclosing P , bounded by the two vertical lines ℓ3 and ℓ4. Let
a, b, c, d, e, f be the six segments on ℓ3 and ℓ4 as shown in the figure; here b and
e are the two (possibly degenerate) segments on the boundary of P . Let P1 be
the polygonal path (on P ’s boundary) between the lower vertices of b and e. Let
P2 be the polygonal path (on P ’s boundary) between the top vertices of b and e.
Consider the following two barriers for P : B1 consists of the polygonal path P1

extended upward at both ends until they reach ℓ2. B2 consists of the polygonal
path P2 extended downwards at both ends until they reach ℓ1. The algorithm
returns the shorter of the two.

Let p, w, and r, respectively, be the perimeter, the width, and the in-radius
of P . Clearly

|P1|+ |P2|+ |b|+ |e| = p.

We have the following equalities:

|B1| = |a|+ |b|+ |P1|+ |e|+ |f |,
|B2| = |c|+ |b|+ |P2|+ |e|+ |d|.

By adding them up we get

|B1|+ |B2| = |P1|+ |P2|+ |b|+ |e|+ 2w = p+ 2w.

Hence
min{|B1|, |B2|} ≤ p/2 + w.



By Blaschke’s Theorem (see e.g. [32]), every planar convex body of width w
contains a disk of radius w/3. Thus r ≥ w/3. According to a result of Eggle-
ston [10], the optimal connected barrier for a disk of radius r has length (π+2)r.
It follows that the optimal connected barrier for P has length at least (π+2)w/3.
By Lemma 2, p/2 is another lower bound on the optimal solution. Thus the ap-
proximation ratio of the algorithm A1 is at most

p/2 + w

max{(π + 2)w/3, p/2} = min

{

p/2 + w

(π + 2)w/3
,
p/2 + w

p/2

}

= min

{

3

2(π + 2)
· p
w

+
3

π + 2
, 1 + 2 · w

p

}

.

The equation
3x

2(π + 2)
+

3

π + 2
= 1 +

2

x

has one positive real root x0 = 2(π+2)
3 . Consequently, the approximation ratio of

the algorithm A1 is at most 1 + 3
π+2 = π+5

π+2 = 1.5834 . . .. The algorithm takes
O(n) time, since computing the width of P takes O(n) time; see [29, 34]. ⊓⊔

4 Single-arc Barriers

Since A1 computes a single-arc barrier, and we have OPTconn(P ) ≤ OPTarc(P ),
we immediately get an approximation algorithm with the same ratio 1.5834 . . .
for computing single-arc barriers. One may ask whether this single arc barrier
computed by A1 is optimal (in the class of single arc barriers). We show that
this is not the case:

Consider a Reuleaux triangle T of (constant) width 1, with three vertices a,
b, c. Now slightly shave the two corners of T at b and c to obtain a convex body
T ′ of (minimum) width 1− ε along bc. The algorithm A1 would return a curve
of length close to π/2+ 1 = 2.57 . . ., while the optimal curve has length at most
2π/3 + 2(1 −

√
3/2) = 2π/3 + 2 −

√
3 = 2.36 . . .. This example shows a lower

bound of 1.088 . . . on the approximation ratio of the algorithm A1. Moreover,
we believe that the approximation ratio of A1 is much closer to this lower bound
than to 1.5834 . . ..

We next present an improved version B1 of our algorithm A1 that computes
the shortest single-arc barrier of the form shown in Figure 2; see below for details.

Let P be a convex polygon with n sides, and let ℓ be a line tangent to
the polygon, i.e., P ∩ ℓ consists of a vertex of P or a side of P . For simplicity
assume that ℓ is the x-axis, and P lies in the closed halfplane y ≥ 0 above
ℓ. Let T = (ℓ1, ℓ2) be a minimal vertical strip enclosing P . Let p1 ∈ ℓ1 ∩ P
and p2 ∈ ℓ2 ∩ P , be the two points of P of minimum y-coordinates on the two
vertical lines defining the strip. Let q1 ∈ ℓ1 and q2 ∈ ℓ2 be the projections of
p1 and p2, respectively, on ℓ. Let arc(p1, p2) ⊂ ∂(conv(P )) be the polygonal arc
connecting p1 and p2 on the top boundary of P . The U -curve corresponding to
P and ℓ, denoted U(P, ℓ) is the polygonal curve obtained by concatenating q1p1,



arc(p1, p2), and p2q2, in this order. Obviously, for any line ℓ, the curve U(P, ℓ) is
a single-arc barrier for P . Let Umin(P ) be the U -curve of minimum length over
all directions α ∈ [0, π) (i.e., lines ℓ of direction α).

We next show that given P , the curve Umin(P ) can be computed in O(n)
time. The algorithm B1 is very simple: instead of rotating a line ℓ around P ,
we fix ℓ to be horizontal, and rotate P over ℓ by one full rotation (of angle 2π).
We only compute the lengths of the U -curves corresponding to lines ℓ, ℓ1, ℓ2,
supporting one edge of the polygon. The U -curve of minimum length among
these is output. There are at most 3n such discrete angles (directions), and the
length of a U -curve for one such angle can be computed in constant time from
the the length of the U -curve for the previous angle. The algorithm is similar to
the classic rotating calipers algorithm of Toussaint [34], and it takes O(n) time
by the previous observation.

To justify its correctness, it suffices to show that if each of the lines ℓ, ℓ1,
ℓ2 is incident to only one vertex of P , then the corresponding U -curve is not
minimal. Due to space limitations we omit the proof of Lemma 4.

Lemma 4. Let P be a convex polygon tangent to a line ℓ at a vertex v ∈ P only,
and tangent to ℓ1 and ℓ2 at vertices p1 and p2 only. Then the corresponding U -
curve U(P, ℓ) is not minimal.

We thus conclude this section with the following result.

Theorem 2. Given a convex polygon P with n vertices, the single-arc barrier
(polygonal curve) Umin(P ) can be computed in O(n) time.

Obviously, the single-arc barrier computed by B1 is not longer than that
computed byA1, so the approximation ratio of the algorithmB1 is also bounded
by π+5

π+2 = 1.5834 . . .. One may ask again whether this single arc barrier computed
by B1 is optimal (in the class of single arc barriers). We can show again that
this is not the case (details omitted here).

5 Arbitrary Barriers

Theorem 3. Given a convex polygon P with n vertices, a (possibly discon-

nected) segment barrier for P , whose length is at most 1
2 + 2+

√
2

π
= 1.5867 . . .

times longer than the optimal can be computed in O(n) time.

Proof. Consider the following algorithmA2 which computes a (generally discon-
nected) barrier. First compute a minimum-perimeter rectangle R containing P ;
refer to Figure 3. Let a,b,c,d,e,f ,g,h, i,j,k,l be the 12 segments on the boundary
of R as shown in the figure; here b, e, h and k are (possibly degenerate) segments
on the boundary of P contained in the left, bottom, right and top side of R. Let
Pi, i = 1, 2, 3, 4 be the four polygonal paths on P ’s boundary, connecting these
four segments as shown in the figure.

Consider four barriers for P , denoted Bi, for i = 1, 2, 3, 4. Bi consists of the
polygonal path Pi extended at both ends on the corresponding rectangle sides,
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Fig. 3: The approximation algorithm A2.

and the height from the opposite rectangle vertex in the complementary right
angled triangle; see Figure 3(right). The algorithm returns the shortest of the
four barriers. Let hA, hB, hC , hD denote the four heights. We have |hA| = |hB| =
|hC | = |hD| and the following other length equalities:

|B1| = |a|+ |b|+ |P1|+ |e|+ |f |+ |hA|,
|B2| = |d|+ |e|+ |P2|+ |h|+ |i|+ |hB|,
|B3| = |g|+ |h|+ |P3|+ |k|+ |l|+ |hC |,
|B4| = |j|+ |k|+ |P4|+ |b|+ |c|+ |hD|.

By adding them up we get

4
∑

i=1

|Bi| =
(

|b|+ |e|+ |h|+ |k|+
4
∑

i=1

|Pi|
)

+
(

|a|+ . . .+ |k|
)

+
(

|hA|+ |hB|+ |hC |+ |hD|
)

= per(P ) + per(R) + 4|hA|. (6)

Expressing the rectangle area in two different ways yields |hA| = xy√
x2+y2

,

where x and y are the lengths of the two sides of R. By Lemma 3 we have

per(R) = 2(x+ y) ≤ 4

π
per(P ).

Under this constraint, |hA| is maximized for x = y = per(P )
π

, namely

|hA| ≤
per(P )

π
√
2

⇒ 4|hA| ≤
2
√
2

π
per(P ).

Hence from (6) we deduce that

min
i

|Bi| ≤
1

4

(

1 +
4

π
+

2
√
2

π

)

per(P ).

Recall that per(P )/2 is a lower bound on the weight of an optimal solution.
The ratio between the length of the solution and the lower bound on the optimal
solution is

π + 4 + 2
√
2

2π
=

1

2
+

2 +
√
2

π
= 1.5867 . . .



Consequently, the approximation ratio of the algorithm A2 is 1
2 + 2+

√
2

π
=

1.5867 . . .. The algorithm takesO(n) time, since computing the minimum-perimeter
rectangle containing P takes O(n) time with the standard technique of rotating
calipers [29, 34]. This completes the proof of Theorem 3. ⊓⊔

6 Interior-restricted versus Unrestricted Barriers

In certain instances, it is infeasible to construct barriers guarding a specific
domain outside the domain (which presumably belongs to someone else). We
call such barriers constrained to the interior and the boundary of the domain,
interior-restricted, or just interior, and all others unrestricted. For example, all
four barriers for the unit square illustrated in Figure 1 are interior barriers.

In the late 1980s, Akman [1] soon followed by Dublish [8] had reported al-
gorithms for computing a minimum interior-restricted barrier of a given convex
polygon (they refer to such a barrier as an opaque minimal forest of the poly-
gon). Both algorithms however have been shown to be incorrect by Shermer [33]
in 1991. He also proposed (conjectured) a new exact algorithm instead, but
apparently, so far no one succeeded to prove its correctness. To the best of our
knowledge, the computational complexity of computing a shortest barrier (either
interior-restricted or unrestricted) for a given convex polygon remains open.

Next we show that a minimum connected interior barrier for a convex polygon
can be computed efficiently:

Theorem 4. Given a convex polygon P , a minimum Steiner tree of the vertices
of P forms a minimum connected interior barrier for P . Consequently, there is
a fully polynomial-time approximation scheme for finding a minimum connected
interior barrier for a convex polygon.

Proof. Let B be an optimal barrier. For each vertex v ∈ P , consider a line ℓv
tangent to P at v, such that P ∩ ℓv = {v}. Since B lies in P , ℓv can be only
blocked by v, so v ∈ B. Now since B is connected and includes all vertices of
P , its length is at least that of a minimum Steiner tree of P , as claimed. Recall
that the minimum Steiner tree problem for n points in the plane in convex
position admits a fully polynomial-time approximation scheme that achieves an
approximation ratio of 1 + ε and runs in time O(n6/ǫ4) for any ε > 0 [30]. ⊓⊔

A minimum single-arc interior barrier for a convex polygon can be also com-
puted efficiently. As it turns out, this problem is equivalent to that of finding
a shortest traveling salesman path (i.e., Hamiltonian path) for the n vertices of
the polygon.

Theorem 5. Given a convex polygon P , a minimum Hamiltonian path of the
vertices of P forms a minimum single-arc interior barrier for P . Consequently,
there is an O(n2)-time exact algorithm for finding a minimum single-arc interior
barrier for a convex polygon with n vertices.



Proof. The same argument as in the proof of Theorem 4 shows that any interior
barrier for P must include all vertices of P . By the triangle inequality, the optimal
single-arc barrier visits each vertex exactly once. Thus a minimum Hamiltonian
path of the vertices forms a minimum single-arc interior barrier.

We now present a dynamic programming algorithm for finding a minimum
Hamiltonian path of the vertices of a convex polygon. Let {v0, . . . , vn−1} be the
n vertices of the convex polygon in counter-clockwise order; for convenience, the
indices are modulo n, e.g., vn = v0. Denote by dist(i, j) the Euclidean distance
between the two vertices vi and vj . For the subset of vertices from vi to vj
counter-clockwise along the polygon, denote by S(i, j) the minimum length of a
Hamiltonian path starting at vi, and denote by T (i, j) the minimum length of a
Hamiltonian path starting at vj . Note that a minimum Hamiltonian path must
not intersect itself. Thus the two tables S and T can be computed by dynamic
programming with the base cases

S(i, i+ 1) = T (i, i+ 1) = dist(i, i+ 1)

and with the recurrences

S(i, j) = min{dist(i, i+ 1) + S(i+ 1, j), dist(i, j) + T (i+ 1, j)},
T (i, j) = min{dist(j, j − 1) + T (i, j − 1), dist(j, i) + S(i, j − 1)}.

Then the minimum length of a Hamiltonian path on the n vertices is

min
i

min{dist(i, i+ 1) + S(i+ 1, i− 1), dist(i, i− 1) + T (i+ 1, i− 1)}.

The running time of the algorithm is clearly O(n2). ⊓⊔

Remark. Observe that the unit square contains a disk of radius 1/2. According
to the result of Eggleston mentioned earlier [10], the optimal (not necessarily
interior-restricted) connected barrier for a disk of radius r has length (π + 2)r.
This optimal barrier is a single curve consisting of half the disk perimeter and
two segments of length equal to the disk radius. It follows that the optimal
(not necessarily interior-restricted) connected barrier for the unit square has
length at least (π + 2)/2 = π/2 + 1 = 2.5707 . . .. Compare this with the current
best construction (illustrated in Figure 1, third from the left) of length 1 +√
3 = 2.7320 . . .. Note that this third construction in Figure 1 gives the optimal

connected interior barrier for the square because of Theorem 4. Further note
that the first construction in Figure 1 gives the optimal single-arc interior barrier
because of Theorem 5.

7 Concluding Remarks

Interesting questions remain open regarding the structure of optimal barriers
and the computational complexity of computing such barriers. For instance:



(1) Does there exist an absolute constant c ≥ 0 (perhaps zero) such that the
following holds? The shortest barrier for any convex polygon with n vertices
is a segment barrier consisting of at most n+ c segments.

(2) Is there a polynomial-time algorithm for computing a shortest barrier for a
given convex polygon with n vertices?

(3) Can one give a characterization of the class of convex polygons whose optimal
barriers are interior?

In connection with question (2) above, let us notice that the problem of
deciding whether a given segment barrier B is an opaque set for a given convex
polygon is solvable in polynomial time. Due to space limitations the proof of
Theorem 6 is omitted.

Theorem 6. Given a convex polygon P with n vertices, and a segment barrier
B with k segments, there is a polynomial-time algorithm for deciding whether B
is an opaque set for P .

We have presented several approximation and exact algorithms for comput-
ing shortest barriers of various kinds, for a given convex polygon. The two ap-
proximation algorithms with ratios close to 1.58 probably cannot be improved
substantially without either increasing their computational complexity or finding
a better lower bound on the optimal solution than that given by Lemma 2. The
question of finding a better lower bound is particularly intriguing, since even for
the simplest polygons, such as a square, we don’t possess any better tool. While
much research up to date focused on upper or lower bounds for specific exam-
ple shapes, obtaining a polynomial time approximation scheme (in the class of
arbitrary barriers) for an arbitrary convex polygon is perhaps not out of reach.
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23. R. Klötzler, Universale Rettungskurven I, Zeitschrifte für Analysis und ihre An-

wendungen, 5 (1986), 27–38.
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