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Abstract

Motivated by questions in computer vision and sensor networks, Alpert et al. [3] introduced the following def-
initions. Given a graph G, an obstacle representation of G is a set of points in the plane representing the vertices
of G, together with a set of connected obstacles such that two vertices of G are joined by an edge if an only if the
corresponding points can be connected by a segment which avoids all obstacles. The obstacle number of G is the
minimum number of obstacles in an obstacle representation of G. It was shown in [3] that there exist graphs of n
vertices with obstacle number at least Ω(

√
logn). We use extremal graph theoretic tools to show that (1) there exist

graphs of n vertices with obstacle number at least Ω(n/log2 n), and (2) the total number of graphs on n vertices with
bounded obstacle number is at most 2o(n2). Better results are proved if we are allowed to use only convex obstacles
or polygonal obstacles with a small number of sides.

1 Introduction
Consider a set P of points in the plane and a set of closed polygonal obstacles whose vertices together with the points
in P are in general position, that is, no three of them are on a line. The corresponding visibility graph has P as its vertex
set, two points p,q ∈ P being connected by an edge if and only if the segment pq does not meet any of the obstacles.
Visibility graphs are extensively studied and used in computational geometry, robot motion planning, computer vision,
sensor networks, etc.; see [6], [15], [20], [21], [31].

Recently, Alpert, Koch, and Laison [3] introduced an interesting new parameter of graphs, closely related to
visibility graphs. Given a graph G, we say that a set of points and a set of polygonal obstacles as above constitute
an obstacle representation of G, if the corresponding visibility graph is isomorphic to G. A representation with h
obstacles is also called an h-obstacle representation. The smallest number of obstacles in an obstacle representation of
G is called the obstacle number of G and is denoted by obs(G). If we are allowed to use only convex obstacles, then the
corresponding parameter obsc(G) is called the convex obstacle number of G. Of course, we have obs(G) ≤ obsc(G)
for every G, but the two parameters can be very far apart.

A special instance of the obstacle problem has received a lot of attention, due to its connection to the Szemerédi-
Trotter theorem on incidences between points and lines [28], [27], and other classical problems in incidence geome-
try [23]. It is an exciting open problem to decide whether the obstacle number of Kn, the empty graph on n vertices, is
O(n) if the obstacles must be points. The best known upper bound is n2O(

√
logn); see Pach [22], Dumitrescu et al. [7],

Matoušek [18], and Aloupis et al. [2].
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Alpert et al. [3] constructed a bipartite graph G1 and a split graph (a graph whose vertex set is the union of a
complete graph and an independent set) G2 with obstacle number at least two. In Section 4, we complement their
examples with a third one: a graph G3 whose vertex set is the union of two complete subgraphs.

Theorem 1.1. There is a graph G3 whose vertex set is the union of two complete graphs and which satisfies obs(G3)≥
2.

Consequently, no graph of obstacle number one can contain a subgraph isomorphic to G1, G2, or G3. The choice of
these forbidden graphs may appear somewhat capricious at first glance. In Section 2, we will see that this set of graphs
allows us to utilize some extremal graph theoretic tools developed by Erdős, Kleitman, Rothschild, Frankl, Rödl,
Prömel, Steger, Bollobás, Thomason and others. They yield that the number of graphs with n vertices and bounded
obstacle number is very small, compared to the total number of labeled graphs, which is 2(n

2). More precisely, we
obtain

Corollary 1.2. For any fixed positive integer h, the number of graphs on n (labeled) vertices with obstacle number at
most h is at most 2o(n2).

Alpert et al. [3] raised the question whether there exist bipartite graphs with arbitrarily large obstacle number?
Since the number of bipartite graphs with n labeled vertices is Ω(2n2/4), it follows directly from Corollary 1.2 that the
answer is yes.

Corollary 1.3. For any fixed positive integer h, there exist bipartite graphs with obstacle number at least h.

For every sufficiently large n, Alpert et al. constructed a graph with n vertices with obstacle number at least
Ω
(√

logn
)
. We also show in Section 2 how Theorem 1.1, combined with a result by Erdős and Hajnal [8], implies

the existence of graphs with much larger obstacle numbers.

Corollary 1.4. For every ε > 0, there exists an integer n0 = n0(ε) such that for all n ≥ n0, there are graphs G on n
vertices such that their obstacle numbers satisfy

obs(G)≥Ω
(
n1−ε

)
.

It turns out that for the proof of Corollary 1.4, in the place of Theorem 1.1 we can use the much simpler fact that
not all graphs have obstacle number at most one.

In Section 3, we improve on the last two corollaries, using some estimates on the number of different order types
of n points in the Euclidean plane, discovered by Goodman and Pollack [16], [17] (see also Alon [1]). We establish
the following results.

Theorem 1.5. For any fixed positive integer h, the number of graphs on n (labeled) vertices with obstacle number at
most h is at most

2O(hn log2 n).

Theorem 1.6. For every n, there exist graphs G on n vertices with obstacle numbers

obs(G)≥Ω
(
n/log2 n

)
.

Note that the last statement directly follows from Theorem 1.5. Indeed, since the total number of (labeled) graphs
with n vertices is 2Ω(n2), as long as 2O(hn log2 n) is smaller that this quantity, there is a graph with obstacle number larger
than h.

We prove a slightly better bound for convex obstacle numbers.

Theorem 1.7. For every n, there exist graphs G on n vertices with convex obstacle numbers

obsc(G)≥Ω (n/logn) .
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If we only allow segment obstacles, we get an even better bound. Following Alpert et al., we define the segment
obstacle number obss(G) of a graph G as the minimal number of obstacles in an obstacle representation of G, in which
each obstacle is a straight-line segment.

Theorem 1.8. For every n, there exist graphs G on n vertices with segment obstacle numbers

obss(G)≥Ω
(
n2/logn

)
.

In Section 4, we prove Theorem 1.1.
In the last section, we make some concluding remarks. In particular, we answer a question of Alpert et al. [3]

by showing that for every positive integer h, there exists a graph with obstacle number precisely h. We also discuss
possible extensions of the above notions to higher dimensions.

Given any placement (embedding) of the vertices of G in general position in the plane, a drawing of G consists
of the image of the embedding and the set of open segments connecting all pairs of points that correspond to the
edges of G. If there is no danger of confusion, we make no notational difference between the vertices of G and the
corresponding points, and between the pairs uv and the corresponding open segments. The complement of the set
of all points that correspond to a vertex or belong to at least one edge of G falls into connected components. These
components are called the faces of the drawing. Notice that if G has an obstacle representation with a particular
placement of its vertex set, then

(1) each obstacle must lie entirely in one face of the drawing, and
(2) each non-edge of G must be blocked by at least one of the obstacles.

2 Hereditary properties, universal graphs, and applications
The aim of this section is to review some results in extremal graph theory and then to apply them to establish Corol-
laries 1.2 and 1.4.

In 1985, Erdős, Kleitman, and Rothschild [11] proved that, as n tends to infinity, the number of all K`-free
graphs on n vertices is asymptotically equal to the number of (`−1)-partite graphs with n vertices with as equal vertex
classes as possible. This result was soon generalized to graphs that do not contain some fixed (not necessarily induced)
subgraph H [10].

Analogous questions based on the induced subgraph relation were investigated in [24], [26], and [25]. If a graph G
does not contain an induced subgraph isomorphic to a fixed graph H, then the same is true for every induced subgraph
of G. Therefore, this property is called hereditary. In order to formulate an Erdős-Kleitman-Rothschild type theorem
valid for any hereditary graph property, we need some definitions and notations.

In notation, we do not distinguish between a graph property P and the set of all graphs that satisfy this property.
In the same spirit, the set of all graphs on n labeled vertices, which satisfy property P , is denoted by Pn.

A graph is (r,s)-colorable if its vertex set can be partitioned into r blocks out of which s are cliques and every
remaining block is an independent set. Let C (r,s) denote the set of all (r,s)-colorable graphs. A graph property which
holds for all graphs is called trivial. Given any nontrivial hereditary graph property P , define its coloring number as

r(P) = max{r | ∃s : C (r,s)⊆P}.

Since r(P) is bounded from above by the number of vertices of any graph that does not satisfy P , the parameter
r(P) exists and it is at least 1.

Theorem 2.1 (Bollobás, Thomason [5]). For any nontrivial hereditary graph property P , we have

|Pn|= 2
(

1− 1
r(P) +o(1)

)
(n

2).

Notice that if for some value r there is no s such that C (r,s) ⊆P , then for every r′ > r there is no s for which
C (r′,s) ⊆P . If there are (2,0)-colorable, (2,1)-colorable, and (2,2)-colorable graphs none of which is in P , then
by the preceding observations, r(P) = 1. In that case, by Theorem 2.1, we have |Pn|= 2o(n2).
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The familiar term for a (2,0)-colorable graph is bipartite. A (2,1)-colorable graph consists of a clique and an
independent set, possibly with edges running between them; such a graph is often called a split graph [13], [30]. A
(2,2)-colorable graph consists of two cliques, possibly with edges running between them—its complement is bipartite.

Proof of Corollary 1.2. We apply Theorem 2.1 to the hereditary property that a graph admits a 1-obstacle represen-
tation. The graphs G1, G2, and G3 defined in the Introduction are (2,0)-, (2,1)-, and (2,2)-colorable. Thus, in view
of the fact that, according to Alpert et al. and Theorem 1.1, none of them admits a 1-obstacle representation, we can
conclude that the number of all graphs on n (labeled) vertices with obstacle number at most 1 is 2o(n2). In other words,
Corollary 1.2 holds for h = 1.

For every fixed h > 1, consider a graph G on the vertex set [n], which permits an h-obstacle representation on
an n-element point set P in general position, with obstacles O1, . . . ,Oh. Obviously, E(G), the edge set of G, can be
obtained as ∩h

i=1E(Gi), for suitable graphs Gi with obstacle number 1. Indeed, we can choose Gi to be the visibility
graph of P in the presence of a single obstacle Oi (i = 1, . . . ,h). Therefore, the total number of labeled graphs on [n]
with obstacle number h can be bounded from above by the h-th power of the number of graphs with obstacle number
1. This completes the proof of Corollary 1.2.

Let G be a graph on n vertices and let k be a positive integer. We say that G is k-universal if it contains every graph
on k vertices as an induced subgraph. Let hom(G) denote the maximum of the size of the largest independent set of
vertices and the size of the largest complete subgraph in G. According to the quantitative form of Ramsey’s theorem,
due to Erdős and Szekeres [12], hom(G) is at least roughly 1

2 logn. (In the sequel, all logarithms are taken modulo 2.)
In order to prove Corollary 1.4, we need the following result, which shows that if G avoids at least one induced

subgraph with k vertices, for some k� logn, then the Erdős-Szekeres bound on hom(G) can be substantially improved.

Theorem 2.2 (Erdős, Hajnal [8]). For any fixed positive integer t, there is an n0 = n0(t) with the following property.
Given any graph G on n > n0 vertices and any integer k < 2c

√
logn/t , either G is t-universal or we have hom(G) ≥ k.

(Here c > 0 is a suitable constant.)

Proof of Corollary 1.4. For the sake of clarity of the presentation, we systematically omit all floor and ceiling functions
wherever they are not essential. Let H be a graph of t vertices that does not admit a 1-obstacle representation. Fix any
0 < ε < 1, and choose an integer N ≥ n0, that satisfies the inequality

2c
√

ε logN/t > 2logN, (1)

where c,n0 are constants that appear in the previous theorem.
For any n≥ N, we set m = n1−ε . According to a theorem of Erdős [9], there exists a graph G with n vertices such

that
hom(G) < 2logn < 2c

√
log(n/m)/t .

Consider an obstacle representation of G with the smallest number h of obstacles. Suppose without loss of gen-
erality that in our coordinate system all points of G have different x-coordinates. By vertical lines, partition the plane
into m strips, each containing n/m points. Let Gi denote the subgraph of G induced by the vertices lying in the i-th
strip (1≤ i≤ m).

Obviously, we have
hom(Gi)≤ hom(G) < 2c

√
log(n/m)/t ,

for every i. Hence, applying Theorem 2.2 to each Gi separately, we conclude that each must be t-universal. In
particular, each Gi contains an induced subgraph isomorphic to H. That is, we have obs(Gi) > 1 for every i, which
means that each Gi requires at least two obstacles.

As was explained at the end of the Introduction, each obstacle must be contained in an interior or in the exterior
face of the graph. Therefore, in an h-obstacle representation of G, each Gi must have at least one internal face that
contains an obstacle, and there must be at least one additional obstacle (which may possibly contained in the interior
face of every Gi). At any rate, we have h > m = n1−ε , as required.
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3 Encoding graphs of low obstacle number
The aim of this section is to prove Theorems 1.5–1.8. The idea is to find a short encoding of the obstacle representations
of graphs, and to use this to give an upper bound on the number of graphs with low obstacle number.

We need to review some simple facts from combinatorial geometry. Two sets of points, P1 and P2, in general
position in the plane are said to have the same order type if there is a one to one correspondence between them with
the property that the orientation of any triple in P1 is the same as the orientation of the corresponding triple in P2.
Counting the number of different order types is a classical task, see e.g.

Theorem 3.1 (Goodman, Pollack [16]). The number of different order types of n points in general position in the
plane is 2O(n logn).

Observe that the same upper bound holds for the number of different order types of n labeled points, because the
number of different permutations of n points is n! = 2O(n logn).

In a graph drawing, the complexity of a face is the number of line segment sides bordering it. The following result
was proved by Arkin, Halperin, Kedem, Mitchell, and Naor (see Matoušek, Valtr [19] for its sharpness).

Theorem 3.2 (Arkin et al. [4]). The complexity of a single face in a drawing of a graph with n vertices is at most
O(n logn).

Note that this bound does not depend of the number of edges of the graph.

Proof of Theorem 1.5. For any graph G with n vertices that admits an h-obstacle representation, fix such a representa-
tion. Consider the visibility graph G of the vertices in this representation. As explained at the end of the Introduction,
any obstacle belongs to a single face in this drawing. In view of Theorem 3.2, the complexity of every face is O(n logn).
Replacing each obstacle by a slightly shrunken copy of the face containing it, we can achieve that every obstacle is a
polygonal region with O(n logn) sides.

Notice that the order type of the sequence S starting with the vertices of G, followed by the vertices of the obstacles
(listed one by one, in cyclic order, and properly separated from one another) completely determines G. That is, we
have a sequence of length N with N ≤ n + c1hn logn. According to Theorem 3.1 (and the following comment), the
number of different order types with this many points is at most

2O(N logN) < 2chn log2 n,

for a suitable constant c > 0. This is a very generous upper bound: most of the above sequences do not correspond to
any visibility graph G.

If in the above proof the average number of sides an obstacle can have is small, then we obtain

Theorem 3.3. The number of graphs admitting an obstacle representation with at most h obstacles, having a total of
at most hs sides, is at most

2O(n logn+hs log(hs)).

In particular, for segment obstacles (s = 2), Theorem 3.3 immediately implies Theorem 1.8. Indeed, as long as the
bound in Theorem 3.3 is smaller than 2(n

2), the total number of graphs on n labeled vertices, we can argue that there is
a graph with segment obstacle number larger than h.

Proof of Theorem 1.7. As before, it is enough to bound the number of graphs that admit an obstacle representation
with at most h convex obstacles. Let us fix such a graph G, together with a representation. Let V be the set of points
representing the vertices, and let O1, . . . ,Oh be the convex obstacles. For any obstacle Oi, rotate an oriented tangent
line ` along its boundary in the clockwise direction. We can assume without loss of generality that ` never passes
through two points of V . Let us record the sequence of points met by `. If v ∈ V is met at the right side of `, we add
the symbol v+ to the sequence, otherwise we add v− (Figure 1). When ` returns to its initial position, we stop. The
resulting sequence consists of 2n characters. From this sequence, it is easy to reconstruct which pairs of vertices are
visible in the presence of the single obstacle Oi. Hence, knowing these sequences for every obstacle Oi, completely
determines the visibility graph G. The number of distinct sequences assigned to a single obstacle is at most (2n)!, so
that the number of graphs with convex obstacle number at most h cannot exceed ((2n)!)h/h! < (2n)2hn. As long as
this number is smaller than 2(n

2), there is a graph with convex obstacle number larger than h.
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(a) Empty

1
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3

(b) 2+

1

2

3

(c) 2+1−

1

2

3

(d) 2+1−2−

1

2

3

(e) 2+1−2−3+

1

2

3

(f) 2+1−2−3+1+

1

2

3

(g) 2+1−2−3+1+3−

1

2

3

(h) 2+1−2−3+1+3−

Figure 1: Parts (a) to (g) show the construction of the sequence and (h) shows the visibilities. The arrow on the tangent
line indicates the direction from the point of tangency in which we assign + as a label to the vertex. The additional
arrow in (a) indicates that the tangent line is rotated clockwise around the obstacle.

4 Proof of Theorem 1.1
Let the graph G3 consist of a clique of blue vertices B = {bi | i ∈ [4]}, a clique of red vertices R = {rA | A⊆ [4]}, and
additional edges between every bi and every rA with i ∈ A. We say that a polygon is solid if all its edges are edges in
G3. For three distinct points p, q, and r, we denote by ∠pqr the union of the rays −→qp and −→qr. For a point set P, we
denote by conv(P) the convex hull of P (the smallest convex set containing P).

Assume for contradiction that we are given a 1-obstacle representation of G3. For a red vertex rA, if there are points
p and q such that ∠prAq strictly separates {bi | i ∈ A} from the remaining blue vertices, we say that rA is innocent. If
some red vertex rA is not innocent, two obstacles will be required due to {rA}∪B, a contradiction.

Case 1: B is not in convex position. Without loss of generality, b4 is inside triangle ∆b1b2b3.
Subcase 1a: The obstacle is in conv(B). Without loss of generality, the obstacle is inside ∆b1b4b3. Then r{1,4}

is inside ∆b1b4b3, for the obstacle to block b2r{1,4} and b3r{1,4}. Similarly, r{3,4} is inside ∆b1b4b3. For r{1,4} and
r{3,4} to be innocent, the line through b2 and b4 separates b1r{3,4} from b3r{1,4}. Without loss of generality, r{1,4}
is inside ∆b4r{3,4}b3. Since b1r{3,4} and b3r{1,4} are separated by the solid ∆b4r{3,4}b3, two obstacles are needed, a
contradiction.

Subcase 1b: The obstacle is outside of conv(B). Hence r{1,2,3} is outside of conv(B), and without loss of generality,
in conv(∠b1b4b3). Therefore, the obstacle is inside the convex quadrilateral Q = b1b4b3r{1,2,3}. For b1r4 and b3r4 to be
blocked, r4 is inside Q. Then ∠b4r4r{1,2,3} separates conv(Q) into two regions with solid boundaries that respectively
contain b1r4 and b3r4. Therefore, two obstacles are needed, a contradiction.

Case 2: B is in convex position. Without loss of generality, the bounding polygon of B is b1b2b3b4. To be innocent,

• r{1,3} and r{2,4} are outside of conv(B)

• for r{1,3}, either b1,b3 ∈ conv(∠b2r{1,3}b4) or b2,b4 ∈ conv(∠b1r{1,3}b3) and,

• for r{2,4}, b1,b3 ∈ conv(∠b2r{2,4}b4) or b2,b4 ∈ conv(∠b1r{2,4}b3).

Subcase 2a: b1,b3 ∈ conv(∠b2r{1,3}b4) and b2,b4 ∈ conv(∠b1r{2,4}b3). Without loss of generality, the quadrilat-
eral b4b1b2r{1,3} is convex and has b3 inside, and without loss of generality, the quadrilateral b3b4b1r{2,4} is convex
and has b2 inside. Hence, b2b3r{1,3}r{2,4} is a solid convex quadrilateral with b1r{2,4} outside and b3r{2,4} inside.
Therefore, two obstacles are required, a contradiction.
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Subcase 2b: b2,b4 ∈ conv(∠b1r{1,3}b3) or b1,b3 ∈ conv(∠b2r{2,4}b4). Due to symmetry, we proceed assuming the
former. Without loss of generality, Q = b3b4b1r{1,3} is a convex quadrilateral. The obstacle is inside Q due to r{1,3}b4.
In order for b1r{2,4} and b3r{2,4} to be blocked, r{2,4} is inside Q. Hence, ∠r{1,3}r{2,4}b4 partitions conv(Q) into two
regions with solid boundaries that respectively contain b1r{2,4} and r{2,4}b3. Therefore, two obstacles are required, a
contradiction.

This completes the proof of Theorem 1.1.

5 Concluding remarks
A. First we answer a question from [3].

Proposition 5.1. For every h, there exists a graph with obstacle number exactly h.

Proof. Pick a graph G with obstacle number h′ > h. (The existence of such a graph follows, e.g., from Corollary 1.2.)
Let n denote the number of vertices of G. Consider a complete graph Kn on V (G). Its obstacle number is zero, and
G can be obtained from Kn by successively deleting edges. Observe that as we delete an edge from a graph G′, its
obstacle number cannot increase by more than one. This follows from the fact that by blocking the deleted edge with
an additional small obstacle that does not intersect any other edge of G′, we obtain a valid obstacle representation of
the new graph. (Of course, the obstacle number of a graph can also decrease by the removal of an edge.) Since at
the beginning of the process, Kn has obstacle number zero, at the end G has obstacle number h′ > h, and whenever it
increases, the increase is one, we can conclude that at some stage we obtain a graph with obstacle number precisely
h.

The same argument applies to the convex obstacle number, to the segment obstacle number, and many similar
parameters.

B. Let H be a fixed graph. According to a classical conjecture of Erdős and Hajnal [8], any graph with n vertices that
does not have an induced subgraph isomorphic to H contains an independent set or a complete subgraph of size at
least nε(H), for some positive constant ε(H). It follows that for any hereditary graph property there exists a constant
ε > 0 such that every graph G on n vertices with this property satisfies hom(G)≥ nε .

Here we show that the last statement holds for the property that the graph has bounded obstacle number.

Proposition 5.2. For any fixed integer h > 0, every graph on n vertices with obsc(G)≤ h satisfies hom(G)≥ 1
2 n

1
h+1 .

Proof. We proceed by induction on h. For h = 1, Alpert et al. [3] showed that all graphs with convex obstacle number
one are so-called ”circular interval graphs” (intersection graphs of a collection of arcs along the circle). It is known
that all such graphs G whose maximum complete subgraph is of size x has an independent set of size at least n

2x ; see
[29]. Setting x =

√
n/2, it follows that hom(G)≥ 1

2
√

n.
Let h > 1, and assume that the statement has already been verified for all graphs with convex obstacle number

smaller than h. Let G be a graph that requires h convex obstacles, and consider one of its representations. Then we
have G = ∩iGi, where Gi denotes the visibility graph of the same set of points after the removal of all but the i-th
obstacle.

If the size of the largest independent set in G1 is at least 1
2 n

1
h+1 , then the statement holds, because this set is also an

independent set in G. If this is not the case, then, by the above property of circular arc graphs, G must have a complete
subgraph K of size at least n

h
h+1 . Consider now the subgraph of ∩h

i=2Gi induced by the vertices of K. This graph
requires only h− 1 obstacles. Thus, we can apply the induction hypothesis to obtain that it has a complete subgraph
or an independent set of size at least 1

2 (n
h

h+1 )
1
h = 1

2 n
1

h+1 .

It is easy to see that every graph G on n vertices with convex obstacle number at most h has the following stronger
property, which implies that they satisfy the Erdős-Hajnal conjecture: There exists a constant ε = ε(h) such that G
contains a complete subgraph of size at least εn or two sets of size at least εn such that no edges between them belongs
to G (cf. [14]).

C. Finally, we make a comment on higher dimensional representations.

7



Proposition 5.3. In dimensions d = 4 and higher, every graph can be represented with one convex obstacle.

Proof. Let G be a graph with n vertices. Consider the moment curve

{(t, t2, t3, t4) : t ∈ R}.

Pick n points vi = (ti, ti2, ti3, ti4) on this curve, i = 1, . . . ,n. The convex hull of these points is a cyclic polytope Pn.
The vertex set of Pn is {v1, . . . ,vn}, and any segment connecting a pair of vertices of Pn is an edge of Pn (lying on its
boundary). Denote the midpoint of the edge viv j by vi j, and let O be the convex hull of the set of all midpoint vi j, for
which vi and v j are not connected by an edge in G. Obviously, the points vi and the obstacle O (or its small perturbation,
if we wish to attain general position) show that G admits a representation with a single convex obstacle.
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