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Abstract. The obstacle number of a graph G is the smallest number of polygonal obstacles in the plane with the property that
the vertices of G can be represented by distinct points such that two of them see each other if and only if the corresponding
vertices are joined by an edge. We list three small graphs that require more than one obstacle. Using extremal graph theoretic
tools developed by Prömel, Steger, Bollobás, Thomason, and others, we deduce that for any fixed integer h, the total number of
graphs on n vertices with obstacle number at most h is at most 2o(n2). This implies that there are bipartite graphs with arbitrarily
large obstacle number, which answers a question of Alpert, Koch, and Laison [1].
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1. Introduction

Consider a set P of points in the plane and a set of closed polygonal obstacles whose vertices together with the
points in P are in general position, that is, no three of them are on a line. The corresponding visibility graph has
P as its vertex set, two points p,q ∈ P being connected by an edge if and only if the segment pq does not meet
any of the obstacles. Visibility graphs are extensively studied and used in computational geometry, robot motion
planning, computer vision, etc.; see [2], [8], [9], [10], [16].

Recently, Alpert, Koch, and Laison [1] introduced an interesting new parameter of graphs, closely related to
visibility graphs. Given a graph G, we say that a set of points and a set of polygonal obstacles as above constitute
an obstacle representation of G, if the corresponding visibility graph is isomorphic to G. A representation with h
obstacles is also called an h-obstacle representation. The smallest number of obstacles in an obstacle representation
of G is called the obstacle number of G.

Alpert et al. [1] showed that any representation of the bipartite graph G1 which can be obtained by removing
a maximum matching from a complete bipartite graph K5,7, requires at least two obstacles. They also constructed
a split graph G2, i.e., a graph that splits into a complete subgraph and an independent set, with a number of edges
running between them, which has obstacle number at least two.

In Section 3, we complement the above examples with a third one: we construct a graph G3 with obstacle
number at least two, whose complement is a bipartite graph.

Lemma 1.1. There is a graph G3 with obstacle number at least two, which consists of two complete subgraphs
with a number of edges running between them.
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Fig. 1.1. A drawing of G1 that can be completed to a 2-obstacle representation.

p

Fig. 1.2. V (G2) is the union of a clique A of 92379 vertices, and an independent set I of
(92379

6
)

vertices of degree 6 with distinct
neighborhoods. Out of every 92379 points in general position, at least 12 are in convex position. For some drawing of G2, we
show the drawing induced on such 12 vertices comprising A′ and a vertex p ∈ I with edges to 6 vertices in A′ that alternate
around conv(A′). In every drawing of G2, every such choice of A′ and p implies the presence of at least two interior-disjoint
solid quadrilaterals with non-edges inside each.
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Fig. 1.3. A drawing of G3.

Alpert et al. applied the Erdős-Szekeres convex n-gon theorem [6] to generalize their construction of G2 to
produce a sequence of graphs with arbitrarily large obstacle numbers. The aim of this note is to demonstrate that
the existence of such graphs a simple consequence of the fact that no graph of obstacle number one contains a
subgraph isomorphic to G1, G2, or G3. In Section 2, we will show that this set of forbidden graphs allows us
to utilize some extremal graph theoretic tools developed by Erdős, Kleitman, Rothschild, Frankl, Rödl, Prömel,
Steger, Bollobás, Thomason, and others. They yield that the number of graphs with n vertices and bounded obstacle
number is very small, compared to the total number of labeled graphs, which is 2(

n
2). More precisely, we obtain
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Theorem 1.2. For any fixed positive integer h, the number of graphs on n (labeled) vertices with obstacle number
at most h is at most 2o(n2).

One of the unsolved questions left open in [1] was whether there exist bipartite graphs with arbitrarily large
obstacle number. Since total number of labeled bipartite graphs with n vertices is at least 2n2/4, the last theorem
immediately implies that the answer to the above question is in the affirmative.

Theorem 1.3. For any positive integer h, there exists a bipartite graph with obstacle number larger than h.

Given any placement (embedding) of the vertices of G in general position in the plane, a drawing of G consists
of the image of the embedding and the set of open segments connecting all pairs of points that correspond to the
edges of G. If there is no danger of confusion, we make no notational difference between the vertices of G and the
corresponding points, and between the pairs uv and the corresponding open segments. The complement of the set
of all points that correspond to a vertex or belong to at least one edge of G falls into connected components. These
components are called the faces of the drawing. Notice that if G has an obstacle representation with a particular
placement of its vertex set, then

(1) each obstacle must lie entirely in one face of the drawing, and
(2) each non-edge of G must be blocked by at least one of the obstacles.

Therefore, the problem of finding the minimum number of obstacles required for a given drawing can be reformu-
lated as a transversal question: What is the smallest number of faces that altogether block all non-edges?

2. Hereditary properties—The proof of Theorem 1.2

In 1985, Erdős, Kleitman, and Rothschild [5] proved that, as n tends to infinity, the number of all K`-free graphs
on n vertices is asymptotically equal to the number of (`− 1)-partite graphs with n vertices with as equal vertex
classes as possible. This result was soon generalized to graphs that do not contain some fixed (not necessarily
induced) subgraph H [4]. Analogous questions based on the induced subgraph relation were investigated in [12],
[14], and [13].

Let P be a graph property satisfied by infinitely many graphs. In notation, we do not distinguish between
P and the set of all graphs that satisfy this property. The set of all graphs on n labeled vertices that satisfy
P is denoted by Pn. The property P is called hereditary if G ∈P implies that G′ ∈P for every induced
subgraph G′ of G. Conversely, if H /∈P , then H is not an induced subgraph of any graph in P . Therefore, a
hereditary graph property can be characterized by its set of ‘forbidden’ induced subgraphs. In order to formulate
an Erdős-Kleitman-Rothschild type theorem valid for any hereditary graph property, we need some definitions and
notations.

A graph is (r,s)-colorable if its vertex set can be partitioned into r blocks, out of which s are cliques and every
remaining block is an independent set. Let C (r,s) denote the set of all (r,s)-colorable graphs. A graph property
which holds for all graphs is called trivial. Given any nontrivial hereditary graph property P , define its coloring
number as

r(P) = max{r | ∃s : C (r,s)⊆P}.

The parameter r(P) exists and it is at least one. Indeed, it follows from Ramsey’s Theorem that P cannot
exclude both a complete graph and an empty graph. In other words, it must be the case that C (1,0) ⊆P or
C (1,1)⊆P , hence r(P)≥ 1. Since r(P) is strictly less than the number of vertices of any graph that does not
belong to it, it is also bounded from above.

Theorem 2.1. (Bollobás, Thomason [3]) For any nontrivial hereditary graph property P , the number of (la-
beled) graphs on n vertices with property P is

|Pn|= 2
(

1− 1
r(P)

+o(1)
)
(n

2).

Here, it does not matter whether we count labeled or unlabeled graphs, because the corresponding quantities
differ only by a factor of at most n! = 2O(n logn). If for some value r there is no s such that C (r,s)⊆P , then for ev-
ery r′> r there is no s for which C (r′,s)⊆P . If we can find (2,0)-colorable, (2,1)-colorable, and (2,2)-colorable
graphs, none of which has property P , then, by the preceding observations, r(P) = 1. Thus, by Theorem 2.1, we
can conclude that the number of graphs on n vertices with property P is 2o(n2).
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The familiar term for a (2,0)-colorable graph is bipartite. A (2,1)-colorable graph consists of a clique and an
independent set, possibly with edges running between them; such a graph is often called a split graph [7], [15].
A (2,2)-colorable graph consists of two cliques, possibly with edges running between them—its complement is
bipartite.

Apply Theorem 2.1 to the hereditary property that a graph admits a 1-obstacle representation. The graphs G1,
G2, and G3 introduced in Section 1 are (2,0)-, (2,1)- and (2,2)-colorable. Thus, in view of the fact that, according
to Alpert et al. and Lemma 1.1, none of them admits a 1-obstacle representation, we can conclude that the number
of all graphs on n (labeled) vertices with obstacle number at most 1 is 2o(n2). In other words, Theorem 1.2 holds
for h = 1.

Denote the set of the first n positive integers by [n]. Given h > 1, consider a graph G on the vertex set [n] with
obstacle number at most h, and fix an obstacle representation R for it with h obstacles O1,O2, . . . ,Oh. As usual,
we do not distinguish between V (G) and the point set corresponding to it in R. For each i ∈ [h], let Gi be the
graph on V (G) induced by the single obstacle Oi. It is easy to see that G is a subgraph of Gi, since Oi by itself
blocks no more visibilities among V (G) than do all h obstacles combined. In other words, E(G) ⊆ ∩i∈[h]E(Gi).
In fact, we have that E(G) = ∩i∈[h]E(Gi), since for every edge uv ∈ E(G), the segment uv avoids all obstacles
specified in R. Let us denote by G n

h the set of labeled graphs on [n] with obstacle numbers at most h. Since every
G ∈ G n

h is uniquely determined by the above graphs G1,G2, . . . ,Gh ∈ G n
1 , we have

∣∣G n
h

∣∣ ≤ |G n
1 |

h. Using the fact
that |G n

1 |= 2o(n2), we can conclude that
∣∣G n

h

∣∣= 2o(n2) for any fixed h.
This completes the proof of Theorem 1.2. ut

3. Proof of Lemma 1.1

Let the graph G3 consist of a set of four blue vertices B = {bi | i ∈ [4]} that induce a complete graph and a set of
sixteen red vertices R = {rA | A⊆ [4]} that also induce a complete graph, with additional edges between every bi
and every rA with i ∈ A. We say that a polygon is solid if all its edges are edges in G3. For three distinct points p,
q, and r, we denote by 6 pqr the union of the rays −→qp and −→qr. For a point set P, we denote by conv(P) the convex
hull of P (the smallest convex set containing P).

r{1,2}

r{2,4}

b1

b2

b3

b4

Fig. 3.1. The red vertex r{1,2} is not innocent, whereas the red vertex r{2,4} is innocent. Notice that since r{1,2} is not innocent,
some solid quadrilateral (in this case b1b3b2r{1,2}) separates two non-edges incident on r{1,2}. Therefore, distinct obstacles are
required to block them.

Assume for contradiction that we are given a 1-obstacle representation of G3. For a red vertex rA, if there are
points p and q such that 6 prAq strictly separates {bi | i ∈ A} from the remaining blue vertices, we say that rA is
innocent. If some red vertex rA is not innocent, two obstacles will be required due to the subgraph of G3 induced
on {rA}∪B, a contradiction. See Fig. 3.1.

Surely, B is either in convex position or it is not. We examine the two cases separately.
Case 1: B is not in convex position. Without loss of generality, b4 is inside the triangle ∆b1b2b3. Since this is

a solid triangle, the obstacle must be either inside it or outside it. We examine the two subcases separately.
Subcase 1a: The obstacle is inside ∆b1b2b3. Without loss of generality, the obstacle is inside ∆b1b4b3. This

means that all non-edges must meet the interior of ∆b1b4b3. In particular, b2r{1,4} and b3r{1,4} must meet the
interior of ∆b1b4b3. Note that every point outside an opaque convex polygon can directly see at least two vertices.
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b1 b3

b2

b4

r{3,4} r{1,4}

(a) Subcase 1a with r{3,4} above
b1r{1,4}.

b1 b3

b2

b4

r{3,4}

r{1,4}

(b) Subcase 1a with r{3,4} below
b1r{1,4}.

b1 b3

b2

b4

r{1,2,3}

r4

(c) Subcase 1b

Fig. 3.2. Case 1.

Hence, r{1,4} must be inside ∆b1b4b3, otherwise it would see at least one of b2 or b3 directly, i.e., the corresponding
non-edge would have no intersection with the interior of ∆b1b4b3. Similarly, r{3,4} is inside ∆b1b4b3. To be
innocent, r{1,4} must be in conv(6 b3b2b4). Similarly, r{3,4} must be in conv(6 b4b2b1). That is, the line through b2
and b4 separates b1r{3,4} from b3r{1,4}.

Without loss of generality, r{1,4} is inside ∆b4r{3,4}b3 (otherwise, r{3,4} is inside ∆b4r{1,4}b1, which is symmet-
ric). Since b1r{3,4} and b3r{1,4} are separated by the solid ∆b4r{3,4}b3, two obstacles are needed, a contradiction.

Subcase 1b: The obstacle is outside of ∆b1b2b3. Hence, all non-edges must meet the outside of ∆b1b2b3.
In order for b4r{1,2,3} to meet the outside of ∆b1b2b3, r{1,2,3} must be outside of ∆b1b2b3, and without loss of
generality, in conv(6 b1b4b3).

Therefore, the obstacle is inside the convex quadrilateral Q = b1b4b3r{1,2,3}. Observe that r4 has edges exactly
to two vertices of Q that comprise a diagonal of it. Since every point outside of an opaque convex polygon can
directly see at least two consecutive vertices, if r4 were outside of Q, then the non-edge r4b1 or the non-edge r4b3
would be outside of Q, requiring an obstacle outside of Q, a contradiction. Hence, r4 must be inside Q.

Then 6 b4r4r{1,2,3} separates conv(Q) into two regions with solid boundaries that respectively contain b1r4 and
b3r4. Therefore, two obstacles are needed, a contradiction.

r{1,3}

r{2,4}

b3

b2

b1

b4

(a) Subcase 2a

r{2,4}

r{1,3}

b3

b2
b1

b4

(b) Subcase 2b

Fig. 3.3. Case 2. The thick dashed non-edges require distinct obstacles.

Case 2: B is in convex position. Without loss of generality, the bounding polygon of B is b1b2b3b4. In order
for r{1,3} and r{2,4} to be innocent,

(i) r{1,3} and r{2,4} must lie outside of conv(B);
(ii) for r{1,3}, either b1,b3 ∈ conv(6 b2r{1,3}b4) or b2,b4 ∈ conv(6 b1r{1,3}b3); and
(iii) for r{2,4}, either b1,b3 ∈ conv(6 b2r{2,4}b4) or b2,b4 ∈ conv(6 b1r{2,4}b3).
Subcase 2a: b1,b3 ∈ conv(6 b2r{1,3}b4) and b2,b4 ∈ conv(6 b1r{2,4}b3). Without loss of generality, the quadri-

lateral b4b1b2r{1,3} is convex and has b3 inside, and without loss of generality, the quadrilateral b3b4b1r{2,4} is
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convex and has b2 inside. Hence, b2b3r{1,3}r{2,4} is a solid convex quadrilateral with b1r{2,4} outside and b3r{2,4}
inside. Therefore, two obstacles are required, a contradiction.

Subcase 2b: b2,b4 ∈ conv(6 b1r{1,3}b3) or b1,b3 ∈ conv(6 b2r{2,4}b4). Due to symmetry, we proceed assuming
the former. Without loss of generality, Q = b3b4b1r{1,3} is a convex quadrilateral. The obstacle is inside Q due
to r{1,3}b4. In order for b1r{2,4} and b3r{2,4} to be blocked, r{2,4} is inside Q. Hence, 6 r{1,3}r{2,4}b4 partitions
conv(Q) into two regions with solid boundaries that respectively contain b1r{2,4} and r{2,4}b3. Therefore, two
obstacles are required, a contradiction.

This completes the proof of the lemma. ut

Concluding Remark

It was conjectured in [1] that the 10-vertex bipartite graph G′1 (see Fig. 3.4) has obstacle number exactly two. We
showed in [11] that both G′1 and the 70-vertex split graph G′2 (see Fig. 3.5) have obstacle number at least two.

Fig. 3.4. A drawing of G′1 that can be completed to a 2-obstacle representation.

Fig. 3.5. A drawing of G′2, whose vertex set consists of a clique (light blue) of six vertices and an independent set (dark red) of
64 vertices with distinct neighborhoods.
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