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Abstract

A simple topological graph G is a graph drawn in the plane so that any pair of edges have at
most one point in common, which is either an endpoint or a proper crossing. G is called saturated
if no further edge can be added without violating this condition. We construct saturated simple
topological graphs with n vertices and O(n) edges. These constructions are nearly optimal: it
is shown that every saturated simple topological graph with n vertices has at least cn edges for
some constant c ≥ 1.5. Several related problems are also considered.

1 Introduction

Saturation problems in graph theory have been studied at length, ever since the paper of Erdős,
Hajnal, and Moon [2]. Given a graph H, a graph G is H-saturated if G does not contain H as a
subgraph, but the addition of any edge joining two non-adjacent vertices of G creates a copy of H.
The saturation number of H, sat(n, H), is the minimum number of edges in an H-saturated graph
on n vertices. The saturation number for complete graphs was determined in [2]. A systematic
study by Kászonyi and Tuza [7] found the best known general upper bound for sat(n, H) in terms
of the independence number of H. The saturation number is now known, often precisely, for many
graphs; for these results and related problems in graph theory we refer the reader to the thorough
survey of J. Faudree, R. Faudree, and Schmitt [3]. It is worth noting that sat(n, H) = O(n), quite
unlike the Turán function ex(n, H), that is often superlinear.

In this paper, we study a saturation problem for drawings of graphs. In a drawing of a simple
undirected graph G in the plane, every vertex is represented by a point, and every edge is represented
by a curve between the points that correspond to its endpoints. If it does not lead to confusion,
these points and curves are also called vertices and edges. We assume that in a drawing no edge
passes through a vertex and no two edges are tangent to each other. A graph, together with its
drawing, is called a simple topological graph if any two edges have at most one point in common,
which is either their common endpoint or a proper crossing.
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of Mathematics, partially supported by Hungarian Science Foundation Grant OTKA T 046246.
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Our motivation comes from the following problem: At least how many pairwise disjoint edges
can one find in every simple topological graph with n vertices and m edges [8]? (Note that the
simplicity condition is essential here, as there are complete topological graphs on n vertices and no
two disjoint edges, in which every pair of edges intersect at most twice [9].) For complete simple
topological graphs, i.e., when m =

(

n
2

)

, Pach and Tóth conjectured ([1], page 398) that one can
always find Ω(nδ) disjoint edges for a suitable constant δ > 0. This was shown by Suk [11] with
δ = 1/3; see [4] for an alternative proof. Recently, Ruiz-Vargas [10] has improved this bound

to Ω
(
√

n
log n

)

. Unfortunately, all known proofs break down for non-complete simple topological

graphs. For dense graphs, i.e., when m ≥ εn2 for some ε > 0, Fox and Sudakov [5] established
the existence of Ω(log1+γ n) pairwise disjoint edges, with γ ≈ 1/50. However, if m ≪ n2, the best
known lower bound, due to Pach and Tóth [9], is only Ω ((log m − log n)/ log log n).

We know a great deal about the structure of complete simple topological graphs, but in the
non-complete case our knowledge is rather lacunary. We may try to extend a simple topological
graph to a complete one by adding extra edges and then explore the structural information we have
for complete graphs. The results in the present note suggest that this approach is not likely to
succeed: there exist very sparse simple topological graphs to which no edge can be added without
violating the simplicity condition.

A simple topological graph is saturated if we cannot add any further edge such that the resulting
drawing is still a simple topological graph. In other words, if we connect any two non-adjacent
vertices by a curve, it will have at least two common points with one of the existing edges.

Consider the simple topological graph G1 with eight vertices, depicted in Figure 1. It is easy
to verify that the vertices x and y cannot be joined by a new edge so that the resulting topological
graph remains simple. Indeed, every edge of G1 is incident either to x or to y, and any curve joining
x and y must cross at least one edge. On the other hand, G1 can be extended to a (saturated)
simple topological graph in which every pair of vertices except x and y are connected by an edge.

x y

Figure 1: Topological graph G1: edge {x, y} can not be added.

Another example was found independently by Kynčl [6]: The simple topological graph G2

depicted in Figure 2 has only six vertices, from which x and y cannot be joined by an edge without
intersecting one of the original edges at least twice. Again, G2 can be extended to a simple
topological graph, in which every pair of vertices except x and y are connected by an edge. Although
G2 has fewer vertices than G1, in the sequel it will be more convenient to use G1 as a basis for
more general constructions.
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Figure 2: Topological graph G2: edge {x, y} cannot be added.

Let s(n) denote the minimum number of edges that a saturated simple topological graph on n
vertices can have. In view of the fact that the graphs shown in Figures 1 and 2 can be extended
to nearly complete simple topological graphs, it is a natural question to ask whether s(n) = Ω(n2).
Our next theorem shows that s(n) = Θ(n).

Theorem 1. Let s(n) be the minimum number of edges that a saturated simple topological graph
on n vertices can have, n ≥ 4. Then we have

c1n ≤ s(n) ≤ c2n,

for suitable constants c1 ≥ 1.5 and c2 ≤ 17.5.

The paper is organized as follows. In Section 2, we establish the upper bound in Theorem 1.
In Section 3, we show that every vertex of a saturated simple topological graph has degree at least
three, a fact from which the lower bound in Theorem 1 follows immediately. In Section 4, we
discuss some related questions and prove the following theorem.

Theorem 2. Let k be a positive integer, and let G be a (non-complete) topological graph, in which
any two edges have at most k points in common. If two vertices are not adjacent, then they can be
connected by a curve which has at most 2k points in common with any edge of G.

2 Proof of Theorem 1: The Upper Bound

To construct saturated simple topological graphs with an arbitrarily large number, n, of vertices and
O(n) edges, we first need to modify G1. Consider the edges of G1 incident to x, and modify them
in a small neighborhood of x so that the resulting edges have distinct endpoints, they pairwise cross
each other, and their union encloses a region X (i.e., a connected component X of the complement
of the union of the edges) which contains x. Analogously, modify the other three edges of G1 in
a small neighborhood of y. Let Y be the region that contains y and is enclosed by the modified
edges. The resulting simple topological graph G has 12 vertices and 6 edges; see Figure 3. The
points x, y ∈ V (G1) do not belong to V (G).

Lemma 1. Let x and y be any pair of points belonging to the regions X and Y in G, respectively.
Then any curve joining x and y will meet at least one of the edges of G at least twice.

Proof of Lemma 1: We prove the claim by contradiction. Let a1, a2, a3, b1, b2, b3 denote the edges
of G. They divide the plane into eight regions, X, Y , A1, A2, A3, B1, B2, B3; see Figure 3. Suppose
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Figure 3: Topological graph G: edge {x, y} can not be added.

there exists an oriented curve from x to y that crosses every edge of G at most once. Let γ be
such a curve with the smallest number of crossings with the edges of G. Let c1, c2, . . . , cm−1 be the
crossings between γ and the edges of G, ordered according to the orientation of γ. They divide γ
into intervals I1, I2, . . . , Im, ordered again according to the orientation of γ. The first interval I1

lies in region X, and the last one, Im, is in region Y . Observe that no other interval can belong
to X or to Y , because in this case we could simplify γ and obtain a curve with a smaller number
of crossings. By symmetry, we can assume that the first crossing, c1, is a crossing between γ and
edge a1. Then I2 belongs to A1. The following property holds.

Property P: If for some j ≥ 2, interval Ij belongs to region Ai (respectively, Bi), then one of
the points c1, c2, . . . , cj−1 is a crossing between γ and the edge ai (respectively, bi).

We prove property P by induction on j. Clearly, the property holds for j = 2. Assume that
Ij−1 is in region Ai (respectively, Bi) and one of c1, c2, . . . , cj−2 is a crossing between γ and ai

(respectively, bi). For simplicity, assume that Ij−1 belongs to the region A1 and that one of the
points c1, c2, . . . , cj−2 is a crossing between γ and a1; the other cases are analogous. Since cj−1

cannot belong to a1, it must be a crossing between γ and either a2 or b2. In the first case, Ij

belongs to A2, in the second to B2. In either case, Property P is preserved.
Now, we can complete the proof of Lemma 1. Consider the interval Im−1. Since Im lies in

region Y , for some i, interval Im−1 must lie in Bi. Suppose for simplicity that Im−1 lies in B1. By
Property P (with j = m− 1, m ≥ 3), one of the points c1, c2, . . . , cm−2 must be a crossing between
γ and b1. However, using that Im is in Y , cm−1 must be another crossing between γ and b1. Thus,
γ crosses b1 twice, which is a contradiction. 2

Now, we return to the proof of the upper bound in Theorem 1. Modify the drawing of G in
Figure 3 so that region Y becomes unbounded, and let H be the resulting topological graph. Denote
by Y (respectively, by X) the outer region (respectively, the inner region) of H; see Figure 4.

For every n ≥ 1, construct a saturated simple topological graph Fn, as follows. Let k = ⌊n/12⌋.
Take a disjoint union of k scaled and translated copies of H, denoted by H1, H2, . . ., Hk, such
that for any i, 1 < i ≤ k, let H i lie entirely in the inner region of H i−1. For 1 ≤ i ≤ k, let Vi be
the vertex set of H i. Finally, place n − 12k additional vertices in the inner region of Hk, and let
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Figure 4: Topological graph H, a modification of G.

Vk+1 denote the set of these vertices (see Figure 5). Obviously, we have |Vk+1| < 12.
Add to this topological graph all possible missing edges one by one, as long as it remains simple.

We end up with a saturated simple topological graph Fn with n vertices. Observe that for every i
and j with 1 ≤ i < j − 1 < k, Vi lies in the outer region of H i+1, while Vj is in the inner region of
H i+1. By Lemma 1 (applied with G = H i+1, x ∈ Vj , y ∈ Vi), no edge of Fn runs between Vi and
Vj . Hence, every vertex in Vi can be adjacent to at most 35 other vertices; namely, to the elements
of Vi−1 ∪ Vi ∪ Vi+1. Therefore, Fn is a saturated simple topological graph with n vertices and at
most 17.5n edges.

3 Proof of Theorem 1: The Lower Bound

We will need the following lemma. A vertex of a (topological) graph is isolated if its degree is zero.
A triangle in a (topological) graph is called isolated if its vertices are not incident to any edges
other than the edges of the triangle.

Lemma 2. A saturated simple topological graph on at least four vertices cannot contain

(i) any isolated triangle,

(ii) any isolated vertex,

(iii) any vertex of degree one.

Proof of Lemma 2: We prove only (i); the proofs of (ii) and (iii) are almost identical.
Let G be a saturated simple topological graph, and suppose for contradiction that T is an

isolated triangle with vertices x, y, and z. By definition, the edges of T cannot cross one another.
We distinguish two cases.

Case 1. The edges of T do not participate in any crossing.
The edges of G divide the plane into regions. Let R denote a region bounded by the edges

of T and at least one other curve C. Since G is saturated, C cannot consist of a single isolated
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Figure 5: Saturated simple topological graph Fn.

vertex. Let e = {u, v} be an edge that contributes to C, and let p be a point on e that belongs to
the boundary of R; see Figure 6. Choose a point p′ inside of R, very close to p. Let β be a curve
running inside R that connects a vertex of T , say x, to p′. Let β′ be a curve joining p′ and u, and
running very close to the edge e. Adjoining β and β′ at p′, we obtain a curve γ that connects x
and u, two previously non-adjacent vertices of G. Curve γ is not crossed by any edge of T and by
any edge of G incident to u. Since β is crossing-free, all crossings between γ and the edges of G
must lie on β′ and, hence, must correspond to crossings along the edge e. Therefore, every edge of
G can cross γ only at most once. Consequently, γ can be added to G as an extra edge so that it
remains simple. This contradicts the assumption that G was saturated.

Case 2. There is an edge of T which participates in a crossing.
Assume without loss of generality that e = {x, y} is crossed by another edge of G. Let p

denote the crossing on e closest to x, and suppose that p is a crossing between e and another edge
f = {u, v}. Point p divides f into two parts. At least one of them, say, part up, is not crossed
by edge {x, z} of T . Choose a point p′ in a very small neighborhood of p. Let β be a curve
connecting x and p′, running very close to e. Let β′ be a curve between p′ and u, running very
close to f . Adjoining β and β′ at p′ we obtain a curve γ connecting x and u, two vertices that
were not adjacent in G; see Figure 6. Just like in the previous case, add γ to G as an extra edge.
Curve γ is not crossed by any edge incident to x or u. Since the portion xp of e is crossing-free, β
must be crossing-free, too. Therefore, all possible crossings between γ and the edges of G must lie
on β′ and, hence, correspond to crossings along f . Thus, every edge of G crosses γ at most once,
contradicting our assumption that G was saturated. 2

The lower bound in Theorem 1 immediately follows from the statement below.

6



x yβ
e

β’
p

p

vu

z

T

z

T

x y

v

u

p

’

e

f

β’
p’β

Figure 6: Case 1 and Case 2 of Lemma 2.

Lemma 3. In every saturated simple topological graph with at least four vertices, every vertex has
degree at least 3.

Proof of Lemma 3: We prove the claim by contradiction. Let G be a saturated simple topological
graph, and let x be a vertex of degree two in G. (By Lemma 2, the degree of x cannot be 0 or 1.)
Let y and z denote the neighbors of x. We distinguish two cases.

Case 1. Edges {x, y} and {x, z} do not participate in any crossing.
By Lemma 2, y and z both have degree at least two, and x, y, and z do not span an isolated

triangle. Hence, at least one of these three vertices, say, y, has a neighbor, w, different from x and
z. Let γ be a curve connecting x to w, which runs very close to the edge {x, y} from x to a point
in a small neighborhood of y, and from that point all the way to w runs very close to edge {y, w}.
We can assume that γ does not cross {x, y} and {y, w}. Add γ to G as an extra edge. Clearly, γ
does not cross any edge incident to x or w. As in the proof of Lemma 2, it is easy to verify that no
other edge of G can cross γ twice. This contradicts the assumption that G was saturated.

Case 2. At least one of the edges {x, y} and {x, z} participates in a crossing.
Assume without loss of generality that e = {x, y} crosses by another edge of G. Let p be the

crossing on e closest to x, and suppose that the other edge passing through p is f = {u, v}. Vertex
z cannot be identical to both u and v. Assume, for example, that z 6= u. Point p divides f into two
pieces, at least one of which, say, up, does not cross the edge {x, z}. This remains true even if z is
identical to v, since in this case f does not cross by {x, z}, due to the simplicity of G. Let γ be a
curve connecting x and u, which follows e very closely from x to a point in a small neighborhood
of p, and then, from that point all the way to u, closely follows f . We can assume that γ does
not cross e and f . Add γ to G as an extra edge. As in Case 2 of the proof of Lemma 2, it is
easy to show that this new edge does not meet any original edge of G more than once. Again, this
contradicts the assumption that G was saturated. 2

4 Concluding Remarks

For any positive integer k, call a topological graph k-simple if any two of edges have at most k
points in common, each of which is either a common endpoint or a proper crossing (at which one
of the edges passes from one side of the first edge to the other). A k-simple topological graph G
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is saturated if we cannot add any further edge such that it remains k-simple. In other words, G is
saturated if no matter how we connect two non-adjacent vertices by a curve, it has at least k + 1
points in common with at least one edge of G. The drawings of K6 minus an edge and K8 minus
an edge, described in Section 1, as well as the saturated simple topological graphs Fn constructed
in Section 2, are examples of such graphs with k = 1.

Problem 1. Do there exist non-complete saturated k-simple topological graphs for every integer
k > 1?

It would be interesting to find even one such example with k = 2.
For any positive integers k and ℓ, k < ℓ, a topological graph G together with a pair of non-

adjacent vertices {u, v} is called a (k, ℓ)-construction if G is k-simple and any curve joining u and
v has at least ℓ points in common with at least one edge of G. Using this terminology, every
saturated non-complete k-simple topological graph together with any pair of non-adjacent vertices
is a (k, k + 1)-construction.

Problem 2. For which pairs of positive integers (k, ℓ) with k < ℓ do there exist (k, ℓ)-constructions?

We do not know any examples with (k, l) 6= (1, 2). Theorem 2 can be rephrased as follows.

Theorem 2’. There is no (k, ℓ)-construction with ℓ > 2k.

Proof of Theorem 2: Let G be a non-complete k-simple topological graph, and let u and v be two
non-adjacent vertices of G. We prove that u and v can be connected by a curve that has at most
2k points in common with any edge of G.

Place a new vertex at each crossing of G and subdivide the edges accordingly. Let G′ denote the
resulting topological graph. Choose an arbitrary path α in G′, connecting u and v. We distinguish
two types of vertices on α. A vertex x of G′ that lies on α is called a passing vertex if the two edges
of α incident to x belong to the same edge of G. A vertex x of G′ that lies on α is a turning vertex
if it is not a passing vertex, that is, if the two edges of α meeting at x belong to distinct edges of
G.

Assign to α a unique code, denoted by c(α), as follows. Suppose that α contains r turning
vertices for some r ≥ 0. These vertices divide α into r + 1 intervals, Iα

1 , Iα
2 , . . . , Iα

r+1, ordered from
u to v. Set pα

0 = r and for any i, 1 ≤ i ≤ r + 1, let pα
i denote the number of passing vertices on Iα

i .
Let c(α) = (pα

0 , pα
1 , pα

2 , . . . , pα
r+1); see Figure 7.

Order the codes of all (u, v)-paths lexicographically: if α and β are two (u, v)-paths in G′, with

codes c(α) = (pα
0 = r, pα

1 , pα
2 , . . . , pα

r+1) and c(β) = (pβ
0 = s, pβ

1 , pβ
2 , . . . , pβ

s+1), respectively, then let
c(α) ≺lex c(β) if and only if c(α) 6= c(β) and for the smallest index i such that pi 6= qi we have
pi < qi.

Finally, define a partial ordering ≺ on the set of all the (u, v)-paths in G′: for any two (u, v)-
paths, α and β, let α ≺ β if and only if c(α) ≺lex c(β).

Let γ be a minimal element with respect to ≺. Suppose that γ has r turning vertices,
t1, t2, . . . , tr, r ≥ 0, that divide γ into intervals Iγ

1 , Iγ
2 , . . . , Iγ

r+1, ordered from u to v. Consider
the intervals as half-closed, that is, for every i, 0 ≤ i ≤ r, let ti belong to Iγ

i+1.
Next we establish some simple properties of the intersections of γ with the edges of G.

Lemma 4. Let e be an edge of G that has only finitely many points in common with γ. Then all
of these points belong to two consecutive intervals of γ.
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Figure 7: A (u, v)-path α (in bold) with c(α) = (6, 0, 0, 1, 1, 0, 1, 0) and its turning vertices ti.

Proof of Lemma 4: Suppose for contradiction that e has nonempty intersection with at least two
non-consecutive intervals of γ. Let x (and y) denote the crossing of e and γ, closest to (respectively,
farthest from) u along γ. Let x belong to Iγ

i , let y belong to Iγ
j , where i < j − 1.

Let γ′ be another (u, v)-path, which is identical to γ between u to x, identical to e from x
to y, and finally identical to γ from y to v; see Figure 8. If i < j − 2, then it is evident that
c(γ′) ≺lex c(γ), since γ′ has fewer turning vertices than γ. If i = j − 2, then γ and γ′ have the same

number of turning vertices, but Iγ′

i contains fewer passing vertices than Iγ
i (hence pγ′

i < pγ
i ), and

we have c(γ′) ≺lex c(γ). In both cases we obtain that γ′ ≺ γ, contradicting the minimality of γ. 2

ti

tj

x

u v

γ’

γ

e
y

Figure 8: Two (u, v)-paths γ and γ′ (both in bold) in the proof of Lemma 4.

Lemma 5. Let e be an edge of G that has only finitely many points in common with γ.

(i) If none of the common points is a vertex of e, then e crosses γ at most 2k times.

(ii) If one of the common points is a vertex of e, then e crosses γ at most 2k − 1 times.

Proof of Lemma 5: First, suppose that no vertex of e lies on γ. By Lemma 4, e crosses at most
two consecutive intervals of γ. Each interval is a part of some edge of G and hence crosses e at
most k times. This proves (i).

Suppose next that one of the vertices of e lies on γ. Observe that such a vertex must be a
turning vertex of γ, say ti. Again, by Lemma 4, e crosses at most two consecutive intervals of γ.
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Each interval is a part of some edge of G. Moreover, one of them has a common endpoint with e.
Therefore, e crosses one of the intervals at most k times and the other at most k − 1 times. This
proves (ii). 2

Note that no edge e of G that has only finitely many points in common with γ can have both
of its endpoints on γ. Otherwise, both endpoints must be turning vertices of γ, say ti and tj for
some i < j. Since the underlying abstract graph G is simple (that is, G has no multiple edges),
the edge of G that contains Iγ

i+1 must be different from the edge that contains Iγ
j . Hence, there

is at least one turning vertex between ti and tj on γ. Now consider another (u, v)-path γ′ that is
identical to γ from u to ti, identical to e from ti to tj , and finally identical to γ from tj to v. The
turning vertices ti and tj of γ are also turning vertices on γ′. Since the turning vertices of γ that
lie between ti and tj are not among the turning vertices of γ′, γ′ has fewer turning vertices than γ.
Therefore, we have c(γ′) ≺lex c(γ), contradicting the minimality of γ.

Lemma 6. Let e be an edge of G that contains an interval Iγ
i of γ. Then e and γ have at most k

points in common outside of Iγ
i . Furthermore, one of these points is ti, the endpoint of Iγ

i .

Proof of Lemma 6: Since Iγ
i and Iγ

i+1 are separated by ti, and Iγ
i is contained in e, it follows that

e cannot contain Iγ
i+1. Similarly, e cannot contain Iγ

i−1.
If e has a point p in Iγ

j with j < i, consider another (u, v)-path γ′ that is identical to γ from u
to p, identical to e from p to ti−1, and finally identical to γ from ti−1 to v; see Figure 9. If j < i−1,
the turning vertices tj and ti−1 of γ are not among the turning vertices of γ′. Although p was a
passing vertex of γ and is now a turning vertex of γ′, still γ′ has fewer turning vertices than γ.
Therefore, c(γ′) ≺lex c(γ). If j = i − 1, the turning vertex ti of γ is not a turning vertex of γ′.
Again, p was a passing vertex of γ and is now a turning vertex of γ′. So, γ and γ′ have the same

number of turning vertices. Since p is not a passing vertex of γ′, Iγ′

i−1 has fewer passing vertices

than Iγ
i−1 (hence pγ′

i−1 < pγ
i−1), and we have that c(γ′) ≺lex c(γ). In all of the above cases, we obtain

that γ′ ≺ γ, contradicting the minimality of γ.

tj

i−1t iI ti

γ’
γ

p

e
u

e

v

Figure 9: Two u, v-paths γ and γ′ (both in bold) in the proof of Lemma 6; j < i − 1.

Similarly, if e has a point p in Iγ
j with j > i+1, consider another (u, v)-path γ′ that is identical

to γ from u to ti, identical to e from ti to p, and finally identical to γ from p to v. The turning
vertices ti and tj−1 of γ are not among the turning vertices of γ′. Although p was a passing vertex of
γ and is a turning vertex of γ′, still γ′ has fewer turning vertices than γ. Therefore, c(γ′) ≺lex c(γ),
contradicting the minimality of γ.

Note that the case j = i + 1 cannot be settled in the same way as the previous cases, since the
number of passing vertices on e between ti and p may not be smaller than the number of passing
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vertices on γ between ti and p. Nevertheless, we can conclude that no interval of γ other than Iγ
i is

contained in e. Furthermore, the only interval of γ other than Iγ
i that can share some points with e

is Iγ
i+1. Let f be the edge of G that contains Iγ

i+1. Since e and f have at most k points in common,
e and Iγ

i+1 can have at most k points in common, too. The point ti, the common endpoint of Iγ
i

and Iγ
i+1, is one of these points. 2

Now we are in a position to complete the proof of Theorem 2. Join u and v by a curve β that
runs very close to γ.

We claim that any edge e of G has at most 2k points in common with β. If e has only finitely
many points in common with γ and none of them is a vertex of e, then every crossing between e
and β corresponds to a crossing between e and γ. Therefore, by Lemma 5(i), e and β cross each
other at most 2k times. If e has only finitely many points in common with γ, but one of them is
a vertex of e, then each crossing between e and β corresponds to a crossing between e and γ, and
there may be an additional crossing near the vertex of e on γ. Again, by Lemma 5(ii), there are
at most 2k crossings between e and β. Finally, if e contains a whole interval Iγ

i of γ, then each
crossing between e and β corresponds to a crossing between e and γ, or to a vertex of e on γ. There
may be an additional crossing near the endpoint ti of Iγ

i . Thus, there are at most k + 1 crossings.
2

There is a slightly different further generalization of the concept of saturated k-simple topologi-
cal graphs. For any positive integers k and ℓ, k < ℓ, a topological graph G is called a (k, ℓ)-saturated
if G is k-simple and any curve joining any pair of non-adjacent vertices has at least ℓ points in
common with at least one edge of G. Obviously, every saturated k-simple topological graph is
(k, k + 1)-saturated.

Problem 3. For which pairs of positive integers (k, ℓ) with k < ℓ do there exist (non-complete)
(k, ℓ)-saturated topological graphs?

We do not have a single example for (k, ℓ)-saturated topological graphs with (k, ℓ) 6= (1, 2).
Clearly, every (k, ℓ)-saturated topological graph together with any pair of its non-adjacent

vertices is a (k, ℓ)-construction. However, for ℓ > k + 1, the existence of a (k, ℓ)-construction does
not necessarily imply the existence of a (k, ℓ)-saturated topological graph. It may help in proving
the existence of one, as we have seen in the case (k, ℓ) = (1, 2).

The constant 17.5 in Theorem 1 can almost certainly be improved. It is unlikely that every
vertex in Vi, for most values of i, can be connected to all 35 possible neighbors (that is, all other
vertices that belong to Vi−1 ∪ Vi ∪ Vi+1), while preserving the simplicity of Fn.
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