
Improving the Crossing Lemmaby �nding more 
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tTwenty years ago, Ajtai, Chv�atal, Newborn, Szemer�edi,and, independently, Leighton dis
overed that the 
ross-ing number of any graph with v verti
es and e > 4vedges is at least 
e3=v2, where 
 > 0 is an absolute
onstant. This result, known as the `Crossing Lemma,'has found many important appli
ations in dis
rete and
omputational geometry. It is tight up to a multipli
a-tive 
onstant. Here we improve the best known valueof the 
onstant by showing that the result holds with
 > 1024=31827 > 0:032. The proof has two new in-gredients, interesting on their own right. We show that(1) if a graph 
an be drawn in the plane so that everyedge 
rosses at most 3 others, then its number of edges
annot ex
eed 5:5(v � 2); and (2) the 
rossing numberof any graph is at least 73e� 253 (v�2). Both bounds aretight up to an additive 
onstant (the latter one in therange 4v � e � 5v).1 Introdu
tionUnless stated otherwise, the graphs 
onsidered in thispaper have no loops or parallel edges. The numberof verti
es and number of edges of a graph G are de-noted by v(G) and e(G), respe
tively. We say that Gis drawn in the plane if its verti
es are represented bydistin
t points and its edges by (possibly interse
ting)Jordan ar
s 
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If it leads to no 
onfusion, in terminology and notationwe make no distin
tion between the verti
es of G andthe 
orresponding points, or between the edges and the
orresponding Jordan ar
s. We always assume that ina drawing (a) no edge passes through a vertex di�er-ent from its endpoints, (b) no three edges 
ross at thesame point, (
) any two edges have only a �nite num-ber of interior points in 
ommon, and at these pointsthey properly 
ross, i.e., one of the edges passes fromone side of the other edge to the other side (see [P99℄,[P04℄). The 
rossing number of G, denoted by 
r(G), isthe minimum number of edge 
rossings in a drawing ofG satisfying the above 
onditions.Ajtai, Chv�atal, Newborn, and Szemer�edi [AC82℄ and,independently, Leighton [L83℄ have proved the follow-ing result, whi
h is usually referred to as the `CrossingLemma.' The 
rossing number of any graph with v ver-ti
es and e > 4v edges satis�es
r(G) � 164 e3v2 :This result, whi
h is tight apart from the value of the
onstant, has found many appli
ations in 
ombinatorialgeometry, 
onvexity, number theory, and VLSI design(see [L83℄, [Sz95℄, [PS98℄, [ENR00℄, [STT02℄, [PTa02℄).In parti
ular, it has played a pivotal role in obtaining thebest known upper bound on the number of k-sets [D98℄and lower bound on the number of distin
t distan
esdetermined by n points in the plane [ST01℄, [KT04℄.A

ording to a 
onje
ture of Erd}os and Guy [ErG73℄,whi
h was veri�ed in [PST00℄, as long as e=v !1 ande=v2 ! 0; the limitlimv!1 minv(G) = ve(G) = e 
r(G)e3=v21



exists. The best known upper and lower bounds for this
onstant (roughly 0:09 and 1=33:75 � 0:029, resp.) wereobtained in [PTo97℄.All known proofs of the Crossing Lemma are based onthe trivial inequality 
r(H) � e(H)�(3v(H)�6), whi
his an immediate 
orollary of Euler's Polyhedral Formula(v(H) > 2). Applying this statement indu
tively to allsmall (and, mostly sparse) subgraphs H � G or to arandomly sele
ted one, the lemma follows. The mainidea in [PTo97℄ was to obtain stronger inequalities forthe sparse subgraphs H , whi
h have led to better lowerbounds on the 
rossing numbers of all graphs G. In thepresent paper we follow the same approa
h.For k � 0, let ek(v) denote the maximum number ofedges in a graph of v � 2 verti
es that 
an be drawnin the plane so that every edge is involved in at most k
rossings. By Euler's Formula, we have e0(v) = 3(v�2).Pa
h and T�oth [PTo97℄ proved that ek(v) � (k+3)(v�2), for 0 � k � 3. Moreover, for 0 � k � 2, these boundsare tight for in�nitely many values of v. However, fork = 3, there was a gap between the lower and upperestimates. Our �rst theorem, whose proof is presentedin Se
tion 2, �lls this gap.Theorem 1. Let G be a graph on v � 3 verti
es that 
anbe drawn in the plane so that ea
h of its edges 
rossesat most three others. Then we havee(G) � 5:5(v � 2):Consequently, the maximum number of edges over allsu
h graphs satis�es e3(v) � 5:5(v � 2); and this boundis tight up to an additive 
onstant.As we have pointed out before, the inequality e0(v) �3(v� 2) immediately implies that if a graph G of v ver-ti
es has more than 3(v � 2) edges, then every edge be-yond this threshold 
ontributes at least one to 
r(G).Similarly, it follows from inequality e1(v) � 4(v � 2)that, if e(G) � 4(v�2), then every edge beyond 4(v�2)must 
ontribute an additional 
rossing to 
r(G) (i.e., al-together at least two 
rossings). Summarizing, we ob-tain that
r(G) � (e(G)� 3 (v(G)� 2)) + (e(G)� 4 (v(G)� 2))� 2e(G)� 7 (v(G) � 2)

holds for every graph G. Both 
omponents of this in-equality are tight, so one might expe
t that their 
ombi-nation 
annot be improved either, at least in the rangewhen e(G) is not mu
h larger that 4(v � 2). However,this is not the 
ase, as is shown by our next result,proved in Se
tion 3.Theorem 2. The 
rossing number of any graph G withv(G) � 3 verti
es and e(G) edges satis�es
r(G) � 73e(G)� 253 (v(G) � 2):In the worst 
ase, this bound is tight up to an additive
onstant whenever 4 (v(G)� 2) � e(G) � 5 (v(G)� 2).As an appli
ation of the above two theorems, in Se
-tion 4 we establish the following improved version of theCrossing Lemma.Theorem 3. The 
rossing number of any graph G sat-is�es 
r(G) � 131:1 e3(G)v2(G) � 1:06v(G):If e(G) � 10316 v(G), we also have
r(G) � 102431827 e3(G)v2(G) :Note for 
omparison that 1024=31827 � 1=33:08 �0:032.In the last se
tion, we adapt the ideas of Sz�ekely [Sz95℄to dedu
e some 
onsequen
es of Theorem 3, in
ludingan improved version of the Szemer�edi-Trotter theorem[SzT83℄ on the maximum number of in
iden
es betweenn points and m lines. We also dis
uss some open prob-lems and make a few 
onje
tures and 
on
luding re-marks.All drawings 
onsidered in this paper satisfy the 
on-dition that any pair of edges have at most one point in
ommon. This may be either an endpoint or a proper
rossing. It is well known and easy to see that ev-ery drawing of a graph G that minimizes the num-ber of 
rossings meets this requirement. Thus, in theproof of Theorem 3, we 
an make this assumption with-out loss of generality. However, it is not so obviouswhether the same restri
tion 
an be justi�ed in the2




ase of Theorem 1. Indeed, in [PTo97℄, the bounde(G) � (k+3)(v(G)�2) was proved only for graphs that
an be drawn with at most k � 4 
rossings per edge andwhi
h satisfy this extra 
ondition. Sin
e for the proof ofTheorem 3 we need Theorem 1 in its full generality, wehave to establish the following simple statement.
A B

e

fFigure 1: Two adja
ent edges e and f 
ross, ea
h par-ti
ipating in exa
tly 4 
rossings.Lemma 1.1. Let k � 3, and let G be a graph of vverti
es that 
an be drawn in the plane so that ea
h ofits edges parti
ipates in at most k 
rossings.In any drawing with this property that minimizes thetotal number of 
rossings, every pair of edges have atmost one point in 
ommon.Proof: Suppose for 
ontradi
tion that some pair ofedges, e and f , have at least two points in 
ommon,A and B. At least one of these points, say B, mustbe a proper 
rossing. First, try to swap the portions ofe and f between A and B, and modify the new draw-ing in small neighborhoods of A and B so as to redu
ethe number of 
rossings between the two edges. Clearly,during this pro
ess the number of 
rossings along anyother edge distin
t from e and f remains un
hanged.The only possible problem that may arise is that af-ter the operation either e or f (say e) will parti
ipate inmore than k 
rossings. In this 
ase, before the operationthere were at least two more 
rossings inside the portionof f between A and B, than inside the portion of e be-tween A and B. Sin
e f parti
ipated in at most three
rossings (at most two, not 
ounting B), we 
on
ludethat in the original drawing the portion of e between Aand B 
ontained no 
rossing. If this is the 
ase, insteadof swapping the two portions, repla
e the portion of f

between A and B by an ar
 that runs very 
lose to theportion of e between A and B, without interse
ting it.2 It is interesting to note that the above argument failsfor k � 4, as shown in Figure 1.2 Proof of Theorem 1The proof goes through a series of lemmas whose proofsare omitted in this extended abstra
t. We use indu
tionon v. For v � 4, the statement is trivial. Let v � 4, andsuppose that the theorem has already been proved forgraphs having fewer than v verti
es.Let G denote the set of all triples (G;G0;D) whereG is a graph of v verti
es, D is a drawing of G in theplane su
h that every edge of G 
rosses at most threeothers, and G0 is a planar subgraph of G with V (G0) =V (G) that satis�es the 
ondition that no two ar
s inD representing edges of G0 
ross ea
h other. Let G0 �G 
onsist of all elements (G;G0;D) 2 G for whi
h thenumber of edges of G is maximum. Finally, let G00 � G0
onsist of all elements of G0 for whi
h the number ofedges of G0 is maximum. Fix a triple (G;G0;D) 2 G00su
h that the total number 
rossings in D along all edgesof G0 is as small as possible. This triple remains �xedthroughout the whole argument. The term fa
e, unlessexpli
itly stated otherwise, refers to a fa
e of the planardrawing of G0 indu
ed by D. For any fa
e � (of G0), letj�j denote its number of sides, i.e., the number of edgesof G0 along the boundary of �, where every edge whoseboth sides belong to the interior of � is 
ounted twi
e.Noti
e that j�j � 3 for every fa
e �, unless G0 
onsistsof a single edge, in whi
h 
ase v(G) � 4, a 
ontradi
tion.It follows from the maximality of G0 that every edgee of G that does not belong to G0 (in short, e 2 G �G0) 
rosses at least one edge of G0. The 
losed portionbetween an endpoint of e and the nearest 
rossing ofe with an edge of G0 is 
alled a half-edge. We orientevery half-edge from its endpoint whi
h is a vertex ofG (and G0) towards its other end sitting in the interiorof an edge of G0. Clearly, every edge e 2 G � G0 hastwo oriented half-edges. Every half-edge lies in a fa
e �and 
ontains at most two 
rossings with edges of G inits interior. The extension of a half-edge is the edge ofG�G0 it belongs to. The set of half-edges belonging to3



a fa
e � is denoted by H(�).Lemma 2.1. Let � be a fa
e of G0, and let g be one ofits sides. Then H(�) 
annot 
ontain two non-
rossinghalf-edges, both of whi
h end on g and 
ross two otheredges of G (that are not ne
essarily the same).A fa
e � of G0 is 
alled simple if its boundary is 
on-ne
ted and it does not 
ontain any isolated vertex of G0in its interior.Lemma 2.2. The number of half-edges in any simplefa
e � satis�es jH(�)j � 3j�j � 6:A simple fa
e � ofG0 is said to be triangular if j�j = 3,otherwise it is a big fa
e.By Lemma 2.2, we have jH(�)j � 3, for any triangu-lar fa
e �. A triangular fa
e � is 
alled an i-triangle ifjH(�)j = i (0 � i � 3). A 3-triangle is a 3X-triangle ifone half-edge emanates from ea
h of its verti
es. Oth-erwise, it is a 3Y -triangle. Observe that if � is a 3X-triangle, then it has three mutually 
rossing half-edges,so that their extensions do not have any additional 
ross-ing and they must end in a fa
e adja
ent to �. Moreover,no other edges of G 
an enter a 3X-triangle.If � is a 3Y -triangle, then at least two of its half-edgesmust end at the same side. The fa
e adja
ent to � alongthis side is 
alled the neighbor of �.An edge of G�G0 is said to be perfe
t if it starts andends in 3-triangles and all the fa
es it passes throughare triangular. The neighbor 	 of a 3Y -triangle � is
alled a strong neighbor if either it is a 0-triangle or itis a 1-triangle and the extension of one of the half-edgesin H(�) ends in 	.Lemma 2.3. Let � be a 3-triangle. If the extensions ofat least two half-edges in H(�) are perfe
t, then � is a3Y -triangle with a strong neighbor.Suppose that 	 is a simple fa
e of G0 with j	j = 4 andjH(	)j = 6. As shown on Figure 2, there are seven 
om-binatorially di�erent possibilities for the arrangement of	 and the half-edges (on the sphere).Lemma 2.4. Let 	 be a simple fa
e of G0 with j	j = 4and jH(	)j = 6; and suppose that the arrangement of

Figure 2: Seven di�erent types of quadrilateral fa
es.half-edges in 	 is not homeomorphi
 with the rightmost
on�guration depi
ted in Figure 2. Then we haveE(G) < 5:5 (v(G)� 2) :In view of the last lemma, from now on we may andwill assume that in every simple quadrilateral fa
e that
ontains 6 half-edges, these half-edges form an arrange-ment homeomorphi
 to the rightmost one depi
ted inFigure 2.We de�ne a bipartite multigraph M = (V1 [ V2; E)with vertex 
lasses V1 and V2, where V1 is the set of 3-triangles and V2 is the set of all other fa
es of G0. Forea
h vertex (3-triangle) � 2 V1, separately, we add tothe edge set E ofM some edges in
ident to �, a

ordingto the following rules.� Rule 0: Conne
t � to an adja
ent triangular fa
e 	by two parallel edges if 	 is a 0-triangle.� Rule 1: Conne
t � to any 1-triangle 	 by two par-allel edges if there is an edge of G �G0 that startsin � and ends in 	.� Rule 2: Conne
t � to any 2-triangle 	 by a singleedge if there is an edge of G � G0 that starts in �and ends in 	.� Rule 3: If the extension e of a half-edge in H(�)passes through or ends in a big fa
e, we may 
onne
t� by a single edge to the �rst su
h big fa
e alonge. However, we use this last rule only to bring thedegree of � in M up to 2. In parti
ular, if we haveapplied Rules 0 or 1, for some �, we do not applyRule 3. Similarly, in no 
ase do we apply Rule 3 forall three half-edges in H(�).4



Noti
e that, besides Rules 0 and 1, the appli
ation ofRule 3 
an also yield parallel edges if two half-edges inH(�) rea
h the same big fa
e. However, we never 
reatethree parallel edges in M .Let d(�) denote the degree of vertex � in M .Lemma 2.5. For any � 2 V1, we have d(�) � 2.To 
omplete the proof of Theorem 1, we have to es-timate from above the degrees of the verti
es belongingto V2 in M . If 	 2 V2 is a 1-triangle or a 2-triangle,we have d(	) � 2. Every 0-triangle 	 is adja
ent to atmost three 3-triangles, so its degree satis�es d(	) � 6.The following lemma establishes a bound for big fa
es.Lemma 2.6. For any big fa
e 	 2 V2, we have d(	) �2j	j. Moreover, if 	 is a simple quadrilateral fa
e withsix half-edges forming an arrangement homeomorphi
 tothe rightmost arrangement depi
ted in Figure 2, we haved(	) � 4.For any fa
e �, let t(�) and t(�) denote the numberof triangles and diagonals, resp., in a triangulation of�. Thus, if the sum of the number of isolated verti
esof G0 that lie in the interior of � and the number of
onne
ted 
omponents of the boundary of � is k, wehave t = j�j+ 2k � 4 and t = j�j+ 3k � 6.We introdu
e the notation d(�) := �d(�) for � 2 V1,and d(	) := d(	) for 	 2 V2. Let V := V1 [ V2 denotethe set of all fa
es of G0. Then the fa
t that the sum ofdegrees of the verti
es must be the same on both sidesof M , 
an be expressed by the equationX�2V d(�) = 0:Lemma 2.7. For every fa
e � 2 V , we havejH(�)j+ 14d(�) � 52t(�) + 2t(�):Now we 
an easily 
omplete the proof of Theorem 1.Sin
e every edge of G �G0 gives rise to two half-edges,we have e(G)� e(G0) = 12 X�2V jH(�)j= 12 X�2V �jH(�)j+ 14d(�)� � 54 X�2V t(�) + X�2V t(�);

where the inequality holds by Lemma 2.7. We obvi-ously have that P�2V t(�) = 2 (v(G) � 2), whi
h isequal to the total number of fa
es in any triangulationof G0. In order to obtain su
h a triangulation from G0,one needs to add P�2V t(�) edges. Hen
e, we haveP�2V t(�) = 3(v(G)� 2)� e(G0). Noti
e that triangu-lating ea
h fa
e separately may 
reate a triangulation ofthe plane 
ontaining some parallel edges, but this hasno e�e
t on the number of triangles or the number ofedges. Now the theorem follows by simple 
al
ulation:e(G) = e(G0) + (e(G)� e(G0))� e(G0) + 54 � 2 (v(G)� 2) + (3 (v(G)� 2)� e(G0))= 5:5 (v(G) � 2) :This 
ompletes the proof of the inequality in Theorem1.Proposition 2.8. For every v � 0 (mod 6), v � 12,there exists a graph G with v verti
es and 5:5(v� 2)� 4edges that 
an be drawn in the plane so that ea
h of itsedges 
rosses at most three others. That is, for thesevalues we have e3(v) � 5:5v � 15.3 Proof of Theorem 2For any graph G drawn in the plane, let Gfree denotethe subgraph of G on the same vertex set, 
onsisting ofall 
rossing-free edges. Let 4(Gfree) denote the numberof triangular fa
es of Gfree, 
ontaining no vertex of G intheir interiors.Lemma 3.1. Let G be a graph on v(G) � 3 verti
es,whi
h is drawn in the plane so that none of its edges
rosses two others. Then the number of edges of G sat-is�es e(G) � 4(v(G)� 2)� 124(Gfree):The proof of LEmma 3.1 is also omitted in this ex-tended abstra
t. Instead of Theorem 2, we establish aslightly stronger 
laim.Lemma 3.2. Let G be a graph on v(G) � 3 verti
es,whi
h is drawn in the plane with x(G) 
rossings. Then5



we havex(G) � 73e(G)� 253 (v(G) � 2) + 234(Gfree):Proof: We use indu
tion on x(G) + v(G). As in theproof of Lemma 3.1, we 
an assume thatG is 3-
onne
tedand that Gfree is maximal in the sense that whenever thepoints u and v 
an be 
onne
ted by a Jordan ar
 without
rossing any edge of G, the edge uv belongs to Gfree. Wedistinguish four 
ases.Case 1. G 
ontains an edge that 
rosses at least 3other edges.Let a be su
h an edge, and letG0 be the subgraph ofGobtained by removing a. Now we have, e(G0) = e(G)�1,x(G0) � x(G) � 3, and 4(Gfree0 ) � 4(Gfree). Applyingthe indu
tion hypothesis to G0, we getx(G) � 3 � 73 (e(G)� 1)� 253 (v(G)� 2) + 234(Gfree);whi
h implies the statement of the lemma.Case 2. Every edge in G 
rosses at most one otheredge.Lemma 3.1 yieldse(G) � 4 (v(G)� 2)� 124(Gfree):The statement immediately follows from this inequality,
ombined with the easy observation (mentioned in theIntrodu
tion) that x(G) � e(G)� 3 (v(G) � 2).Case 3. There exists an edge e of G that 
rosses twoother edges, one of whi
h does not 
ross any other edgeof G.Let zw be an edge 
rossing e at point x, whi
h doesnot parti
ipate in any other 
rossing. Let u denote theendpoint of e for whi
h the pie
e of e between x and uis 
rossing-free. Noti
e that u 
an be 
onne
ted in G by
rossing-free Jordan ar
s to both z and w. Therefore,by the maximality of Gfree, the edges uz and uw mustbelong to Gfree. Let G0 be the subgraph of G obtainedby removing the edge e. We have e(G0) = e(G)� 1 andx(G0) = x(G) � 2. Clearly, Gfree0 
ontains zw and alledges in Gfree. By the 3-
onne
tivity of G, the trian-gle uzw must be a triangular fa
e of Gfree0 , so that we

have 4(Gfree0 ) � 4(Gfree) + 1. Applying the indu
tionhypothesis to G0, we obtainx(G) � 73e(G)� 253 (v(G)� 2) + 234(Gfree) + 13 ;whi
h is better than what we need.Case 4. There exists an edge a of G that 
rossespre
isely two other edges, b and 
, and ea
h of theseedges also parti
ipates in pre
isely two 
rossings.Sub
ase 4.1. b and 
 do not 
ross ea
h other.Let G0 be the subgraph of G obtained by removing b.Clearly, we have e(G0) = e(G) � 1, x(G0) = x(G) � 2,and 4(Gfree0 ) � 4(Gfree). Noti
e that 
 is an edge ofG0 that 
rosses two other edges; one of them is a, whi
his 
rossed by no other edge of G0. Thus, we 
an applyto G0 the last inequality in the analysis of Case 3 to
on
lude thatx(G)�2 � 73 (e(G)� 1)�253 (v(G)� 2)+234(Gfree)+13 ;whi
h is pre
isely what we need.Sub
ase 4.2. b and 
 
ross ea
h other.The three 
rossing edges, a, b, and 
 
an be drawnon the sphere in two topologi
ally di�erent ways (seeFigure 3). One of these possibilities is ruled out by theassumption that G is 3-
onne
ted, so the only possible
on�guration is the rightmost one in Figure 3. By themaximality 
ondition, Gfree must 
ontain the six dashededges in the �gure. Using again the assumption thatG is 3-
onne
ted, it follows that these six edges form ahexagonal fa
e � in Gfree, and the only edges of G insidethis fa
e are a, b, and 
. Let G0 be the graph obtainedfrom G by removing the edges a, b, 
, and insertinga new vertex in the interior of �, whi
h is 
onne
tedto every vertex of � by 
rossing-free edges. We havev(G0) = v(G) + 1 and x(G0) = x(G) � 3, so that we
an apply the indu
tion hypothesis to G0. Obviously,we have e(G0) = e(G) + 3 and 4(Gfree0 ) =4(Gfree)+ 6.Thus, we obtain x(G)� 3� 73 (e(G) + 3)� 253 (v(G) � 1) + 23 �4(Gfree) + 6� ;whi
h is mu
h stronger than the inequality in the lemma.26
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Figure 3: Proof of Lemma 3.2: Sub
ase 4.2.The tightness of Theorem 2 is dis
ussed at the end ofthe last se
tion.4 Proof of Theorem 3Our proof is based on the following 
onsequen
e of The-orem 1.Corollary 4.1. The 
rossing number of any graph G ofat least 3 verti
es satis�es
r(G) � 4e(G)� 1036 (v(G)� 2) :Proof: If G has at most 5 (v(G)� 2) edges, then thestatement dire
tly follows from Theorem 2. If G hasmore than 5 (v(G) � 2) edges, �x one of its drawingsin whi
h the number of 
rossings is minimum. Deletethe edges of G one by one until we obtain a graph G0with 5 (v(G)� 2) edges. At ea
h stage, delete one of theedges that parti
ipates in the largest number of 
rossingsin the 
urrent drawing. Using the inequality e2(v) �5(v � 2) proved in [PTo97℄ and quoted in Se
tion 1, atthe time of its removal every edge has at least three
rossings. Moreover, by Theorem 1, with the possibleex
eption of the at most 12 (v(G)� 2) edges deleted last,every edge has at least four 
rossings. Thus, the totalnumber of deleted 
rossings is at least4 (e(G)� 5 (v(G)� 2))� 12 (v(G)� 2)= 4e(G)� 412 (v(G)� 2) :

On the other hand, applying Theorem 2 to G0, weobtain that the number of 
rossings not removed duringthe algorithm is at least
r(G0) � 103 (v(G) � 2) :Summing up these two estimates, the result follows. 2Now we 
an easily 
omplete the proof of Theorem3. Let G be a graph drawn in the plane with 
r(G)
rossings, and suppose that e(G) � 10316 v(G).Constru
t a random subgraph G0 � G by sele
tingea
h vertex of G independently with probabilityp = 10316 v(G)e(G) � 1;and letting G0 be the subgraph of G indu
ed by thesele
ted verti
es. The expe
ted number of verti
es ofG0 is E[v(G0)℄ = pv(G). Similarly, E[e(G0)℄ = p2e(G).The expe
ted number of 
rossings in the drawing of G0inherited from G is p4
r(G), and the expe
ted value ofthe 
rossing number of G0 is even smaller.By Corollary 4.1, 
r(G0) � 5e(G0)� 1036 v(G0) holds forevery G0. (Note that after getting rid of the 
onstantterm in Corollary 4.1, we do not have to assume anymore that v(G0) � 3; the above inequality is true forevery G0.) Taking expe
tations, we obtainp4
r(G) � E[
r(G0)℄ � 4E[e(G0)℄� 1036 E[v(G0)℄= 4p2e(G)� 1036 pv(G):This implies that
r(G) � 102431827 e3(G)v2(G) � 131:1 e3(G)v2(G) ;provided that e(G) � 1036 v(G).To obtain an un
onditional lower bound on the 
ross-ing number of any graph G, we need di�erent estimateswhen e(G) < 1036 v(G). Comparing the bounds in The-orem 2 and in Corollary 4.1 with the trivial estimates
r(G) � 0 and 
r(G) � e� 3(v(G) � 2), a 
ase analysisshows that 102431827 e3(G)v2(G) � 
r(G) � 1:06v(G):7



The maximum is attained for a graph G with e(G) =4(v(G)� 2) and 
r(G) = v(G) � 2. In 
on
lusion,
r(G) � 102431827 e3(G)v2(G) � 1:06v(G)� 131:1e3(G)v2(G)� 1:06v(G)holds for every graph G. This 
ompletes the proof ofTheorem 3.Remark 4.2. Pa
h and T�oth [PTo00℄ introdu
ed twovariants of the 
rossing number. The pairwise 
rossingnumber (resp. the odd 
rossing number) of G is de�nedas the minimum number of pairs of non-adja
ent edgesthat 
ross (resp. 
ross an odd number of times) overall drawings of G. These parameters are at most aslarge as 
r(G), but one 
annot rule out the possibilitythat they are always equal to 
r(G). The original proofsof the Crossing Lemma readily generalize to the new
rossing numbers, and it follows that both of them areat least 164 e3(G)v2(G) ; provided that e(G) � 4v(G). We havebeen unable to extend our proof of Theorem 3 to theseparameters.5 Appli
ations, open problems,remarksEvery improvement of the Crossing Lemma automati-
ally leads to improved bounds in all of its appli
ations.For 
ompleteness and future referen
e, we in
lude someimmediate 
orollaries of Theorem 3 with a sket
h of 
om-putations.First, we plug Theorem 3 into Sz�ekely's method [Sz95℄to improve the 
oeÆ
ient of the main term in the Sze-mer�edi-Trotter theorem [SzT83℄, [CE90℄, [PTo97℄.Corollary 5.1. Given m points and n lines in the Eu-
lidean plane, the number of in
iden
es between them isat most 2:5m2=3n2=3 +m+ n.Proof: We 
an assume that every line and every pointis involved in at least one in
iden
e, and that n � m, byduality. Sin
e the statement is true for m = 1, we haveto 
he
k it only for m � 2.De�ne a graph G drawn in the plane su
h that thevertex set of G is the given set of m points, and join two

points with an edge drawn as a straight-line segment ifthe two points are 
onse
utive along one of the lines.Let I denote the total number of in
iden
es betweenthe given m points and n lines. Then v(G) = m ande(G) = I � n. Sin
e every edge belongs to one of then lines, 
r(G) � �n2�. Applying Theorem 2 to G, weobtain that 131:1 (I�n)3m2 �1:06m� 
r(G)� �n2�: Using thatn � m � 2, easy 
al
ulation shows thatI � n � 3p15:55m2n2 + 33m3 � 3p15:55n2=3m2=3 +m;whi
h implies the statement. 2It was shown in [PTo97℄ that Corollary 5.1 does notremain true if we repla
e the 
onstant 2:5 by 0:42 .Theorem 3 readily generalizes to multigraphs withbounded edge multipli
ity, improving the 
onstant inSz�ekely's result [Sz95℄.Corollary 5.2. Let G be a multigraph with maximumedge multipli
ity m. Then
r(G) � 131:1 e3(G)mv2(G) � 1:06m2v(G):Proof: De�ne a random simple subgraph G0 of Gas follows. For ea
h pair of verti
es v1, v2 of G, lete1; e2; : : : ek be the edges 
onne
ting them. With prob-ability 1 � k=m, G0 will not 
ontain any edge betweenv1 and v2. With probability k=m, G0 
ontains pre
iselyone su
h edge, and the probability that this edge is ei is1=m (1 � i � k). Applying Theorem 3 to G0 and takingexpe
tations, the result follows. 2Next, we state here the improvement of another resultin [PTo97℄.Corollary 5.3. Let G be a graph drawn in the plane sothat every edge is 
rossed by at most k others, for somek � 1, and every pair of edges have at most one pointin 
ommon. Thene(G) � 3:95pkv(G):Proof: For k � 2, the result is weaker than the boundsgiven in [PTo97℄. Assume that k � 3, and 
onsider adrawing of G su
h that every edge 
rosses at most k8



others. Let x denote the number of 
rossings in thisdrawing. If e(G) < 10316 v(G), then there is nothing toprove. If e(G) � 10316 v(G), then using Theorem 3, weobtain 102431827 e3(G)v2(G) � 
r(G) � x � e(G)k2 ;and the result follows. 2Re
all that ek(v) was de�ned as the maximum num-ber of edges that a graph of v verti
es 
an have if it
an be drawn in the plane with at most k 
rossings peredge. We de�ne some other 
losely related fun
tions.Let e�k(v) denote the maximum number of edges of agraph of v verti
es whi
h has a drawing that satis�esthe above requirement and, in addition, every pair ofits edges meet at most on
e (either at an endpoint orat a proper 
rossing). We de�ne ek(v) and e�k(v) analo-gously, with the only di�eren
e that now the maximumsare taken over all triangle-free graphs with v verti
es.It was mentioned in the Introdu
tion (see Lemma 1.1)that ek(v) = e�k(v) for 0 � k � 3, and that e�k(v) �(k + 3)(v � 2) for 0 � k � 4 [PTo97℄. For 0 � k � 2;the last inequality is tight for in�nitely many values ofv. Our Theorem 1 shows that this is not the 
ase fork = 3.Conje
ture 5.4. We have ek(v) = e�k(v) for every kand v.Using the proof te
hnique of Theorem 1, it is not hardto improve the bound e�4(v) � 7(v�2). In parti
ular, inthis 
ase Lemma 2.2 holds with 3(j�j � 2) repla
ed by4(j�j � 2). Moreover, an easy 
ase analysis shows thatevery triangular fa
e � with four half-edges satis�es atleast one of the following two 
onditions:1. The extension of at least one of the half-edges in �either ends in a triangular fa
e with fewer than fourhalf-edges, or enters a big fa
e.2. � is adja
ent to an empty triangle.Based on this observation, one 
an modify the argu-ments in Se
tion 2 to obtain the upper bound e�4(v) �(7� 19 )v �O(1).Conje
ture 5.5. e�4(v) � 6v �O(1).

As for the other two fun
tions, we have ek(v) = e�k(v)for 0 � k � 3, and e�k(v) � (k+2)(v�2) for 0 � k � 2. If0 � k � 1, these bounds are attained for in�nitely manyvalues of v. These estimates were applied by Czabarkaet al. [CS03℄ to obtain some lower bounds on the so-
alled biplanar 
rossing number of 
omplete graphs.Given a triangle-free graph drawn in the plane so thatevery edge 
rosses at most 2 others, an easy 
ase anal-ysis shows that ea
h quadrilateral fa
e that 
ontainsfour half-edges is adja
ent to a fa
e whi
h is either non-quadrilateral or does not have four half-edges1. As inthe proof of Theorem 1 (before Lemma 2.5), we 
an usea properly de�ned bipartite multigraph M to establishthe bound e2(v) � �4� 110� v �O(1):Conje
ture 5.6. e2(v) � 3:5v �O(1).The 
oeÆ
ient 3:5 in the above 
onje
ture 
annot beimproved as shown by the triangle-free (a
tually bipar-tite!) graph in Figure 4, whose vertex set is the set ofverti
es of a 4� v=4 grid.
Figure 4: e2(v) � 3:5v � 16.Let 
r(v; e) denote the minimal 
rossing number ofa graph with v � 3 verti
es and e edges. Clearly, wehave 
r(v; e) = 0, whenever e � 3(v � 2), and 
r(v; e) =e�3(v�2) for 3(v�2) � e � 4(v�2). To see that thesevalues are indeed attained by the fun
tion, 
onsider thegraph 
onstru
ted in [PTo97℄, whi
h (if v is a multiple of4) 
an be obtained from a planar graph with v verti
es,1This statement a
tually holds under the assumption that Gand G0 are maximal, in the sense des
ribed at the beginning ofSe
tion 2.9



2(v � 2) edges, and v � 2 quadrilateral fa
es, by addingthe diagonals of the fa
es. If e < 4(v � 2), delete asmany 
rossing-free edges as ne
essary.In the next interval, i.e., when 4(v � 2) � e � 5(v �2), Theorem 2 gives tight bound on 
r(v; e) up to anadditive 
onstant. To see this, 
onsider a planar graphwith only pentagonal and quadrilateral fa
es and add alldiagonals in every fa
e. If no two fa
es of the originalplanar graph shared more than a vertex or an edge, forthe resulting graph the (�rst) inequality of Theorem 2holds with equality. For 
ertain values of v and e, nosu
h 
onstru
tion exists, but we only lose a 
onstant.If 5(v � 2) � e � 5:5(v � 2), the best known bound,
r(v; e) � 3e� 353 (v� 2), follows from Theorem 2, whilefor e � 5:5(v � 2) the best known bound is either theone in Corollary 4.1 or the one in Theorem 3. We donot believe that any of these bounds are optimal.Conje
ture 5.7 
r(v; e) � 256 e� 352 (v � 2):Note that, if true, this bound is tight up to an additive
onstant for 5(v�2) � e � 6(v�2). To see this, 
onsidera planar graph with only pentagonal and hexagonal fa
esand add all diagonals of all fa
es. If no two fa
es ofthe planar graph shared more than a vertex or an edge,the resulting graph shows that Conje
ture 5.7 
annot beimproved. As a �rst step toward settling this 
onje
ture,we 
an show the following statement, similar to Lemma3.1.Lemma 5.8 Let G be a graph on v(G) � 3 verti
esdrawn in the plane so that every edge is involved in atmost two 
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