Improving the Crossing Lemma

by finding more crossings in sparse graphs
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Abstract

Twenty years ago, Ajtai, Chvatal, Newborn, Szemerédi,
and, independently, Leighton discovered that the cross-
ing number of any graph with v vertices and e > 4v
edges is at least ce3/v?, where ¢ > 0 is an absolute
constant. This result, known as the ‘Crossing Lemma,’
has found many important applications in discrete and
computational geometry. It is tight up to a multiplica-
tive constant. Here we improve the best known value
of the constant by showing that the result holds with
¢ > 1024/31827 > 0.032. The proof has two new in-
gredients, interesting on their own right. We show that
(1) if a graph can be drawn in the plane so that every
edge crosses at most 3 others, then its number of edges
cannot, exceed 5.5(v — 2); and (2) the crossing number
of any graph is at least Ze — 22 (v — 2). Both bounds are
tight up to an additive constant (the latter one in the
range 4v < e < 5v).

1 Introduction

Unless stated otherwise, the graphs considered in this
paper have no loops or parallel edges. The number
of vertices and number of edges of a graph G are de-
noted by v(G) and e(G), respectively. We say that G
is drawn in the plane if its vertices are represented by
distinct points and its edges by (possibly intersecting)
Jordan arcs connecting the corresponding point pairs.
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If it leads to no confusion, in terminology and notation
we make no distinction between the vertices of G and
the corresponding points, or between the edges and the
corresponding Jordan arcs. We always assume that in
a drawing (a) no edge passes through a vertex differ-
ent from its endpoints, (b) no three edges cross at the
same point, (c¢) any two edges have only a finite num-
ber of interior points in common, and at these points
they properly cross, i.e., one of the edges passes from
one side of the other edge to the other side (see [P99],
[P0O4]). The crossing number of G, denoted by cr(G), is
the minimum number of edge crossings in a drawing of
G satisfying the above conditions.

Ajtai, Chvatal, Newborn, and Szemerédi [AC82] and,
independently, Leighton [L83] have proved the follow-
ing result, which is usually referred to as the ‘Crossing
Lemma.’ The crossing number of any graph with v ver-
tices and e > 4v edges satisfies
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This result, which is tight apart from the value of the
constant, has found many applications in combinatorial
geometry, convexity, number theory, and VLSI design
(see [L83], [Sz95], [PS98], [ENROOQ], [STT02], [PTa02]).
In particular, it has played a pivotal role in obtaining the
best known upper bound on the number of k-sets [D98]
and lower bound on the number of distinct distances
determined by n points in the plane [ST01], [KT04].
According to a conjecture of Erdés and Guy [ErG73],
which was verified in [PST00], as long as e/v — oo and
e/v? — 0, the limit

lim min cr(G)

V=00 w(G) = v e3/1;2
e(G) = e




exists. The best known upper and lower bounds for this
constant (roughly 0.09 and 1/33.75 &~ 0.029, resp.) were
obtained in [PTo97].

All known proofs of the Crossing Lemma are based on
the trivial inequality cr(H) > e(H)— (3v(H) —6), which
is an immediate corollary of Euler’s Polyhedral Formula
(v(H) > 2). Applying this statement inductively to all
small (and, mostly sparse) subgraphs H C G or to a
randomly selected one, the lemma follows. The main
idea in [PT097] was to obtain stronger inequalities for
the sparse subgraphs H, which have led to better lower
bounds on the crossing numbers of all graphs G. In the
present paper we follow the same approach.

For k > 0, let ex(v) denote the maximum number of
edges in a graph of v > 2 vertices that can be drawn
in the plane so that every edge is involved in at most &
crossings. By Euler’s Formula, we have eg(v) = 3(v—2).
Pach and T6th [PTo97] proved that ey (v) < (k+3)(v —
2), for 0 < k < 3. Moreover, for 0 < k < 2, these bounds
are tight for infinitely many values of v. However, for
k = 3, there was a gap between the lower and upper
estimates. Our first theorem, whose proof is presented
in Section 2, fills this gap.

Theorem 1. Let G be a graph on v > 3 vertices that can
be drawn in the plane so that each of its edges crosses
at most three others. Then we have

e(G) < 5.5(v — 2).

Consequently, the mazimum number of edges over all
such graphs satisfies e3(v) < 5.5(v — 2), and this bound
is tight up to an additive constant.

As we have pointed out before, the inequality eg(v) <
3(v — 2) immediately implies that if a graph G of v ver-
tices has more than 3(v — 2) edges, then every edge be-
yond this threshold contributes at least one to cr(G).
Similarly, it follows from inequality e;(v) < 4(v — 2)
that, if e(G) > 4(v—2), then every edge beyond 4(v —2)
must contribute an additional crossing to cr(G) (i.e., al-
together at least two crossings). Summarizing, we ob-
tain that

cr(G) > (e(G) — 3 (v(G) —2)) + (e(G) — 4(v(G) ~ 2))

> 2¢(G) — 7 (W(G) —2)

holds for every graph G. Both components of this in-
equality are tight, so one might expect that their combi-
nation cannot be improved either, at least in the range
when e(G) is not much larger that 4(v — 2). However,
this is not the case, as is shown by our next result,
proved in Section 3.

Theorem 2. The crossing number of any graph G with
v(G) > 3 vertices and e(G) edges satisfies
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In the worst case, this bound is tight up to an additive
constant whenever 4 (v(G) —2) < e(G) <5 w(G) —2).

As an application of the above two theorems, in Sec-
tion 4 we establish the following improved version of the
Crossing Lemma.

Theorem 3. The crossing number of any graph G sat-
isfies

1 3(G)
>
(@) 2 517G

If e(G) > Bu(G), we also have

— 1.060(G).

~

Note for comparison that 1024/31827 ~ 1/33.08 =
0.032.

In the last section, we adapt the ideas of Székely [Sz95]
to deduce some consequences of Theorem 3, including
an improved version of the Szemerédi-Trotter theorem
[SzT83] on the maximum number of incidences between
n points and m lines. We also discuss some open prob-
lems and make a few conjectures and concluding re-
marks.

All drawings considered in this paper satisfy the con-
dition that any pair of edges have at most one point in
common. This may be either an endpoint or a proper
crossing. It is well known and easy to see that ev-
ery drawing of a graph G that minimizes the num-
ber of crossings meets this requirement. Thus, in the
proof of Theorem 3, we can make this assumption with-
out loss of generality. However, it is not so obvious
whether the same restriction can be justified in the



case of Theorem 1. Indeed, in [PTo97], the bound
e(@) < (k+3)(v(G)—2) was proved only for graphs that
can be drawn with at most k& < 4 crossings per edge and
which satisfy this extra condition. Since for the proof of
Theorem 3 we need Theorem 1 in its full generality, we
have to establish the following simple statement.

Figure 1: Two adjacent edges e and f cross, each par-
ticipating in exactly 4 crossings.

Lemma 1.1. Let k < 3, and let G be a graph of v
vertices that can be drawn in the plane so that each of
its edges participates in at most k crossings.

In any drawing with this property that minimizes the
total number of crossings, every pair of edges have at

most one point in common.

Proof: Suppose for contradiction that some pair of
edges, e and f, have at least two points in common,
A and B. At least one of these points, say B, must
be a proper crossing. First, try to swap the portions of
e and f between A and B, and modify the new draw-
ing in small neighborhoods of A and B so as to reduce
the number of crossings between the two edges. Clearly,
during this process the number of crossings along any
other edge distinct from e and f remains unchanged.
The only possible problem that may arise is that af-
ter the operation either e or f (say e) will participate in
more than k crossings. In this case, before the operation
there were at least two more crossings inside the portion
of f between A and B, than inside the portion of e be-
tween A and B. Since f participated in at most three
crossings (at most two, not counting B), we conclude
that in the original drawing the portion of e between A
and B contained no crossing. If this is the case, instead
of swapping the two portions, replace the portion of f

between A and B by an arc that runs very close to the
portion of e between A and B, without intersecting it.
O

It is interesting to note that the above argument fails
for k > 4, as shown in Figure 1.

2 Proof of Theorem 1

The proof goes through a series of lemmas whose proofs
are omitted in this extended abstract. We use induction
on v. For v < 4, the statement, is trivial. Let v > 4, and
suppose that the theorem has already been proved for
graphs having fewer than v vertices.

Let G denote the set of all triples (G,G', D) where
G is a graph of v vertices, D is a drawing of G in the
plane such that every edge of G crosses at most three
others, and G' is a planar subgraph of G with V(G') =
V(G) that satisfies the condition that no two arcs in
D representing edges of G’ cross each other. Let G' C
G consist of all elements (G,G’',D) € G for which the
number of edges of G is maximum. Finally, let G" C G’
consist of all elements of G’ for which the number of
edges of G' is maximum. Fix a triple (G,G',D) € G"
such that the total number crossings in D along all edges
of G' is as small as possible. This triple remains fixed
throughout the whole argument. The term face, unless
explicitly stated otherwise, refers to a face of the planar
drawing of G’ induced by D. For any face ® (of G'), let
|®| denote its number of sides, i.e., the number of edges
of G' along the boundary of ®, where every edge whose
both sides belong to the interior of ® is counted twice.
Notice that |®| > 3 for every face ®, unless G' consists
of a single edge, in which case v(G) < 4, a contradiction.

It follows from the maximality of G’ that every edge
e of G that does not belong to G’ (in short, e € G —
G') crosses at least one edge of G'. The closed portion
between an endpoint of e and the nearest crossing of
e with an edge of G' is called a half-edge. We orient
every half-edge from its endpoint which is a vertex of
G (and G') towards its other end sitting in the interior
of an edge of G'. Clearly, every edge ¢ € G — G’ has
two oriented half-edges. Every half-edge lies in a face ®
and contains at most two crossings with edges of G in
its interior. The extension of a half-edge is the edge of
G — @' it belongs to. The set of half-edges belonging to



a face ® is denoted by H(®).

Lemma 2.1. Let ® be a face of G', and let g be one of
its sides. Then H(®) cannot contain two non-crossing
half-edges, both of which end on g and cross two other
edges of G (that are not necessarily the same).

A face ® of G' is called simple if its boundary is con-
nected and it does not contain any isolated vertex of G’
in its interior.

Lemma 2.2. The number of half-edges in any simple
face ® satisfies

[H(®)] < 3|®| - 6.

A simple face ® of G’ is said to be triangular if |®| = 3,
otherwise it is a big face.

By Lemma 2.2, we have |H(®)| < 3, for any triangu-
lar face ®. A triangular face ® is called an i-triangle if
|H(®)| =i (0 <i<3). A 3-triangle is a 3X -triangle if
one half-edge emanates from each of its vertices. Oth-
erwise, it is a 3Y -triangle. Observe that if ® is a 3.X-
triangle, then it has three mutually crossing half-edges,
so that their extensions do not have any additional cross-
ing and they must end in a face adjacent to ®. Moreover,
no other edges of G can enter a 3X-triangle.

If & is a 3Y-triangle, then at least two of its half-edges
must end at the same side. The face adjacent to ® along
this side is called the neighbor of ®.

An edge of G — G’ is said to be perfect if it starts and
ends in 3-triangles and all the faces it passes through
are triangular. The neighbor ¥ of a 3Y-triangle ® is
called a strong neighbor if either it is a O-triangle or it
is a 1-triangle and the extension of one of the half-edges
in H(®) ends in ¥.

Lemma 2.3. Let ® be a 3-triangle. If the extensions of
at least two half-edges in H(®) are perfect, then ® is a
3Y -triangle with a strong neighbor.

Suppose that ¥ is a simple face of G' with |¥| = 4 and
|H(¥)| = 6. As shown on Figure 2, there are seven com-
binatorially different possibilities for the arrangement of
¥ and the half-edges (on the sphere).

Lemma 2.4. Let U be a simple face of G' with |¥| =4
and |H(®)| = 6, and suppose that the arrangement of

|
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Figure 2: Seven different types of quadrilateral faces.

half-edges in ¥ is not homeomorphic with the rightmost
configuration depicted in Figure 2. Then we have

E(G) <55w(G)—2).

In view of the last lemma, from now on we may and
will assume that in every simple quadrilateral face that
contains 6 half-edges, these half-edges form an arrange-
ment homeomorphic to the rightmost one depicted in
Figure 2.

We define a bipartite multigraph M = (V3 U V4, E)
with vertex classes V; and V5, where V; is the set of 3-
triangles and V5 is the set of all other faces of G'. For
each vertex (3-triangle) ® € V;, separately, we add to
the edge set E of M some edges incident to @, according
to the following rules.

e Rule 0: Connect ® to an adjacent triangular face ¥
by two parallel edges if ¥ is a 0-triangle.

e Rule I: Connect ® to any 1-triangle ¥ by two par-
allel edges if there is an edge of G — G' that starts
in ® and ends in .

e Rule 2: Connect ® to any 2-triangle ¥ by a single
edge if there is an edge of G — G' that starts in ®
and ends in .

e Rule 3: If the extension e of a half-edge in H(®)
passes through or ends in a big face, we may connect
® by a single edge to the first such big face along
e. However, we use this last rule only to bring the
degree of ® in M up to 2. In particular, if we have
applied Rules 0 or 1, for some ®, we do not apply
Rule 3. Similarly, in no case do we apply Rule 3 for
all three half-edges in H(®).



Notice that, besides Rules 0 and 1, the application of
Rule 3 can also yield parallel edges if two half-edges in
H(®) reach the same big face. However, we never create
three parallel edges in M.

Let d(®) denote the degree of vertex ® in M.

Lemma 2.5. For any ® € Vi, we have d(®) > 2.

To complete the proof of Theorem 1, we have to es-
timate from above the degrees of the vertices belonging
to Vo in M. If ¥ € V5 is a 1-triangle or a 2-triangle,
we have d(¥) < 2. Every O-triangle ¥ is adjacent to at
most three 3-triangles, so its degree satisfies d(¥) < 6.
The following lemma establishes a bound for big faces.

Lemma 2.6. For any big face ¥ € Vs, we have d(¥) <
2|¥|. Moreover, if U is a simple quadrilateral face with
siz half-edges forming an arrangement homeomorphic to
the rightmost arrangement depicted in Figure 2, we have
(o) < 4.

For any face ®, let t(®) and #(®) denote the number
of triangles and diagonals, resp., in a triangulation of
®. Thus, if the sum of the number of isolated vertices
of G' that lie in the interior of ® and the number of
connected components of the boundary of ® is k, we
have t = |®| + 2k — 4 and = |®| + 3k — 6.

We introduce the notation d(®) := —d(®) for ® € V3,
and d(¥) := d(¥) for ¥ € V,. Let V := V; U V5, denote
the set of all faces of G'. Then the fact that the sum of
degrees of the vertices must be the same on both sides
of M, can be expressed by the equation

D d(®) =0.

PeV

Lemma 2.7. For every face ® € V, we have

Now we can easily complete the proof of Theorem 1.
Since every edge of G — G' gives rise to two half-edges,
we have

()~ e(G") = 5 Y [H(®)]

PeV

= % > (IH(<I>> + iﬁ(fb)) < g S we)+ > (@),

dcV decV

where the inequality holds by Lemma 2.7. We obvi-
ously have that » ;.\ t(®) = 2(v(G) —2), which is
equal to the total number of faces in any triangulation
of G'. In order to obtain such a triangulation from G’,
one needs to add ) ;. #(®) edges. Hence, we have
Y aey H®) = 3(v(G) —2) — e(G'). Notice that triangu-
lating each face separately may create a triangulation of
the plane containing some parallel edges, but this has
no effect on the number of triangles or the number of

edges. Now the theorem follows by simple calculation:

e(G) = e(G') + (e(G) — e(G))

<e(G)+ Z 2(w(G)—2)+ (B (w(G) —2) —e(G))

=55 W(G) —2).

This completes the proof of the inequality in Theorem
1.

Proposition 2.8. For every v = 0 (mod 6), v > 12,
there exists a graph G with v vertices and 5.5(v — 2) — 4
edges that can be drawn in the plane so that each of its
edges crosses at most three others. That is, for these
values we have eg(v) > 5.5v — 15.

3 Proof of Theorem 2

For any graph G drawn in the plane, let G*¢ denote
the subgraph of G on the same vertex set, consisting of
all crossing-free edges. Let A(G™*®) denote the number
of triangular faces of G"*¢, containing no vertex of G in
their interiors.

Lemma 3.1. Let G be a graph on v(G) > 3 wvertices,
which is drawn in the plane so that none of its edges
crosses two others. Then the number of edges of G sat-
isfies

e(G) < 4(w(G) - 2) — %A(Gﬁee).

The proof of LEmma 3.1 is also omitted in this ex-
tended abstract. Instead of Theorem 2, we establish a
slightly stronger claim.

Lemma 3.2. Let G be a graph on v(G) > 3 vertices,
which is drawn in the plane with x(G) crossings. Then
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Proof: We use induction on z(G) + v(G). As in the
proof of Lemma 3.1, we can assume that G is 3-connected
and that G°¢ is mazimal in the sense that whenever the
points v and v can be connected by a Jordan arc without
crossing any edge of G, the edge uv belongs to G™*¢. We
distinguish four cases.

Case 1. G contains an edge that crosses at least 3
other edges.

Let a be such an edge, and let GG be the subgraph of G
obtained by removing a. Now we have, e(Gg) = e(G)—1,
7(Go) < z(G) — 3, and A(GEe®) > A(G™*®). Applying
the induction hypothesis to G, we get

H(E) ~3> L(el@) 1)~ 2 (0(G) ~ 2) + SAE™),

which implies the statement of the lemma.

Cuase 2. Every edge in G crosses at most one other
edge.

Lemma 3.1 yields
G 1
e(G) <4(v(G) —2) — EA(Gfree).

The statement immediately follows from this inequality,
combined with the easy observation (mentioned in the
Introduction) that z(G) > e(G) — 3 (v(G) — 2).

Cuase 3. There exists an edge e of G that crosses two
other edges, one of which does not cross any other edge
of G.

Let zw be an edge crossing e at point x, which does
not participate in any other crossing. Let u denote the
endpoint of e for which the piece of e between x and u
is crossing-free. Notice that u can be connected in G by
crossing-free Jordan arcs to both z and w. Therefore,
by the maximality of G™*¢, the edges uz and ww must
belong to G*¢. Let G be the subgraph of G obtained
by removing the edge e. We have e(Gy) = e(G) — 1 and
2(Go) = z(G) — 2. Clearly, Gfr*® contains zw and all
edges in G*. By the 3-connectivity of G, the trian-
gle uzw must be a triangular face of G, so that we

have A(GEre®) > A(G™™¢) + 1. Applying the induction
hypothesis to GGy, we obtain
7 25

> —e(G) - — (w(G)—2)+ %A(Gfme) + %7

#@) > 3 3

which is better than what we need.

Case 4. There exists an edge a of GG that crosses
precisely two other edges, b and ¢, and each of these
edges also participates in precisely two crossings.

Subcase 4.1. b and ¢ do not cross each other.

Let G be the subgraph of G obtained by removing b.
Clearly, we have e(Go) = e(G) — 1, 2(Go) = z(G) — 2,
and A(Gfre) > A(Ge¢). Notice that ¢ is an edge of
Gy that crosses two other edges; one of them is a, which
is crossed by no other edge of Gy. Thus, we can apply
to Gg the last inequality in the analysis of Case 3 to
conclude that

7 25 1

#(G) =22 1 (6(G) = )= 2 (o(G) = A+ 3 AGT)+3,

which is precisely what we need.

Subcase 4.2. b and ¢ cross each other.

The three crossing edges, a, b, and ¢ can be drawn
on the sphere in two topologically different ways (see
Figure 3). One of these possibilities is ruled out by the
assumption that G is 3-connected, so the only possible
configuration is the rightmost one in Figure 3. By the
maximality condition, G*® must contain the six dashed
edges in the figure. Using again the assumption that
G is 3-connected, it follows that these six edges form a
hexagonal face ® in G®¢, and the only edges of G inside
this face are a, b, and ¢. Let G be the graph obtained
from G by removing the edges a, b, ¢, and inserting
a new vertex in the interior of ®, which is connected
to every vertex of ® by crossing-free edges. We have
v(Go) = v(G) + 1 and z(Gy) = z(G) — 3, so that we
can apply the induction hypothesis to Gy. Obviously,
we have e(Gy) = e(G) + 3 and A(G*®) = A(G™¢) + 6.
Thus, we obtain

z(G) -3

> +3) - 2—35 (@) — 1) + ; (AG™) +6)

Wl

(e(@)

which is much stronger than the inequality in the lemma.
O
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Figure 3: Proof of Lemma 3.2: Subcase 4.2.

The tightness of Theorem 2 is discussed at the end of
the last section.

4 Proof of Theorem 3

Our proof is based on the following consequence of The-
orem 1.

Corollary 4.1. The crossing number of any graph G of
at least 3 vertices satisfies

Proof: If G has at most 5 (v(G) — 2) edges, then the
statement directly follows from Theorem 2. If G has
more than 5 (v(G) —2) edges, fix one of its drawings
in which the number of crossings is minimum. Delete
the edges of G one by one until we obtain a graph Gy
with 5 (v(G) — 2) edges. At each stage, delete one of the
edges that participates in the largest number of crossings
in the current drawing. Using the inequality es(v) <
5(v — 2) proved in [PTo97] and quoted in Section 1, at
the time of its removal every edge has at least three
crossings. Moreover, by Theorem 1, with the possible
exception of the at most 1 (v(G) — 2) edges deleted last,
every edge has at least four crossings. Thus, the total
number of deleted crossings is at least

1(6(G) ~ 5 (0(G) ~2)) ~ 3 (0(G) -2

On the other hand, applying Theorem 2 to Gy, we
obtain that the number of crossings not removed during
the algorithm is at least

cr(Go) > 1—30 (v(G@) —2).

Summing up these two estimates, the result follows. O

Now we can easily complete the proof of Theorem
3. Let G be a graph drawn in the plane with cr(G)
crossings, and suppose that e(G) > 184(Q).

Construct a random subgraph G' C G by selecting
each vertex of G independently with probability

103 v(G)
T 16 (G) T

and letting G’ be the subgraph of G induced by the
selected vertices. The expected number of vertices of
G is E[v(G")] = pv(GQ). Similarly, E[e(G")] = p?e(G).
The expected number of crossings in the drawing of G’
inherited from G is p*cr(G), and the expected value of
the crossing number of G’ is even smaller.

By Corollary 4.1, cr(G') > 5e(G") — 122v(G") holds for
every G'. (Note that after getting rid of the constant
term in Corollary 4.1, we do not have to assume any
more that v(G') > 3; the above inequality is true for
every (G'.) Taking expectations, we obtain

pcr(G) > Elcr(G")] > 4E[e(G")] — ?E[’U(GI)]

provided that e(G) > 1320(G).

To obtain an unconditional lower bound on the cross-
ing number of any graph G, we need different estimates
when e(G) < 139(G). Comparing the bounds in The-
orem 2 and in Corollary 4.1 with the trivial estimates
cr(G) > 0 and cr(G) > e — 3(v(G) — 2), a case analysis
shows that

1024 €3(Q)

—— L —C <1 .
31827 12(G) cr(G) < 1.06v(G)



The maximum is attained for a graph G with e(G) =
4(v(G) — 2) and cr(G) = v(G) — 2. In conclusion,

1024 €4(Q)
y > — — L
cr(G) > 31827 12(G) 1.06v(G)
L 3 20
> 3T1° (G (G) — 1.06v(G)

holds for every graph G. This completes the proof of
Theorem 3.

Remark 4.2. Pach and Té6th [PTo00] introduced two
variants of the crossing number. The pairwise crossing
number (resp. the odd crossing number) of G is defined
as the minimum number of pairs of non-adjacent edges
that cross (resp. cross an odd number of times) over
all drawings of G. These parameters are at most as
large as cr(@), but one cannot rule out the possibility
that they are always equal to cr(G). The original proofs
of the Crossing Lemma readily generalize to the new
crossing numbers, and it follows that both of them are

at least g 232 ; provided that e(G) > 4v(G). We have

been unable to extend our proof of Theorem 3 to these
parameters.

5 Applications, open problems,

remarks

Every improvement of the Crossing Lemma automati-
cally leads to improved bounds in all of its applications.
For completeness and future reference, we include some
immediate corollaries of Theorem 3 with a sketch of com-
putations.

First, we plug Theorem 3 into Székely’s method [Sz95]
to improve the coefficient of the main term in the Sze-
merédi-Trotter theorem [SzT83], [CE90], [PTo97].

Corollary 5.1. Given m points and n lines in the Eu-
clidean plane, the number of incidences between them is
at most 2.5m>/3n?/3 + m +n.

Proof: We can assume that every line and every point
is involved in at least one incidence, and that n > m, by
duality. Since the statement is true for m = 1, we have
to check it only for m > 2.

Define a graph GG drawn in the plane such that the
vertex set of G is the given set of m points, and join two

points with an edge drawn as a straight-line segment if
the two points are consecutive along one of the lines.
Let I denote the total number of incidences between
the given m points and n lines. Then v(G) = m and
e(G) = I — n. Since every edge belongs to one of the
n lines, cr(G) < (). Applying Theorem 2 to G, we

obtain that = % 1.06m< cr(G@)< (3). Using that

n > m > 2, easy calculation shows that

I —n < 3/15.55m2n2 + 33m3 < ¥15.55n>3m?/3 + m,

which implies the statement. O

It was shown in [PTo97] that Corollary 5.1 does not
remain true if we replace the constant 2.5 by 0.42 .

Theorem 3 readily generalizes to multigraphs with
bounded edge multiplicity, improving the constant in
Székely’s result [Sz95].

Corollary 5.2. Let G be a multigraph with maximum
edge multiplicity m. Then

cr(G) > % — 1.06m*v(G).

v (@)

Proof: Define a random simple subgraph G' of G
as follows. For each pair of vertices vy, vy of G, let
€1,€s,...e, be the edges connecting them. With prob-
ability 1 — k/m, G' will not contain any edge between
vy and vy. With probability k/m, G' contains precisely
one such edge, and the probability that this edge is e; is
1/m (1 <i < k). Applying Theorem 3 to G’ and taking
expectations, the result follows. O

Next, we state here the improvement of another result
in [PTo97].

Corollary 5.3. Let G be a graph drawn in the plane so
that every edge is crossed by at most k others, for some
k > 1, and every pair of edges have at most one point
in common. Then

e(G) < 3.95Vkv(G

Proof: For k < 2, the result is weaker than the bounds
given in [PTo97]. Assume that & > 3, and consider a
drawing of G such that every edge crosses at most k



Let = denote the number of crossings in this

%U(G), then there is nothing to

others.
drawing. If e(G) <

prove. If e(G) > 1224(G), then using Theorem 3, we
obtain

1024 €*(Q) e(G)k

—_— < <z <

31827 7(q) = @ sTs

and the result follows. O

Recall that er(v) was defined as the maximum num-
ber of edges that a graph of v vertices can have if it
can be drawn in the plane with at most k crossings per
edge. We define some other closely related functions.
Let e} (v) denote the maximum number of edges of a
graph of v vertices which has a drawing that satisfies
the above requirement and, in addition, every pair of
its edges meet at most once (either at an endpoint or
at a proper crossing). We define €;(v) and €j,(v) analo-
gously, with the only difference that now the maximums
are taken over all triangle-free graphs with v vertices.

It was mentioned in the Introduction (see Lemma 1.1)
that ex(v) = ej(v) for 0 < k < 3, and that ej(v) <
(k+3)(v—2)for 0 <k <4[PTo97]. For 0 < k < 2,
the last inequality is tight for infinitely many values of
v. Our Theorem 1 shows that this is not the case for
k=3.

Conjecture 5.4. We have eg(v) = ef(v) for every k
and v.

Using the proof technique of Theorem 1, it is not hard
to improve the bound e} (v) < 7(v —2). In particular, in
this case Lemma 2.2 holds with 3(]®| — 2) replaced by
4(|®| — 2). Moreover, an easy case analysis shows that
every triangular face ® with four half-edges satisfies at
least one of the following two conditions:

1. The extension of at least one of the half-edges in ®
either ends in a triangular face with fewer than four
half-edges, or enters a big face.

2. ® is adjacent to an empty triangle.

Based on this observation, one can modify the argu-
ments in Section 2 to obtain the upper bound e} (v) <

(7—35Hv-0(1).
Conjecture 5.5. e;(v) < 6v — O(1).

As for the other two functions, we have € (v) = € (v)
for0 <k < 3,ande;(v) < (k+2)(v—2)for0 < k < 2. If
0 < k <1, these bounds are attained for infinitely many
values of v. These estimates were applied by Czabarka
et al. [CSO03] to obtain some lower bounds on the so-
called biplanar crossing number of complete graphs.

Given a triangle-free graph drawn in the plane so that
every edge crosses at most 2 others, an easy case anal-
ysis shows that each quadrilateral face that contains
four half-edges is adjacent to a face which is either non-
quadrilateral or does not have four half-edges'. As in
the proof of Theorem 1 (before Lemma 2.5), we can use
a properly defined bipartite multigraph M to establish
the bound

i< (1= Yoo,

Conjecture 5.6. &;(v) < 3.5v — O(1).

The coefficient 3.5 in the above conjecture cannot be
improved as shown by the triangle-free (actually bipar-
tite!) graph in Figure 4, whose vertex set is the set of
vertices of a 4 x v/4 grid.

=
EEENSPEN
=

Figure 4: e3(v) > 3.5v — 16.

Let cr(v,e) denote the minimal crossing number of
a graph with v > 3 vertices and e edges. Clearly, we
have cr(v,e) = 0, whenever e < 3(v — 2), and cr(v,e) =
e—3(v—2) for 3(v—2) <e < 4(v—2). To see that these
values are indeed attained by the function, consider the
graph constructed in [PTo97], which (if v is a multiple of
4) can be obtained from a planar graph with v vertices,

IThis statement actually holds under the assumption that G
and G' are maximal, in the sense described at the beginning of
Section 2.



2(v — 2) edges, and v — 2 quadrilateral faces, by adding
the diagonals of the faces. If e < 4(v — 2), delete as
many crossing-free edges as necessary.

In the next interval, i.e., when 4(v — 2) < e < 5(v —
2), Theorem 2 gives tight bound on cr(v,e) up to an
additive constant. To see this, consider a planar graph
with only pentagonal and quadrilateral faces and add all
diagonals in every face. If no two faces of the original
planar graph shared more than a vertex or an edge, for
the resulting graph the (first) inequality of Theorem 2
holds with equality. For certain values of v and e, no
such construction exists, but we only lose a constant.

If 5(v — 2) < e < 5.5(w—2), the best known bound,
cr(v,e) > 3e — 32 (v — 2), follows from Theorem 2, while
for e > 5.5(v — 2) the best known bound is either the
one in Corollary 4.1 or the one in Theorem 3. We do
not believe that any of these bounds are optimal.

Conjecture 5.7 cr(v,e) > 2e — 2 (v - 2).

Note that, if true, this bound is tight up to an additive
constant for 5(v—2) < e < 6(v—2). To see this, consider
a planar graph with only pentagonal and hexagonal faces
and add all diagonals of all faces. If no two faces of
the planar graph shared more than a vertex or an edge,
the resulting graph shows that Conjecture 5.7 cannot be
improved. As a first step toward settling this conjecture,
we can show the following statement, similar to Lemma
3.1.

Lemma 5.8 Let G be a graph on v(G) > 3 vertices
drawn in the plane so that every edge is involved in at
most two crossings. Then

e(G) < 5(v(G) —2) — A(G™®).
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