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Dedicated to the memory of László Fejes Tóth

Abstract. We prove that for every k > 1, there exist k-fold coverings of
the plane (1) with strips, (2) with axis-parallel rectangles, and (3) with
homothets of any fixed concave quadrilateral, that cannot be decomposed
into two coverings. We also construct, for every k > 1, a set of points P

and a family of disks D in the plane, each containing at least k elements
of P , such that no matter how we color the points of P with two colors,
there exists a disk D ∈ D, all of whose points are of the same color.

1 Multiple arrangements: background and motivation

The notion of multiple packings and coverings was introduced independently by
Davenport and László Fejes Tóth. Given a system S of subsets of an underlying
set X , we say that they form a k-fold packing (covering) if every point of X
belongs to at most (at least) k members of S. A 1-fold packing (covering) is
simply called a packing (covering). Clearly, the union of k packings (coverings)
is always a k-fold packing (covering). Today there is a vast literature on this
subject [FTG83], [FTK93].

Many results are concerned with the determination of the maximum den-
sity δk(C) of a k-fold packing (minimum density θk(C) of a k-fold covering)
with congruent copies of a fixed convex body C. The same question was stud-
ied for multiple lattice packings (coverings), giving rise to the parameter δk

L(C)
(θk

L(C)). Throughout this paper, it is always assumed that the geometric ar-
rangements, packings, and coverings under consideration are locally finite, that
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is, any bounded region intersects only finitely many members of the arrrange-
ment.

Because of the strongly combinatorial flavor of the definitions, it is not sur-
prising that combinatorial methods have played an important role in these inves-
tigations. For instance, Erdős and Rogers [ER62] used the “probabilistic method”
to show that Rd can be covered with congruent copies (actually, with translates)
of a convex body so that no point is covered more than e(d ln d + ln ln d + 4d)
times (see [PA95], and [FuK05] for another combinatorial proof based on Lovász’
Local Lemma). Note that this easily implies that there exist positive constants
θd, δd, depending only on d, such that

k ≤ θk(C) ≤ kθ(C) ≤ kθd,

kδd ≤ kδ(C) ≤ δk(C) ≤ k.

Here δ(C) and θ(C) are shorthands for δ1(C) and θ1(C)).
To establish almost tight density bounds, at least for lattice arrangements, it

would be sufficient to show that any k-fold packing (covering) splits into roughly
k packings (coverings), or into about k/l disjoint l-fold packings (coverings) for
some l < k. The initial results were promising. Blundon [Bl57] and Heppes [He59]
proved that for unit disks C = B2, we have

θ2

L(C) = 2θL(C), δk
L(C) = kδL(C) for k ≤ 4,

and these results were extended to arbitrary centrally symmetric convex bodies
in the plane by Dumir and Hans-Gill [DuH72] and by G. Fejes Tóth [FTG77],
[FTG84]. In fact, there was a simple reason for this phenomenon: It turned out
that every 3-fold lattice packing of the plane can be decomposed into 3 packings,
and every 4-fold lattice packing into two 2-fold ones. This simple scheme breaks
down for larger values of k. As k tends to infinity, Cohn [Co76] and Bolle [Bo89]
proved that

lim
k→∞

θk
L(C)

k
= lim

k→∞

θk(C)

k
= 1 ≤ θ(C),

lim
k→∞

δk
L(C)

k
= lim

k→∞

δk(C)

k
= 1 ≥ δ(C).

For convex bodies C with a “smooth” boundary, the inequalities on the right-
hand side are strict [Sch61], [Fl78].

The situation becomes slightly more complicated if we do not restrict our
attention to lattice arrangements. In reply to a question raised by László Fejes
Tóth, the senior author noted [P80] that any 2-fold packing of homothetic copies
of a plane convex body splits into 4 packings. Furthermore, any k-fold packing
C with not too “elongated” convex sets splits into at most 9λk packings, where

λ := max
C∈C

(circumradius(C))2π

area(C)
.

(Here the constant factor 9λ can be improved. See also [Ko04].)
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One would expect that similar results hold for coverings rather than packings.
However, in this respect we face considerable difficulties. For any k, it is easy to
construct a k-fold covering of the plane with not too elongated convex sets (of
different shapes but of roughly the same size) that cannot be decomposed even
to two coverings [P80]. The problem is far from being trivial even for coverings
with congruent disks. In an unpublished manuscript, P. Mani-Levitska and the
(then junior and now) senior author have shown that every 33-fold covering of
the plane with congruent disks splits into two coverings [MP87]. Another positive
result was established in [P86].

Theorem 1.1. For any centrally symmetric convex polygon P , there exists a
constant k = k(P ) such that every k-fold covering of the plane with translates of
P can be decomposed into two coverings.

At first glance, one may believe that approximating a disk by centrally sym-
metric polygons, the last theorem implies that any sufficiently thick covering
with congruent disks is decomposable. The trouble is that, as we approximate a
disk with polygons P , the value k(P ) tends to infinity. Nevertheless, it follows
from Theorem 1.1 that if k = k(ε) is sufficiently large, then any k-fold covering
with disks of radius 1 splits into a covering and an “almost covering” in the sense
that it becomes a covering if we replace each of its members by a concentric disk
whose radius is 1 + ε.

Recently, Tardos and Tóth [TaT06] have managed to extend Theorem 1.1 to
any (not necessarily centrally symmetric) convex polygon P . Here the assump-
tion that P is convex cannot be dropped.

Surprisingly, the analogous decomposition result is false for multiple coverings
with balls in three and higher dimensions.

Theorem 1.2. [MP87] For any k, there exists a k-fold covering of R3 with
unit balls that cannot be decomposed into two coverings.

Somewhat paradoxically, it is the very heavily covered points that create
problems. Pach [P80], [AS00] (p. 68) noticed that by the Lovász Local Lemma
we obtain

Theorem 1.3. [AS00] Any k-fold covering of R3 with unit balls, no c2k/3 of
which have a point in common, can be decomposed into two coverings. (Here c
is a positive constant.)

Similar theorems hold in Rd (d > 3), except that the value 2k/3 must be replaced
by 2k/d.

2 Cover-decomposable families: statement of results

These questions can be reformulated in a slightly more general combinatorial
setting. Definition 2.1. A family F of sets in Rd is called cover-decomposable

if there exists a positive integer k = k(F) such that any k-fold covering of Rd

with members from F can be decomposed into two coverings.
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In particular, Theorem 1.1 above can be rephrased as follows. The family
consisting of all translates of a given centrally symmetric convex polygon in the
plane is cover-decomposable. Theorem 1.2 states that the translates of a unit
ball is 3-space is not cover-decomposible. These results are valid for both open
and closed polygons and balls.

Note that Theorem 1.1 has an equivalent “dual” form. Given a system S of
translates of P , let C(S) denote the set of centers of all members of S. Clearly,
S forms a k-fold covering of the plane if and only if every translate of P contains
at least k elements of C(S). Recall that, by assumption, S is a locally finite
arrangement. Therefore, any bounded region contains only finitely many points
of C(S). We call such a point set locally finite.

The fact that the family of translates of P is cover-decomposable can be
expressed by saying that there exists a positive integer k satisfying the following
condition: any locally finite set C of points in the plane such that |P ′ ∩ C| ≥ k
for all translates P ′ of P can be partitioned into two disjoint subsets C1 and C2

with
|C1 ∩ P ′| 6= ∅ and |C2 ∩ P ′| 6= ∅ for every translate P ′ of P.

We can think of C1 and C2 as “color classes.”
This latter condition, in turn, can be reformulated as follows. Let H(C)

denote the (infinite) hypergraph whose vertex set is C and whose (hyper)edges
are precisely those subsets of C that can be obtained by taking the intersection
of C by a translate of P . By assumption, every hyperedge of H(C) is of size at
least k. The fact that C can be split into two color classes C1 and C2 with the
above properties is equivalent to saying that H(C) is two-colorable.

Definition 2.2. A hypergraph is two-colorable if its vertices can be colored by
two colors such that no edge is monochromatic.

A hypergraph is called two-edge-colorable if its edges can be colored by two
colors such that every vertex is contained in edges of both colors.

Obviously, a hypergraph H is two-edge-colorable if and only if its dual hypergraph
H∗ is two-colorable. (By definition, the vertex set and the edge set of H∗ are
the edge set and the vertex set of H , respectively, with the containment relation
reversed.)

Summarizing, Theorem 1.1 can be rephrased in two equivalent forms. For
any centrally symmetric convex polygon P in the plane, there is a k = k(P )
such that

1. any k-fold covering of R2 with translates of P (regarded as an infinite hy-
pergraph on the vertex set R2) is two-edge-colorable;

2. for any locally finite set of points C ⊂ R2 with the property that each
translate of P covers at least k elements of C, the hypergraph H(C) whose
edges are the intersections of C with all translates of P is two-colorable.

Clearly, the above two statements are also equivalent for translates of any set P ,
that is, we do not have to assume here that P is a polygon or that it is convex
or connected. However, if instead of translates, we consider congruent, similar,
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or homothetic copies of P , then assertions 1 and 2 do not necessarily remain
equivalent.

The aim of this paper is to give various geometric constructions showing that
certain families of sets in the plane are not cover-decomposable.

Let Tk denote a rooted k-ary tree of depth k−1. That is, Tk has 1+k+k2 +

k3 + . . . + kk−1 = kk
−1

k−1
vertices. The only vertex at level 0 is the root v0. For

0 ≤ i < k − 1, each vertex at level i has precisely k children. The kk−1 vertices
at level k − 1 are all leaves.

Definition 2.3. For any rooted tree T , let H(T ) denote the hypergraph on the
vertex set V (T ), whose hyperedges are all sets of the following two types:
1. Sibling hyperedges: for each vertex v ∈ V (T ) that is not a leaf, take the set
S(v) of all children of v;
2. Descendent hyperedges: for each leaf v ∈ V (T ), take all vertices along the
unique path from the root to v.

Obviously, Hk =: H(Tk) is a k-uniform hypergraph with the following prop-
erty. No matter how we color the vertices of Hk by two colors, red and blue,
say, at least one of the edges will be monochromatic. In other words, Hk is not
two-colorable. Indeed, assume without loss of generality that the root v0 is red.
The children of the root form a sibling hyperedge S(v0). If all points of S(v0)
are blue, we are done. Otherwise, pick a red point v1 ∈ S(v0). Similarly, there is
nothing to prove if all points of S(v1) are blue. Otherwise, there is a red point
v2 ∈ S(v1). Proceeding like this, we either find a sibling hyperedge S(vi), all of
whose elements are blue, or we construct a red descendent hyperedge {v0, v1,
. . . , vk−1}.

Definition 2.4. Given any hypergraph H, a planar realization of H is defined
as a pair (P,S), where P is a set of points in the plane and S is a system of sets
in the plane such that the hypergraph obtained by taking the intersections of the
members of S with P is isomorphic to H.

A realization of the dual hypergraph of H is called a dual realization of H.

In the sequel, we show that for any rooted tree T , the hypergraph H(T )
defined above has both a planar and a dual realization, in which the members of
S are open strips (Lemmas 3.1–4.1). In particular, the hypergraph Hk = H(Tk)
permits such realizations for every positive k. These results easily imply the
following

Theorem 2.5. The family of open strips in the plane is not cover-decomposable.

Indeed, fix a positive integer k, and assume that we have shown that Hk =
H(Tk) has a dual realization with strips (see Lemma 4.1). This means that the
set of vertices of Tk can be represented by a collection S of strips, and the set of
(sibling and descendent) hyperedges by a point set P ⊂ R2 whose every element
is covered by the corresponding k strips. Recall that Hk is not two-colorable,
hence its dual hypergraph H∗

k is not two-edge-colorable. In other words, no
matter how we color the strips in S with two colors, at least one point in P will
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be covered only by strips of the same color. Add now to S all open strips that
do not contain any element of P . Clearly, the resulting (infinite) family of strips,
S′, forms a k-fold covering of the plane, and it does not split into two coverings.
This proves Theorem 2.5.

In fact, a “degenerate” version of Theorem 2.5 is also true, in which strips
are replaced by straight-lines (that is, by “strips of width zero”).

Theorem 2.6. The family of straight lines in the plane is not cover-decomposable.

We prove this theorem in Section 4. It implies the following generalization
of Theorem 2.5: The family of open strips of unit width in the plane is not
cover-decomposable.

Lemma 5.1 was originally established in [MP87]. For completeness, here we
include a somewhat simpler proof (see Section 5). Lemma 5.1 easily implies that,
for any d ≥ 3, the family of open unit balls in Rd is not cover-decomposable, for
any d ≥ 3 (Theorem 1.2).

In Section 6, we show that the hypergraph Hk = H(Tk) permits a dual
realization in the plane with axis-parallel rectangles, for every positive k (Lemma
6.1). This implies, in exactly the same way as outlined in the paragraph below
Theorem 2.5, that the following theorem is true.

Theorem 2.7. The family of axis-parallel open rectangles in the plane is not
cover-decomposable.

We cannot decide whether Hk permits a planar realization. However, it can
be shown [CPST06] that a sufficiently large randomly and uniformly selected
point set P in the unit square, say, with large probability has the following
property. No matter how we color the points of P with two colors, there is an
axis-parallel rectangle containing at least k elements of P , all of the same color.

Recall that the family of translates of any convex polygon Q is cover-decom-
posable (see Theorem 1.1 and [TaT06]). The next result shows that this certainly
does not hold for some concave polygons Q.

Theorem 2.8. The family of all translates of a given (open) concave quadrilat-
eral is not cover-decomposable.

The proofs presented in the next five sections also yield that Theorems 2.5,
2.7, and 2.8 remain true for closed strips, rectangles, and quadrilaterals. Most
arguments follow the same general inductional scheme, but the subtleties require
separate treatment.

3 Planar realization with strips

A strip is an open set S in the plane, bounded by two parallel lines. The coun-
terclockwise angle α (−π

2
< α ≤ π

2
) from the x-axis to these lines is called the

direction or slope of S.

Lemma 3.1. For any rooted tree T , the hypergraph H(T ) permits a planar
realization with strips. That is, there is a set of points P and a set of strips S
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in the plane such that the hypergraph on the vertex set P whose hyperedges are
the sets S ∩ P (S ∈ S) is isomorphic to H(T ).

Proof: We prove the lemma by induction on the number of vertices of T . The
statement is trivial if T has only one vertex. Suppose that T has n vertices and
that the statement has been proved for all rooted trees with fewer vertices. Let
v0 be the root of T , and let v0v1 . . . vm be a path of maximum length starting at
v0. Let U = {u1, u2, . . . uk} be the set of children of vm−1. Each member of U is
a leaf of T , and one of them is vm. Delete the members of U from T , and let T ′

denote the resulting rooted tree. Clearly, vm−1 is a leaf of T ′. By the induction
hypothesis, there is a planar realization (P,S) of H(T ′) with open strips. We
can assume without loss of generality that no element of P lies on the boundary
of any strip in S, otherwise we could slightly decrease the widths of some strips
without changing the containment relation.

Let S ∈ S be the strip representing the descendent hyperedge {v0, v1, . . . ,
vm−1}, i.e., a strip that contains precisely the points corresponding to these
vertices of T ′. (See Definition 2.3.) Rotating S through very small angles, the
resulting strips S1, S2, . . . , Sk contain the same points of P as S does. Moreover,
we can make sure that the new strips are not parallel to each other or to any
old strip. Hence, we can choose a line `, not passing through any element of P ,
such that S1, S2, . . . , Sk intersect ` in pairwise disjoint intervals that are also
disjoint from all members of S. For each i, 1 ≤ i ≤ k, pick a point pi in ` ∩ Si,
and add these points to P . Replace S in S by the strips S1, S2, . . . , Sk, and add
another member to S: a very narrow strip S̄ around `, which contains all pi, but
no other point of P .

In this way, we obtain a planar realization of H(T ), where p1, p2, . . . , pk

represent the vertices (leaves) u1, u2, . . . uk ∈ V (T ), the strip S̄ represents the
sibling hyperedge U = {u1, u2, . . . uk} of H(T ), while S1, S2, . . . , Sk represent
the descendent hyperedges, corresponding to the paths from v0 to u1, u2, . . . uk,
respectively. �

A hypergraph is k-uniform if all of its hyperedges have precisely k vertices.

Corollary 3.2. For any k ≥ 2, there exists a k-uniform hypergraph which is not
two-colorable and which permits a planar realization by open strips. �

4 Dual realization with strips: Proofs of Theorems 2.5

and 2.6

Recall that a dual realization of a hypergraph H is a planar realization of its dual
H∗. That is, given a tree T , a dual realization of H(T ) is a pair (P,S), where P is
a set of points in the plane representing the (sibling and descendent) hyperedges
of H(T ), and S is a system of regions representing the vertices of T such that a
region S ∈ S covers a point p ∈ P if and only if the vertex corresponding to S
is contained in the hyperedge corresponding to p.
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Lemma 4.1. For any rooted tree T , the hypergraph H(T ) permits a dual real-
ization with strips.

Proof: Most of our proof is identical to the proof of Lemma 3.1. We establish
the statement by induction on the number of vertices of T . The statement is
trivial if T has only one vertex. Suppose that T has n vertices and that the
statement has been proved for all rooted trees with fewer than n vertices. Let
v0 be the root of T , and let v0v1 . . . vm be a path of maximum length starting
at v0. Let U = {u1, u2, . . . uk} denote the set of children of vm−1. Clearly, each
element of U is a leaf of T , one of them is vm, and U is a sibling hyperedge of
H(T ). Let T ′ denote the tree obtained by deleting from T all elements of U . The
vertex vm−1 is then a leaf of T ′.

By the induction hypothesis, H(T ′) permits a dual realization (P,S) with
open strips. We can assume without loss of generality that no element of P
lies on the boundary of any strip in S, otherwise we could slightly decrease the
widths of some strips without changing the containment relation.

Let p ∈ P be the point corresponding to the descendent hyperedge {v0, v1,
. . . , vm−1} of H(T ′). Let p1, p2, . . . , pk be distinct points so close to p that they
are contained in exactly the same strips from S as p (namely, in the ones cor-
responding to v0, v1, . . . , vm−1). The point pi will correspond to the descendent
hyperedge of T containing vi. Choose a point q such that all lines piq for 1 ≤ i ≤ k
are distinct and they do not pass through any element of P . This point will cor-
respond to the sibling hyperedge {u1, . . . , uk} of T . For 1 ≤ i ≤ k, let Si be an
open strip around the line piq that is narrow enough so that it does not contain
any element of P or any point pj with j 6= i. This strip represents the vertex ui

of T .
Add S1, S2, . . . , Sk to S. Delete p from P , and add p1, . . . , pk, and q. The

resulting configuration is a dual realization of H(T ) with open strips, so we are
done. �

Proof of Theorem 2.6: Let Cn
k be a k× k× . . .× k piece of the n-dimensional

integer grid, that is,

Cn
k = {(x1, x2, . . . , xn) : xi ∈ {0, 1, . . . , k − 1}} .

A k-line is a set of k collinear points of Cn
k . Denote by Hn

k the k-uniform hy-
pergraph on the vertex set Cn

k , whose hyperedges are the k-lines. The following
statement is a direct consequence of the Hales-Jewett theorem.

Lemma 4.2. [HaJ63] The hypergraph Hn
k is not two-colorable.

Our goal is to construct an indecomposable covering of the plane by (con-
tinuously many) straight lines such that every point is covered at least k times.
Project Cn

k to a “generic” plane so that no two elements of Cn
k are mapped into

the same point and no three noncollinear points become collinear.
Applying a duality transformation, we obtain a family L of kn lines and a

set P of so-called k-points, dual to the k-lines, such that each k-point belongs to
precisely k members of L. It follows from Lemma 4.2 that for any two-coloring
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of the members of L, there is a k-point p ∈ P such that all lines passing through
p are of the same color.

It remains to extend the family L into a k-fold covering of the whole plane
with lines without destroying the last property. This can be achieved by simply
adding to L all straight lines that do not pass through any point in P . �

5 Planar realization with disks

In this section, all disks are assumed to be open. A pair (P,D) consisting of a
point set P and a system of disks D in the plane is said to be in general position,
if no element of P lies on the boundary of a disk D ∈ D, no two members of
D are tangent to each other, and no three circles bounding members of D pass
through the same point.

In order to facilitate the induction, we prove a slightly stronger lemma than
what we need.

Lemma 5.1. For any rooted tree T , the hypergraph H(T ) permits a planar
realization (P,D) with disks in general position such that every disk D ∈ D has
a point on its boundary that does not belong to the closure of any other disk
D′ ∈ D.

Proof: By induction on the number of vertices of T . The statement is trivial if
T has only one vertex. Suppose that T has n vertices and that the statement
has already been proved for all rooted trees with fewer than n vertices. Let v0

denote the root of T , and let v0v1 . . . vm be a path of maximum length starting
at v0. Let U = {u1, u2, . . . uk} be the set of children of vm−1. Each element of U
is a leaf of T , and one of them is vm. Remove all elements of U from T , and let T ′

denote the resulting rooted tree. Clearly, vm−1 is a leaf of T ′. By the induction
hypothesis, H(T ′) permits a planar realization (P,D) with disks satisfying the
conditions in the lemma.

Let D denote the disk representing the descendent hyperedge {v0, v1, . . . ,
vm−1} of H(T ′). Let v be a point on the boundary of D, which does not belong
to the closure of any other disk D′ ∈ D. Choose a small neighborhood N(v, ε)
of v, which still disjoint from any disk D′ ∈ D other than D.

To obtain a planar realization of H(T ), we have to add k new points to P
that will represent the vertices u1, u2, . . . uk ∈ V (T ), and replace D by k new
disks that will represent the descending hyperedges of H(T ), corresponding to
the paths connecting the root to u1, u2, . . . uk. We also add a disk representing
the sibling hyperedge U = {u1, u2, . . . uk} of H(T ). This can be achieved, as
follows.

Let ` denote the straight line connecting the center of D to v, and let w be
the point on `, outside of D, at distance ε/2 from v. Let D(1), D(2), . . . , D(k)
be k disks obtained from D by rotating it about the point w through very small
angles, so that D(i) ∩ P = D ∩ P holds for any 1 ≤ i ≤ k. Further, let D′

denote the disk of radius ε/2, centered at w. Then D(i) and D are tangent to
each other; let p(i) denote their point of tangency (1 ≤ i ≤ k). Add the points
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p(1), p(2), . . . , p(k) to P ; they will represent u1, u2, . . . , uk ∈ V (T ), respectively.
Remove D from D, and replace it by the disks D(1), D(2), . . . , D(k) and D′.

Now we are almost done: the new pair (P,D) is almost a planar realization
of H(T ), with the disk D′ representing the sibling hyperedge {u1, u2, . . . uk} of
H(T ). The only problem is that the points p(i) lie on the boundaries of D(i) and
D′, rather than in their interiors. This can be easily fixed by increasing the radii
of the disks D(i) (1 ≤ i ≤ k) and D′ by a very small positive number δ < ε/2,
so that the enlarged D′ contains p(1), p(2), . . . , p(k), but no other points in P .

ε/2

D’

D(1)
D

p(1)

p(2)
p(3)

D(3)D(2)

v w

Figure 1. Replace D by D(1), D(2), . . . , D(k).

It remains to verify that the new realization (P,D) meets the extra require-
ments stated in the lemma: it is in general position and each disk D ∈ D has
a boundary point that does not belong to the closure of any other disks in D.
However, these conditions are automatically satisfied if δ is sufficiently small. For
instance, each disk D(i) has point on its boundary, very close to p(i), which is
not covered by any other disk in D. To see that the same property holds for D′,
notice that any boundary point of D′, “sufficiently far” from p(1), p(2), . . . , p(k),
will do. This completes the induction step, and hence the proof of the lemma. �

Corollary 5.2. For any k ≥ 2, there exists a k-uniform hypergraph which is not
two-colorable and which permits a planar realization by open disks. �

6 Dual realization with axis-parallel rectangles

All rectangles in this section are assumed to be closed, but our results and proofs
also apply to open rectangles.
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Lemma 6.1. For any rooted tree T , the hypergraph H(T ) permits a dual real-
ization with axis-parallel rectangles.

Proof: Let σ0 and σ1 denote the segments y = x, 1 ≤ x ≤ 2 and y = x + 2,
0 ≤ x ≤ 1. First, consider the sub-hypergraph H ′ of H(T ), consisting of all
descendent hyperedges. We claim that it permits a dual realization with closed
intervals and points of σ1. To see this, choose an arbitrary interval in σ1 to
represent the root of T . If an interval I represents a vertex v of T and v has
k ≥ 1 children, choose any k pairwise disjoint sub-intervals of I to represent
them. Finally, for every leaf v, pick any point of the interval representing v to
represent the descendent hyperedge of H ′ that contains v. It is straightforward
to check that the resulting system is indeed a dual realization of H ′.

Now we construct a dual realization of H(T ) with axis-parallel rectangles.
Let the descendent hyperedges be represented by the same point in σ1 as in the
construction above. For the sibling hyperedges, we choose distinct points of σ0

to represent them. Let any vertex x of T be represented by the axis-parallel rect-
angle whose lower right corner is the point that represents the sibling hyperedge
containing x, and whose intersection with σ1 is the interval that represented x
in the previous construction. (Note that the root of T is not contained in any
sibling hyperedge. Therefore, if x is the root, we have to modify the above def-
inition. In this case, let the lower right vertex of the corresponding rectangle
be any point of σ0 that does not represent any sibling hyperedge.) Clearly, the
resulting system of points and rectangles is a dual representation of H(T ). �

7 Planar and dual realizations with concave quadrilaterals

The aim of this section is to prove Theorem 2.8. For the proof, it is irrelevant
whether we consider closed or open quadrilaterals.

One of the two diagonals of a concave quadrilateral Q is inside Q, the other
is outside Q. We call the line of the diagonal outside Q the supporting line of Q.

Lemma 7.1 For any rooted tree T and for any concave quadrilateral Q, the
hypergraph H(T ) permits both planar and dual realizations with translates of Q.
Moreover, we can achieve that all translates of Q used in the planar realization
can be obtained from Q by translations parallel to its supporting line, while all
points used in the dual realization lie on the supporting line.

Proof: The two realizations are dual to each other, so it is enough to prove the
existence of a planar realization. Let the vertices of Q be a, b, c, and d in this
order, and assume b is the concave vertex. The supporting line of Q is the line
ac. We start with a planar realization (P,S), in which each member of S is a
translate parallel to ac of one of the two infinite wedges Wa, Wc. Here the sides
of Wa are the rays ad and ab, while the sides of the Wc are the rays cd and cb.
Once we have such a planar realization, we can shrink the point set so that the
wedges can be replaced by Q, without changing the containment relation.

In our planar realization, all sibling hyperedges will be represented by trans-
lates of Wa, while all descendent hyperedges will be represented by translates of
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Wc. We construct the planar realization by induction on the depth of T , starting
with the trivial case of depth 0.

For the inductive step, let v0 be the root of T , let v1, . . . , vk denote its chil-
dren, and let T i be the tree rooted at vi, for 1 ≤ i ≤ k. By the inductive
hypothesis, for every i, H(T i) permits a planar realization (Pi,Si), meeting the
requirements. We assume that the following three additional conditions are also
satisfied.

1. W ∩ Pj = ∅, whenever W ∈ Si and i 6= j.
2. Pi ∩ Wa = ∅, for all i.
3. For any i, there exists a point xi ∈ Wa such that, for any W ∈ Sj , we have

xi ∈ W if and only if i = j and W is a translate of Wc.

To verify that one can make the above assumptions, note that H(T i) can also
be realized by any translate of (Pi,Si). Translating (Pi,Si) through sufficiently
fast increasing multiples of the vector ac, as i increases, makes all of the above
three properties satisfied.

It is easy to see that one can find a point x, common to all translates of Wc

in any of the families Si, with he property that x is not contained in Wa or in
any of its translates considered. Let yi ∈ Pi denote the point representing the
root vi of T i.

Now we are in a position to define the pair (P,S) realizing T : let

P = ((∪iPi) ∪ {xi|1 ≤ i ≤ k} ∪ {x}) \ {yi|1 ≤ i ≤ k},

and let S = (∪iSi) ∪ {Wa}. It is straightforward to check now that (P,S) is a
planar realization of H(T ), where sibling hyperedges are represented by trans-
lates of Wa parallel to the line ac and descendent hyperedges are represented by
translates of Wc parallel to the same line. �

Proof of Theorem 2.8: Let Q be a concave quadrilateral and let k ≥ 1 arbi-
trary. We need to show that not all k-fold coverings of the plane by translates
of Q can be split into two coverings. Let us start with a dual realization (P,S)
of the k-uniform hypergraph Hk = H(Tk) with translates of Q. We consider the
set S′ obtained from S by adding all translates of Q disjoint from P . Clearly,
S′ cannot be split into two covering, as every point of P can be covered only by
members of S, and we know that Hk is not two-edge-colorable.

It remains to check that S′ is a k-fold covering of the plane. For this, we use
the fact that the dual realization (P,S) of Hk, whose existence is guaranteed
by Lemma 7.1, satisfies that all points of P lie on the supporting line of Q.
Clearly, any point that does not belong to this line is covered by infinitely many
translates of Q that are disjoint from the line. For a point r /∈ P that belongs
to the supporting we can still find infinitely many translates of Q which cover
r and which are disjoint from the finite set P . If a is a vertex of Q on the
supporting line then any translation that carries a point a′ 6= a of Q to r, where
a′ is sufficiently close to a, will do here. Finally, each point of P is covered by
exactly k members of S, as Hk is a k-uniform hypergraph. �
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The proof of Lemma 7.1 applies not only to concave quadrilaterals, but to
many other concave polygons Q′, as well, implying that the families of translates
of these polygons are not cover-decomposable. However, the statement is not true
for all concave polygons. For instance, if Q′ can be expressed as a finite union
of translates of a given convex polygon, then the family of translates of Q′ must
be cover-decomposable. It would be interesting to find an exact criterion for
deciding whether the family of translates of a polygon Q′ is cover-decomposable.
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[FuK05] Z. Füredi and J.-H. Kang: Covering Euclidean n-space by translates of a
convex body, Discrete Math., accepted.

[HaJ63] A.W. Hales and R.I. Jewett: Regularity and positional games, Trans. Amer.
Math. Soc. 106 (1963), 222–229.
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