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Abstract

A drawing of a graph in the plane is called a thrackle if every pair of edges meet precisely
once, either at a common vertex or at a proper crossing. According to Conway’s conjecture,
every thrackle has at most as many edges as vertices. We prove this conjecture for x-monotone
thrackles, that is, in the case when every edge meets every vertical line in at most one point.

1 Introduction

A drawing of a graph is a representation of the graph in the plane such that the vertices are repre-
sented by distinct points and the edges by (possibly crossing) simple continuous curves connecting
the corresponding point pairs and not passing through any other point representing a vertex. If
it leads to no confusion, we make no notational distinction between a drawing and the underlying
abstract graph G. In the same vein, V (G) and E(G) will stand for the vertex set and edge set of
G as well as for the sets of points and curves representing them.

A drawing of G is called a thrackle if every pair of edges meet precisely once, either at a common
vertex or at a proper crossing. (A crossing p of two curves is proper if at p one curve passes from
one side of the other curve to its other side. Two edges that share an endpoint cannot have any
other point in common.)

More than forty years ago, Conway [1], [6], [13] conjectured that every thrackle has at most as
many edges as vertices, and offered a bottle of beer for a solution. (The prize has since risen to
a thousand dollars.) In spite of considerable efforts, Conway’s thrackle conjecture is still open. If
true, Conway’s conjecture would be tight as any cycle of length at least five can be drawn as a
thrackle, see [15]. Two thrackle drawings of C5 and C6 are shown in Figure 1. According to legend,
Conway named these drawings after a peculiar term he heard from a fisherman during his holiday
in Scotland: the man described his tangled fishing line as “thrackled.”

The first linear upper bound for the number of edges of a thrackle of n vertices, 2n, was
established by Lovász, Pach, and Szegedy [10]. Cairns and Nikolayevsky improved this bound to
3
2n [2]. Presently, the best known bound, 167

117n < 1.428n, is due to Fulek and Pach [7]. For related
results, see [3], [4], [8], [11], [12].

The origins of the thrackle problem go back to the nineteen-thirties, when Hopf and Pannwitz
[9] posed the following problem in the Jahresbericht der Deutschen Mathematischen Vereinigung.
The diameter of a finite point set is the maximum distance between its elements. Let P be a set
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Figure 1: C5 and C6 drawn as thrackles

of n points in the plane with diameter one. Prove that the maximum number of point pairs in
P , which determine distance one is n. Several solutions were submitted [14]. Much later, Erdős
noticed that the statement follows from a more general result: Every graph drawn in the plane
with straight-line edges so that each pair of edges either share an endpoint or properly cross has
at most as many edges as vertices. Indeed, it is easy to verify that joining two points of a unit
diameter set in the plane by a segment if they are at distance one, the resulting drawing satisfies
the above condition. Using Conway’s terminology, we obtain that Conway’s conjecture is true for
straight-line thrackles, that is, for thrackles drawn by straight-line edges on a set of vertices, no
three of which are collinear. (We make the latter assumption to exclude that edges share a whole
segment.)

Theorem 1. (Erdős) Every straight-line thrackle has at most as many edges as vertices.

The most elegant proof of Theorem 1 is due to Perles. Let G be a straight-line thrackle. We
call a vertex v ∈ V (G) pointed if all edges incident to v lie in a half-plane bounded by a line passing
through v. (See Figure 2, part a.) For each pointed vertex v, delete from G the “leftmost” edge
incident to v, that is, the first element in the clockwise order of edges around the half-plane at v.
Notice that we deleted all edges, which proves the theorem. Indeed, if we are left with an edge
uv ∈ E(G), then it was not leftmost at u, nor at v. Thus, originally G contained two edges, uv′

and u′v, with ∠v′uv < π and ∠u′vu < π. These two edges must lie on opposite sides of the line
uv. Hence, they are disjoint, contradicting the thrackle condition. See Figure 2, part b.

Figure 2: (a) a pointed vertex; (b) Perles’ argument; and (3) why it breaks down for x-monotone
thrackles.

The above proof applies verbatim to another special class of thrackles, for which it makes sense
to speak of “leftmost” edges. A thrackle is called outerplanar if its vertices lie on a circle and its
edges are represented by continuous curves running in the interior of this circle [5].
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Theorem 2. Every outerplanar thrackle has at most as many edges as vertices.

Cairns and Nikolayevsky [5] have recently established the stronger statement that every outer-
planar thrackle which has no vertex of degree at most oneis an odd cycle. Woodall [15] characterized
all thrackles, assuming that Conway’s conjecture is true.

The aim of this note is to verify Conway’s conjecture in another special case. We call a thrackle
x-monotone if each curve representing an edge meets every vertical line in at most one point. In
particular, every straight-line thrackle with no vertical edge is x-monotone.

Theorem 3. Every x-monotone thrackle has at most as many edges as vertices.

Theorem 3 is a generalization of Theorem 1. However, the argument of Perles fails in this case,
because the edges uv′ and u′v may cross (see Figure 2, part c). Instead, we can explore the fact
that there is a natural partial order on the edges.

2 Proof of Theorem 3

Let G be an x-monotone thrackle with n vertices and e edges. In the sequel, assume without loss of
generality that G is in “general position,” that is, no two vertices have the same x-coordinate and
no three edges pass through the same point. The orthogonal projections of the edges to the x-axis
are closed segments with the property that any two of them have at least one point in common. By
Helly’s theorem in dimension 1, we obtain that all of these segments share a point. Hence, there is
a vertical line ` that meets all edges of G.

We distinguish two cases.

Case A: The line ` does not pass through any vertex of G.
In this case, G is a bipartite graph: all of its edges connect a point in the left half-plane bounded

by ` to a point in the right half-plane. We show that the number of edges of G is strictly smaller
than n. Indeed, otherwise G would contain a cycle of even length, contradicting the following
lemma.

Lemma. No even cycle can be drawn as an x-monotone thrackle.

Proof. Suppose for a contradiction that there exists a drawing of an even cycle C = v0v1 . . . vk−1

which can be drawn as a thrackle. (k is even and the indices are taken modulo k).
First of all, notice that we can assume without loss of generality that C meets the requirements

of Case A: none of its vertices lies on `. Indeed, if there existed such a vertex vi, the two edges of C
meeting at vi would lie in the same half-plane bounded by `, otherwise, by the evenness of k, one
of them would be disjoint from another edge of C that lies entirely in the opposite open half-plane.
If both vi−1vi and vivi+1 lie in the same half-plane, then slightly translating ` we can bring it in a
position where no vertex lies on it and ` (strictly) crosses every edge of C.

We say that the edge vi−1vi lies below the edge vivi+1 if the intersection point of vi−1vi with the
line ` is below the intersection point of vivi+1 with `. Notice that, by the definition of a thrackle,
these two points cannot coincide, since the interiors of any two adjacent edges must be disjoint. If
an edge lies below another edge adjacent to it, then we say that the latter edge lies above the first
one.

Observe that if the edge vi−1vi lies below vivi+1, then the next edge along C, vi+1vi+2, must
also lie below vivi+1, otherwise vi−1vi and vi+1vi+2 could not cross. In this case, we say that vivi+1
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is an upper edge. Otherwise, both vi−1vi and vi+1vi+2 must lie above vivi+1, and vivi+1 is called a
lower edge. Obviously, the edges of C are alternately upper and lower edges. See Figure 3.

Consider now the cycle C as a closed self-intersecting curve embedded in the plane, which
divides the plane into simply connected regions. Exactly one of these regions is unbounded. It is
well known and easy to prove that one can color these regions with two colors, white and grey, say,
such that no two regions that share a boundary arc are of the same color. (By our assumption of
general position, each point at which C intersects itself belongs to the boundary of precisely four
regions, two of which are white and the other two grey.)

Figure 3: An even cycle. The upper edges are marked.

Let va and vb be the leftmost and rightmost vertices of C, respectively. Assume, by symmetry,
that 0 < a < b < k. Since va and vb are on different sides of ` and every edge of C crosses `, we
have that b − a is odd. Assume, again by symmetry, that vava+1 is an upper edge. Since every
upper edge is followed by a lower edge and vice versa, we obtain that vb−1vb must also be an upper
edge.

Let us trace now the curve P = vava+1 . . . vb−1vb from left to right, and record the color changes
along the right-hand side of P . Every time we arrive at a crossing where C intersects itself, the
color changes. How many crossings are there along P? Each edge of C (including the edges of
P ) crosses k − 3 other edges, because each of them must cross every other edge except itself and
the two adjacent edges. Since k is even, k − 3 is odd. We have seen that b − a is odd, so that
P consists of an odd number of edges, each of which is crossed by an odd number of other edges.
Therefore, the total number of crossings along P must be odd. (Note that every crossing where P
crosses itself is counted twice!) This implies that the color of the region lying on the right-hand
side of the initial portion of P is different from the color on the right-hand side of its final portion.
Since vava+1 and vb−1vb are upper edges, this means that the regions directly below the initial and
final portions of P are of different colors.

On the other hand, the points above va and the points above vb belong to the (unique) un-
bounded region, and all of them are colored with the color of that region. Hence, the points above
a small initial portion of P and the points above a small final portion of P are of the same color.
This yields that the regions directly below the initial and final portions of P must be of the same
color. This contradiction completes the proof of the lemma.
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Case B: The line ` passes through a vertex of v ∈ V (G).
In this case, replace v by two vertices, v′ and v′′, very close to each other and to the original

position of v. Let v′ lie in left half-plane, and let it be the new left endpoint of all edges that
previously had v as their left endpoints. Analogously, let us redirect all edges that previously had
v as their right endpoints to the point v′′, which lies in the right half-plane. We can make sure that
after this slight perturbation, every edge incident to v′ will cross all edges incident to v′′, and the
resulting drawing G′ remains an x-monotone thrackle with n′ = n + 1 vertices and e′ = e edges.

Notice that all edges of G′ meet ` and none of them lies on `; that is, the conditions of Case A
are satisfied. However, in Case A, we have shown that the number of edges is strictly smaller than
the number of vertices. Thus, we have e′ < n′, so that e < n + 1, and the proof of Theorem 3 is
complete.

Acknowledgement. The present note grew out of the Intel project of the second named author
in 2005, while he was a student at Stuyvesant High School, New York, under the supervision of
the first named author. Some portions of the argument have been rediscovered by Radoslav Fulek,
Rom Pinchasi, Konrad Swanepoel, and Géza Tóth.
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