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Abstract

The monotone crossing number of G is defined as the smallest number of crossing points in a
drawing of G in the plane, where every edge is represented by an x-monotone curve, that is, by
a connected continuous arc with the property that every vertical line intersects it in at most one
point. It is shown that this parameter can be strictly larger than the classical crossing number
cr(G), but it is bounded from above by 2cr2(G). This is in sharp contrast with the behavior of
the rectilinear crossing number, which cannot be bounded from above by any function of cr(G).

1 Introduction

Let G = (V (G), E(G)) be a graph with no loops and multiple edges, and let V (G) and E(G) denote
its vertex set and edge set. A drawing of G is an embedding of G in the plane, where each vertex
v ∈ V (G) is mapped to a point and each edge uv ∈ E(G) is mapped into a simple continuous arc
connecting the images of its endpoints, but not passing through the image of any other vertex of G.
The arcs representing the edges of G are allowed to cross, but we assume for simplicity that any two
arcs have finitely many points in common and no three arcs pass through the same point. A common
interior point p of two arcs is said to be a crossing if in a small neighborhood of p one arc passes
through one side of the other arc to the other side. If it leads to no confusion, the vertices and their
images, as well as the edges and the arcs representing them, will be denoted by the same symbols.

In the special case where G is a complete bipartite graph, the problem of minimizing the number
of crossings in a drawing of G was first studied by Turán [T77]. The question became known as
the brick factory problem. It was generalized to all graphs by Erdős and Guy [ErG73]. In two
previous papers [PaT00a], [PaT00b], the authors of the present note pointed out some inconsistencies
between various definitions of crossing numbers implicitly used in early publications on the subject. To
distinguish between these notions, they introduced some new terminology and notation. The crossing
number of G, denoted by cr(G), is the smallest number of crossings in a drawing of G in the plane.
The pairwise crossing number, pair-cr(G), is the smallest number of crossing pairs of edges in a
drawing of G. If two edges cross several times, they still count as a single crossing pair, so that we
have pair-cr(G) ≤ cr(G) for every graph G. It is one of the most tantalizing open problems in this
area to decide whether these two parameters coincide or at least cr(G) = O(pair-cr(G)) holds for all
graphs G. It was shown in [PaT00a] that cr(G) = O(pair-cr2(G)), which was successively improved
in [Va05], [To08], and [To11] to cr(G) = O(pair-cr7/4(G)/ log3/2 pair-cr(G)). It is not easy to make
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any conjecture in this respect or even to experiment with concrete graphs. The computation of cr(G)
and pair-cr(G) are both NP-hard problems [GaJS76], [GaJ83], [PaT00a].

On the other hand, there is another natural parameter that can be much larger than the above two
crossing numbers. lin-cr(G), the rectilinear crossing number of G, is the smallest number of crossings
in a rectilinear drawing of G, that is, in a drawing where every edge is represented by a straight-line
segment. We have cr(G) ≤ lin-cr(G). Bienstock and Dean [BiD93] constructed a series of graphs
with crossing number 4, whose rectilinear crossing numbers are arbitrarily large.

An x-monotone curve is a connected, continuous arc with the property that every straight-line
parallel to the y-axis intersects it in at most one point. A drawing of G is called x-monotone (or
monotone, for short) if every edge of G is represented by an x-monotone curve. We define mon-cr(G),
the monotone crossing number of G, as the smallest number of crossings in a monotone drawing of G.
Obviously, every rectilinear drawing of G, in which no two vertices share the same x-coordinate, is a
monotone drawing. Therefore, we have

cr(G) ≤ mon-cr(G) ≤ lin-cr(G),

for every graph G.

Monotone drawings and rectilinear drawings share many interesting properties. In particular,
it was shown in [PaT04] that every crossing-free monotone drawing of a (planar) graph G can be
“stretched” without changing the x-coordinates of the vertices. In other words, there is a crossing-
free rectilinear drawing of G, isomorphic to the original one, in which the vertices have the same
x-coordinates. Another example, for drawings with many crossings, is related to Conway’s famous
thrackle conjecture [Wo69], which says that if a graph can be drawn in the plane such that any two
edges have exactly one common points (either a common endpoint, or a crossing) then the number of
edges cannot exceed the number of vertices. (The conjecture has been verified for monotone draw-
ings [PaS11].) In sharp contrast to these analogies, there are no graphs with bounded crossing numbers
that have arbitrarily large monotone crossing numbers. In the present note, we answer a question of
Fulek, Pelsmajer, Schaefer, and Štefankovič [FuPS11] by establishing the following results.

Theorem 1. Every graph G satisfies the inequality

mon-cr(G) < 2cr2(G).

Theorem 2. There are infinitely many graphs G with arbitrarily large crossing numbers such that

mon-cr(G) ≥ 7
6
cr(G)− 6.

The proof of Theorem 1 is algorithmic. It is based on a recursive procedure to redraw a plane graph
without changing its combinatorial structure so that in the resulting drawing any pair of vertices of
the same cell can be connected by an x-monotone curve. See Theorem 2.2. One of the key ideas of
the construction proving Theorem 2, the use of “weighted” edges or repeated paths, goes back to the
paper of Bienstock and Dean [BiD93] mentioned above. This idea was further developed and applied
to related problems by Pelsmajer, Schaefer, and Štefankovič [PeSS08] and by Tóth [To08].
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2 Proof of Theorem 1

Two crossing-free (plane) drawings of a planar graph are said to be isomorphic if there is a homeo-
morphism of the plane which maps one to the other. In particular, it takes the unbounded cell of the
first drawing to the unbounded cell of the second.

Definition 2.1. Let D be a crossing-free drawing of a planar graph G, and let v ∈ V (G). We say
that D is v-spinal if

1. D is a monotone drawing;

2. v is the leftmost vertex;

3. any two vertices belonging to the same (bounded or unbounded) cell C can be connected by an
x-monotone curve that lies in the interior of C (with the exception of its endpoints);

4. every vertical ray starting at a boundary vertex of the unbounded cell C0 and pointing downwards
lies in the interior of C0 (with the exception of its endpoint).

v

v

Figure 1: A plane drawing and a v-spinal drawing.

Theorem 1 is an easy corollary of the following result.

Theorem 2.2. For any crossing-free drawing D of a planar graph and for any vertex v of the un-
bounded cell, there is a v-spinal drawing isomorphic to D.

It follows from the result of [PaT04] mentioned in the introduction that every v-spinal drawing can be
“stretched” without changing the x-coordinates of the vertices. That is, we can assume without loss of
generality that the drawing whose existence is guaranteed by Theorem 2.2 is rectilinear. However, in
the recursive argument proving Theorem 2.2, we will not need this fact. It will be sufficient to assume
that the edges are represented by x-monotone polygonal paths, so that in a small neighborhood of
their endpoints it will make sense to talk about the slopes of these paths.

Before turning to the proof of Theorem 2.2, we show how Theorem 2.2 implies Theorem 1.

Proof of Theorem 1 (using Theorem 2.2). Let G be any graph, and let D be a drawing of G
with cr(G) crossings. Let G′ ⊆ G denote the subgraph consisting of all vertices of G and all edges
not crossed by any other edge in this drawing. Clearly, G′ is a planar graph. Let D′ stand for the
corresponding crossing-free subdrawing of D.

Let v be a vertex of the unbounded cell. By Theorem 2.2, there is a v-spinal drawing D′′ of G′,
isomorphic to D′. Consider now an edge v1v2 ∈ E(G) \ E(G′). In D, this edge was represented by a
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curve that, with the exception of its endpoints, lied in the interior of a single cell C ′ in the subdrawing
D′. Let C ′′ denote the cell in D′′, which corresponds to C ′. In view of condition 3 in Definition 2.1,
the points representing v1 and v2 can be connected by an x-monotone curve within the cell C ′′. Let us
choose such an x-monotone connecting curve for each edge in E(G) \E(G′), so that the total number
of crossings between them is as small as possible. Observe that any two such curves can cross at
most once, otherwise by swapping their sections between two consecutive crossing points and slightly
separating them, we could reduce the total number of crossings by 2. During this transformation,
both curves remain x-monotone.

Therefore, in the resulting x-monotone drawing of G, the total number of crossings is at most(|E(G)|−|E(G′)|
2

)
. This yields that

mon-cr(G) ≤
(|E(G)| − |E(G′)|

2

)
.

On the other hand, taking into account that every edge in E(G) \ E(G′) participates in at least one
crossing in D, we have

|E(G)| − |E(G′)| ≤ 2cr(G).

Comparing the last two inequalities, the theorem follows. 2

Proof of Theorem 2.2. We proceed by induction on the number of vertices of D. The theorem is
obviously true for graphs with one or two vertices. Suppose now that D has n vertices and that the
theorem has already been proved for all drawings of graphs with fewer than n vertices. Let v be a
vertex of the unbounded cell in D.

Case 1: D is not connected. Suppose for simplicity that it has two connected components, D1

and D2; the other cases can be treated analogously. Assume without loss of generality that v ∈ D1.

Subcase 1.1: D2 has a vertex v′ that belongs to the unbounded cell in D. Take a v-spinal drawing
isomorphic to D1, and place a v′-spinal drawing isomorphic D2 completely to the right of it, so that
every vertex of the latter has a larger x-coordinate than any vertex of the former. The resulting
drawing meets the requirements.

Subcase 1.2: D2 does not have a vertex that belongs to the boundary of the unbounded cell in
D. Let C denote the cell in D1 that contains D2, and fix a vertex w of C. Let v′ be a vertex of the
unbounded cell in D2. Take a v-spinal drawing isomorphic to D1, and place a very small copy of a
v′-spinal drawing isomorphic to D2 in the cell C ′ of D1 that corresponds to C, in a small neighborhood
of the vertex that corresponds to w.

The resulting drawing D obviously satisfies conditions 1, 2, and 4 in Definition 2.1. As for condition
3, we have to verify only that any two vertices, v1 and v2, that belong to the union of the boundary
of C ′ and the outer boundary of the small v′-spinal drawing isomorphic to D2 can be connected by an
x-monotone curve that does not cross D. This readily follows by the induction hypothesis, unless v1

belongs to the boundary of C ′ and v2 belongs to the outer boundary of the small drawing isomorphic
to D2. In the latter case, move slightly downward from v2 and then closely follow the x-monotone
curve connecting w to v1.

Case 2: D has a cut vertex v′. Suppose that D = D1 ∪D2, where the only point that D1 and D2

have in common is v′. Assume without loss of generality that v is a vertex of D1. Note that v and v′

may be identical.

Let C denote the cell in D1 that contains D2. In particular, v′ is a vertex of C. In D2, the vertex
v′ belongs to the unbounded cell.
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Take a v-spinal drawing isomorphic to D1, and fix a very short non-vertical segment s, which is
incident to the point p(v′) representing v′ and which lies in the cell C ′ that corresponds to C. In
the special case where v′ = v and C ′ is the unbounded cell, make sure that the x-coordinates of
the points of s are larger than the x-coordinate of p(v′). In addition, take a very small v′-spinal
drawing isomorphic to D2 such that the point representing v′ coincides with p(v′). Applying a suitable
orientation preserving linear transformation to this second drawing, it can be achieved that it becomes
very “flat” and small, and lies in a very small neighborhood of the segment s, within C ′. Putting
these two drawings together, the resulting drawing meets the requirements.

Note that, if the x-coordinates of the points of s are smaller than the x-coordinate of p(v′), then the
above linear transformation reverses the order of the x-coordinates in the v′-spinal drawing isomorphic
to D2. In order to preserve the combinatorial structure of the cell decomposition, we have to make
sure that we use a linear transformation that preserves the orientation of the plane.

G
v=v’

G

1

2

1G

G2

v v’

Figure 2: Case 2. D has a cut vertex v′.

Case 3: D is 2-connected. We need the following well known result.

Lemma 2.3. [Di05] For every 2-connected graph other than a cycle, there exists a path such that
removing all edges and all internal vertices of this path, the remaining graph is still 2-connected.

Let D be a drawing of a cycle with vertices v = v1, v2, . . . , vn, in counterclockwise order. Then the
rectilinear drawing induced by the points p(vi) = (i, i2) is v-spinal and isomorphic to D.

If D is not a cycle, then, according to the lemma, it can be obtained from a 2-connected drawing
D0, by adding a path P between two vertices, u and w, of D0), which, with the exception of its
endpoints, lies in the interior of a cell C. We distinguish two subcases.

Subcase 3.1: v is a vertex of D0. Take a v-spinal drawing isomorphic to D0. Let C ′ denote the
cell that corresponds to C in this drawing. The vertices u and w belong to the boundary of this cell.
Therefore, by condition 3 in Definition 2.1, u and w can be connected by an x-monotone curve within
C ′. Put all internal vertices of P along this curve, very close to u. The resulting drawing meets the
requirements.

Subcase 3.2: v is an internal vertex of P . Since v is a vertex of the unbounded cell in D, the cell
C in D0 that contains P , must be the unbounded cell.

Let P = uu1 · · ·umvw1w2 · · ·wkw. Assume without loss of generality that in D the unbounded cell
lies on the left-hand side of P , as we traverse it from u to w. Take a u-spinal drawing D1 isomorphic
to D0. Place v to the left and w1 to the right of all vertices of D0.

Connect u and v by an x-monotone curve in D1, and place the vertices u1, . . . , um on this curve, in
this order. Then connect v to w1 by an x-monotone curve running above all previously drawn vertices
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and edges. Finally, connect w1 to w by an x-monotone curve which does not cross any previously
drawn edges, and place the vertices w2, . . . , wk on this curve, in this order, very close to w1. Adding
these three curves that represent P to D1, we obtain a v-spinal drawing isomorphic to D, as required.
2

H
v

u

w
H

v u
w

Figure 3: Case 3. D is two-connected.

3 Proof of Theorem 2

Throughout this section, let k be a fixed positive integer. We construct a graph Gk with cr(Gk) =
6k + 6 and mon-cr(G) = 7k + 6, as follows.

First, we define an auxiliary graph on the vertex set V (H) = {u,w, v1, . . . , v9} such that each of
its edges is red, blue, or black. Let w be connected to every element of v1, . . . , v9 by a red edge. Let
v1, . . . , v9 form a red cycle, in this order. Finally, let H have three blue edges, uv2, uv5, and uv8, and
three black edges, v1v6, v7v3, v4v9. See Figure 4. Let H ′ be a colored graph isomorphic to H with
V (H ′) = {u′, w′, v′1, . . . , v′9} and V (H ′) ∩ V (H) = ∅.

Let Hk denote the graph obtained from H by substituting each of its red edges by 10k paths of
length two and each of its blue edges by k paths of length two such that the middle vertices of these
paths are disjoint from one another and from all previously listed vertices. We will refer to these paths
as red paths and blue paths, respectively. Let H ′

k denote the graph with V (H ′
k) ∩ V (Hk) = ∅ which

can be obtained from H ′ in exactly the same way as Hk was constructed from H.

Finally, connect u to u′ by a red edge, and replace this edge by 10k vertex disjoint red paths of
length two, as above. Denote the resulting graph by Gk.

We start with the following simple observation.

Claim 3.1. cr(Gk) ≤ 6k + 6 and mon-cr(Gk) ≤ 7k + 6.

Proof. A drawing of Gk with 6k + 6 crossings and a monotone drawing with 7k + 6 crossings are
depicted on Figure 5, and Figure 6, respectively. The thick edges and the dotted edges represent
bundles consisting of 10k red paths and k blue paths, respectively. The paths representing the same
colored edge run very close to one another and do not cross. The only difference between the two
drawings is that in the first one v4v9 crosses uv2, while in the second it crosses uv5 and uv8. 2

A drawing of a graph G is called cr-optimal if the number of crossings in it is cr(G). Analogously,
a mon-cr-optimal drawing is a monotone drawing in which the number of crossings is mon-cr(G).
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Figure 4: Graph H.

Claim 3.2. Each of the graphs Gk, Hk, and H ′
k has a cr-optimal drawing and a mon-cr-optimal

drawing satisfying the the following conditions. (i) The red paths substituting the same red edge run
very close to one another and do not cross any edge. (ii) The blue paths substituting the same blue
edge run very close to one another, do not cross one another, and cross exactly the same edges.

Proof. Let G stand for one of the graphs Gk, Hk, or H ′
k. Let P1, . . . , Pm (m = 10k or k) denote the

paths substituting the same red or blue edge. Consider a cr-optimal or a mon-cr-optimal drawing
of G. Suppose without loss of generality that among all Pis the path P1 participates in the smallest
number of crossings. Redraw P2, . . . , Pm so that they run “parallel” to P1 and very close to it.
Clearly, this transformation does not increase the total number of crossings, so that the resulting
drawing remains optimal.

Suppose that P1, . . . , Pm (m = 10k) are red paths that substitute the same red edge and run parallel
to one another. If any of them crosses an edge, then all of them do. This alone creates a total of at
least 10k crossings, which contradicts the assumption the drawing was optimal. 2

Claim 3.3. cr(Hk) = mon-cr(Hk) = 3k + 3. Consequently, we have cr(Gk) = 6k + 6.

Proof. The right part of Figure 6 shows a monotone drawing of H. ¿From this one can easily construct
a monotone drawing of H ′

k with 3k + 3 crossings. Therefore, we have cr(Hk) ≤ mon-cr(Hk) =
mon-cr(H ′

k) ≤ 3k + 3. As before, the thick and the dotted edges represent bundles of 10k parallel
red paths and bundles of k parallel blue paths.

Consider a cr-optimal drawing of Hk which satisfies the conditions in Claim 3.2. Replace now
the red paths substituting the same red edge by a single red edge running along any one of those
paths. The red cycle C = v1v2 · · · v9 divides the rest of the plane into a bounded and an unbounded
region. All points that belong to the bounded (unbounded) region are said to be inside (outside) of
C. Assume without loss of generality that the vertex w lies inside of C. Since no red edge is allowed
to cross any other edge, the edges v3v7, v1v6, and v4v9, as well as the vertex u with all edges incident
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Figure 5: A cr-optimal drawing of G.

to it, must lie outside of C. Thus, the edges v3v7, v1v6, and v4v9 are pairwise crossing. Moreover, the
path v2uv5 must cross the edges v3v7 and v4v9, and the path v2uv8 must cross the edge v1v6. This
already guarantees the existence of 3k +3 crossings, so that we have cr(Hk) = mon-cr(Hk) = 3k +3.
2

To complete the proof of Theorem 2, it remains to verify the following.

Claim 3.4. mon-cr(Gk) ≥ 7k + 6.

Proof. Fix a mon-cr-optimal drawing of Gk, satisfying the conditions in Claim 3.2. As in the proof
of Claim 3.3, replace every bundle of red paths substituting the same red edge by a single red edge.
Let C and C ′ denote the red cycles induced by the vertices v1, v2, . . . , v9 and v′1, v

′
2, . . . , v

′
9. Both of

them divide the plane into a bounded and an unbounded region, so that it makes sense to say that a
point is inside or outside of C or C ′.

By Claim 3.2, in the original drawing of Gk, the red edges cannot cross any other edge. Suppose
that a blue edge belonging to Hk ⊂ Gk crosses an edge belonging to H ′

k ⊂ Gk. Then the number of
crossings is at least k +mon-cr(Hk)+mon-cr(H ′

k) = 7k +6, and we are done. Thus, we can assume
that in the drawing of Gk, the blue edges of Hk do not cross any edge of H ′

k, and analogously, the
blue edges of H ′

k do not cross any edge of Hk.

Let v be the vertex of Gk with the smallest x-coordinate, and suppose without loss of generality
that v ∈ V (H ′

k). Consider now separately the drawing of Hk and the induced cell decomposition. By
definition, v lies in the unbounded cell. Observe, that if we remove edges v′1v

′
6, v′7v

′
3, v′4v

′
9 from H ′

k,
that is, if we keep only the red and blue edges, we still have a connected graph. The red and blue
edges of H ′

k cannot cross any edge of Hk. Hence, all vertices of H ′
k must lie in the unbounded cell of

the cell decomposition induced by Hk.

The vertices u and u′ are connected by a red edge in Gk. Hence, u must lie on the boundary of
the unbounded cell of the cell decomposition induced by Hk. In particular, u is outside of the cycle
C. Since w is connected to each edge of C by a red edge, u and w lie on different sides of C. Thus,
w must be inside of C. Therefore, the edges v3v7, v1v6, v4v9, as well as the vertex u together with all
edges incident to it, must lie outside of C. Consequently, the edges v3v7, v1v6, v4v9 must be pairwise
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Figure 6: A mon-cr-optimal drawing of G.

crossing. The edges v3v7, v1v6, v4v9 together with C divide the plane into eight cells, one of which is
unbounded, and u must belong to this cell Γ.

Let vi be the vertex of C with the smallest x-coordinate. Since v3v7, v1v6, v4v9 are represented
by monotone curves, vi has to lie on the boundary of the unbounded cell Γ. We can assume without
loss of generality that 1 ≤ i ≤ 3. (If this is not the case, we can add 3 or 6 to all indices modulo
9.) So, vi is on the boundary of the unbounded cell, and u is in the unbounded cell. Using the fact
that the edges v1v2 and v2v3 do not cross any other edge, we can conclude that v1, v2, and v3 all lie
on the boundary of the unbounded cell Γ. See Figure 6. Since we started with a mon-cr-optimal
drawing, the edge uv2 does not cross v4v9. The path v2uv5 crosses v4v9, so that uv5 must cross v4v9.
Analogously, v2uv8 crosses v4v9, so that uv8 crosses v4v9. Moreover, the path v2uv5 crosses v3v7,
and v2uv8 crosses v1v6. Recall from the previous paragraph that the edges v3v7, v1v6, and v4v9 are
pairwise crossing. Summarizing, there are at least 4k + 3 crossings between edges of Hk. By Claim
3.3, mon-cr(H ′

k) ≥ 3k+3, so that altogether mon-cr(Gk) ≥ (4k+3)+(3k+3) ≥ 7k+6, as required.
2

4 Concluding remarks

1. Another important parameter of a graph, the odd-crossing number, was introduced implicitly
by Tutte [Tu70]. It is defined as the minimum number odd-cr(G) of all pairs of edges that cross
an odd number of times, over all drawings of G. Clearly, for any graph G, we have odd-cr(G) ≤
pair-cr(G) ≤ cr(G) ≤ mon-cr(G) ≤ lin-cr(G). Theorem 1 can be strengthened as follows.

Corollary 4.1. Every graph G satisfies the inequality

mon-cr(G) < 2odd-cr2(G).
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Proof. Let D be a drawing of G, in which the number of pairs of edges that cross an odd number of
times is odd-cr(G). Let G′ ⊆ G denote the subgraph consisting of all vertices of G and all edges that
do not cross any other edge an odd number of times. It was shown in [PaT00a] that G has another
drawing, D′, in which the edges belonging to G′ do not participate in any crossing, and hence they
form a plane graph. Every edge in E(G) \ E(G′) is represented by a curve that lies entirely in a cell
of this plane graph. According to our Theorem 2.2, this plane graph admits a v-spinal (monotone)
drawing for some v ∈ V (G). By definition, we can add to this drawing all edges in E(G) \ E(G′), so
that all of them are represented by monotone curves, and they do not cross any edge of G′. Among
all such monotone drawings of G, consider one that minimizes the total number of crossings. In this
drawing, any two edges cross at most once. Thus, we have

mon-cr(G) ≤
(|E(G)| − |E(G′)|

2

)
.

On the other hand, taking into account that every edge in E(G) \ E(G′) participates in at least one
pair of edges in D which cross an odd number of times, we obtain that

|E(G)| − |E(G′)| ≤ 2odd-cr(G).

Comparing the last two inequalities, the corollary follows. 2

In [PaT00b], we introduced the following variant of the odd-crossing number. Two edges of a
graph G are called independent if they do not share a vertex. Let odd-cr−(G) denote the smallest
number of pairs of independent edges that cross an odd number of times, over all drawings of G. That
is, we do not count those pairs of edges that are incident to the same vertex, even if they cross an
odd number of times. Pelsmajer, Schaefer, and Štefankovič [PeSS10] managed to strengthen the result
of [PaT00a], used in the proof of Corollary 4.1. They established the following result. Consider a
drawing of G in the plane. An edge e ∈ E(G) is called independently even if it crosses every other
edge of G which is independent of e an even number of times. Then G has another drawing in which
no independently even edge crosses any edge. Plugging this result into the above proof, we obtain the
following strengthening of Corollary 4.1.

Corollary 4.1’. Every graph G satisfies the inequality

mon-cr(G) ≤ 2odd-cr2
−(G).

2. As mentioned in the Introduction, Tóth [To11] proved that every graph G satisfies the inequality

cr(G) = O(pair-cr7/4(G)/ log3/2 pair-cr(G)).

Restricting the notion of pair-crossing number to monotone drawings, we obtain another closely related
graph parameter. The monotone pair-crossing number of G, mon-pair-cr(G), is defined as the
smallest number of crossing pairs of edges over all monotone drawings of G. Obviously, we have that
odd-cr(G) ≤ pair-cr(G) ≤ mon-pair-cr(G), for any graph G. Valtr [Va05] proved that every graph
G satisfies the inequality mon-cr(G) = O(mon-pair-cr4/3(G)).
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