
Forbidden paths and yles in ordered graphs and matriesJ�anos Pah G�abor TardosAbstratAt most how many edges an an ordered graph of n verties have if it does not ontain a�xed forbidden ordered subgraph H? It is not hard to give an asymptotially tight answer to thisquestion, unless H is a bipartite graph in whih every vertex belonging to the �rst part preedesall verties belonging to the seond. In this ase, the question an be reformulated as an extremalproblem for zero-one matries avoiding a ertain pattern (submatrix) P . We disprove a generalonjeture of F�uredi and Hajnal related to the latter problem, and replae it by some weakeralternatives. We verify our onjetures in a few speial ases when P is the adjaeny matrixof an ayli graph and disuss the same question when the forbidden patterns are adjaenymatries of yles. Our results lead to a new proof of the fat that the number of times that theunit distane an our among n points in the plane is O(n4=3).1 IntrodutionA simple graph G with a linear ordering on its vertex set V (G) is alled an ordered graph. The edgeset of G is denoted by E(G). In the spirit of the fundamental problem of Tur�an-type extremal graphtheory [3℄, one an raise the following general question. What is the maximum number ex<(n;H) ofedges that an ordered graph on n verties an have without ontaining a (not neessarily indued)subgraph isomorphi to a �xed ordered graph H? The ordering of the verties is inherited by thesubgraphs. An isomorphism between two ordered graphs is an isomorphism between the underlyingunordered graphs that respets the ordering of the verties. If a graph does not ontain H as anordered subgraph, it is alled H-free. We assume H has at least one edge.De�ne the interval hromati number �<(H) of an ordered graph H, as the minimum numberof intervals the (linearly ordered) vertex set of H an be partitioned into, so that no two vertiesbelonging to the same interval are adjaent inH. By a simple appliation of the Erd}os{Stone theorem[7℄, one an easily desribe the asymptoti behavior of ex<(n;H), unless �<(H) = 2. See also [5℄ fora similar result and proof.Theorem 1 For any ordered graph H, the maximum number of edges that an H-free ordered graphwith n verties an have satis�esex<(n;H) = �1� 1�<(H)� 1��n2�+ o(n2):Proof. Let G be an H-free ordered graph with n verties. Let m = jV (H)j, � = �<(H), and letK�(m) denote the unordered �-partite omplete graph with m verties in eah of its vertex lassesV1; : : : ; V�. It follows from the Erd}os{Stone theorem that if the unordered graph obtained from G bydisregarding the ordering ontains no K�(m), then its number of edges is at most �1� 1��1� �n2�+o(n2). 1



Therefore, it is suÆient to show that in any ordering of K�(m) there is an ordered subgraphisomorphi to H. To see this, let v1i ; : : : ; vmi be the elements of Vi in inreasing order (1 � i � �).Partition the vertex set of H into � independent intervals. For 0 � j � �, let mj stand for the totalsize of the �rst j intervals. De�ne a permutation � on f1; : : : ; �g as follows. Let �(1) be the index ifor whih vm1i is the smallest. Assume that we have already de�ned �(1); : : : ; �(j � 1). Let �(j) bethe index i di�erent from the previous ones for whih vmji is the smallest. Now we an easily givean order preserving embedding of H into K�(m): if the jth smallest vertex of H belongs to the ithinterval (that is, we have mi�1 < j � mi), then map it to vj�(i). 2This theorem naturally extends to families H of forbidden ordered subgraphs with �<(H) :=minf�<(H)jH 2 Hg.Note that the interval hromati number is easily omputable. Indeed, by a simple greedyalgorithm one an eÆiently �nd an optimal partition of the vertex set of H into �<(H) independentintervals. This is in sharp ontrast with the fat that even the approximation of the usual hromatinumber of a graph is an NP-hard task.As shown by Theorem 1, determining the maximum number of edges of an H-free ordered graphbeomes more interesting when �<(H) = 2. In this speial ase, it is more onvenient to restritour attention to H-free ordered graphs G whih themselves have interval hromati number 2. Theverties of suh a graph an be enumerated as v1 < v2 < : : : < vn < vn+1 < : : : < vn+m so thatevery edge of G onnets some vi; i � n to a vj; j > n. Let A = A(G) be an n�m adjaeny matrixwhose rows and olumns orrespond to the verties vi, i � n and vj , j > n, respetively, and whoseentry ai;j�n = 1 if vivj is an edge of G, and 0 otherwise. A(G) is uniquely determined if G hasa unique deomposition into two independent intervals. This is the ase, for example, if G has noisolated verties. Conversely, any n�m zero-one matrix A gives rise to an ordered graph G(A) with�<(G(A)) � 2, whose verties orrespond to the rows and olumns of A, and the adjaenies betweenthe two kinds of verties depend on the orresponding entry of A. We always have G(A(G)) = G.The weight w(A) of a zero-one matrix A is the number of its 1 entries. A zero-one matrix ofpositive weight is alled a pattern. Following [9℄, we say that a zero-one matrix A ontains a patternP if P is a submatrix of A or if P an be obtained from a submatrix of A by hanging some 1 entriesto 0. The orresponding submatrix of A is said to represent P . Notie that we an delete somerows or olumns of A to �nd the submatrix P , but we are not allowed to permute the remainingrows and olumns. If A does not ontain P , we say that A avoids P . Let ex(n;m;P ) denote themaximum weight of an n�m zero-one matrix that avoids P . For simpliity, write ex(n; P ) insteadof ex(n; n; P ). If a family P of patterns is forbidden, we use ex(n;P) to denote the orrespondingmaximum weight. The problem of estimating these funtions for various patterns has been onsideredin [1, 2, 8, 9, 11, 15℄.Let G and H be two ordered graphs with interval hromati number 2, and assume that H hasa unique deomposition into two independent intervals. Then G is H-free if and only if A(G) avoidsA(H). Therefore, if G is H-free and the �rst and seond intervals in its deomposition onsist of nand m elements, respetively, then its number of edges satis�esjE(G)j � ex(n;m;A(H)):If we only assume that �<(H) = 2, but there is no assumption on the host graph G, then thesituation is somewhat more ompliated. Nevertheless, in Setion 2 we prove the following generalresult linking the solutions of the extremal problems for graphs and for patterns (matries).2



Theorem 2 Let H be an ordered graph with interval hromati number 2, whih has a uniquedeomposition into two intervals that are independent sets. Then we haveex(bn=2; A(H)) � ex<(n;H) = O(ex(n;A(H)) log n):Moreover, if ex(n;A(H)) = O(n) holds for some  > 1, then we have ex<(n;H) = O(n).We onjeture that if H is an ordered tree of interval hromati number 2, then ex<(n;H) is onlyat most slightly superlinear (Conjeture 1). In Setion 3, we verify this statement in several speialases.In Setion 4, we onsider the ase when H is an ordered yle (of even length) with �<(H) = 2.It is well known (see [3℄) that there are (unordered) graphs with n verties and with at least onstanttimes n1+ 12k edges that ontain no yle of length 2k or shorter. Therefore, by Theorem 2, in thisase the order of magnitude of ex<(n;H) is the same as that of the solution of the orrespondingmatrix problem. In Setion 4, we analyze the latter version of the question.We all a sequene C = (p0; p1; : : : ; p2k) of positions in a matrix A an orthogonal yle if p0 = p2kand the positions p2i and p2i+1 belong to the same row, while the positions p2i+1 and p2i+2 belongto the same olumn, for every 0 � i < k. If the entry of A in positions pi is 1 for all 0 � i � 2k, thenC is said to be an orthogonal yle of A. Notie that, for any zero-one matrix A, eah yle of G(A)(with a starting point and an orientation) orresponds to an orthogonal yle of A. In general, anorthogonal yle of A orresponds to a walk in G(A) that starts and ends at the same vertex.Given a position p = (i; j) of the matrix A and an orthogonal yle C = (p0; p1; : : : ; p2k), de�neC(i; j) to be the number of times that the possibly self-interseting polygon p0p1 : : : p2k enirles (inthe ounter-lokwise diretion) a point p0 = (i + 1=2; j + 1=2) of the plane. Here we interpret theposition (i; j) in a matrix as the point (i; j) or the Eulidean plane. Notie that this onvention isagainst the tradition of writing the �rst row of a matrix on top. Formally, let P (i; j) be the set ofpositions (i0; j0) with i0 > i and j0 > j, and setC(i; j) = jf0 < l � k : p2l 2 P (i; j)gj � jf0 < l � k : p2l�1 2 P (i; j)gj:An orthogonal yle is said to be positive if C(i; j) � 0 for every pair (i; j) and C(i; j) is stritly posi-tive for at least one suh pair. A olletion C of orthogonal yles is alled positive ifPC2C C(i; j) � 0for every (i; j) and there exists at least one (i; j) for whih this sum is positive.Let G be an ordered graph with interval hromati number 2. It is easy to hek that, for anyyle of length 4, the orresponding entries of the adjaeny matrix A(G), with a proper orientation,form a positive orthogonal yle. However, the entries of A(G) assigned to the edges of a yleof length 6 may or may not indue a positive orthogonal yle. For obvious reasons, yles of theformer type are alled nonrossing hexagons. Katz [10℄ proved that the maximum weight of an n by nzero-one matrix that avoids yles of length four and nonrossing hexagons (or, equivalently, positiveorthogonal yles of length at most 6) is O �n 32�"� for some " > 0. This is somewhat stronger thanthe trivial bound O �n 32�, whih is tight when only 4-yles are forbidden. Katz applied his resultto measure-theoreti problems.The main result of Setion 4 is the following.Theorem 3 The maximum weight of an n by n zero-one matrix ontaining no positive orthogonalyle is O(n4=3). The order of magnitude of this bound annot be improved.3



In fat, we prove a stronger result (Theorem 5) that provides several ounterexamples to aonjeture of F�uredi and Hajnal [9℄. It also o�ers a new proof of the following well-known theoremof Spener, Szemer�edi, and Trotter [12℄.Corollary 1 [12℄ The number of unit distane pairs determined by n points in the plane is O(n4=3).The proof of these fats, a ounterexample to a related onjeture of Brass, K�arolyi, and Valtr[5℄, as well as some onluding remarks are presented in Setion 5.2 Ordered graphs vs. zero-one matriesFirst, we establish Theorem 2 onneting the extremal problems for ordered graphs and matries.Roughly speaking, it shows that if we want to estimate the maximum number of edges that an H-freeordered graph of n verties an have, we do not lose muh by restriting the searh to ordered graphswith interval hromati number 2. For the proof, we need two simple observations summarized inthe following lemma. Throughout this paper, log always stands for logarithm of base 2.Lemma 1 (i) For any ordered graph G of n verties, one an �nd edge disjoint subgraphs Gi for0 � i � dlog ne suh that E(G) = [dlog nei=0 E(Gi) and eah onneted omponent of Gi has atmost dn=2ie verties and interval hromati number at most 2.(ii) (Super-additivity) For any pattern P and for any positive integers n and m, we haveex(n+m;P ) � ex(n; P ) + ex(m;P ):Proof. To show (i), denote the verties of G by v0; : : : ; vn�1. Let Gi onsist of all edges vjvk 2 E(G),for whih b2ij=n = b2ik=n but b2i+1j=n 6= b2i+1k=n. These subgraphs obviously meet therequirements.To verify part (ii), we establish the super-additivity of the asymmetri version of the ex funtion:ex(n1 +m1; n2 +m2; P ) � ex(n1; n2; P ) + ex(m1;m2; P ):Assume �rst that P = (pij) has at least a single 1 entry in its �rst row, at least one 1 in its last row,and that the same holds for its �rst and last olumns. Mark a 1 entry in the �rst row of P red, a 1entry in the last row of P blue, and assume without loss of generality that the blue entry does notlie to the right of the red one. Let A and B be n1�n2 and m1�m2 zero-one matries, respetively,that avoid P . Let us obtain the (n1 +m1) � (n2 +m2) matrix C by putting A and B together asbloks along the main diagonal, and �lling all the remaining positions by 0. We laim that C avoidsP . Suppose not. If the red entry of P is represented in blok B or the blue entry is represented inblok A, then B or A would not avoid P , respetively. Thus, we an assume that the blue entry isrepresented in B, and the red entry is represented in A. However, in this ase the blue entry lies tothe right of the red one, whih is impossible.Suppose next that, e.g., the �rst row of P ontains no entry 1. For any matrix A, let A0 denotethe matrix obtained from A by removing its �rst row. Then A ontains P if and only if A0 ontainsP 0. Using this simple observation, it is not hard to see that ex(n;m;P ) = ex(n� 1;m; P 0)+m. Thisimplies that super-additivity is inherited from P 0 to P . Therefore, it must hold for every patternP . 24



Proof of Theorem 2. The inequality ex<(n;H) � ex(bn=2; A(H)) diretly follows from thede�nitions: if A is an bn=2 � bn=2 zero-one matrix not ontaining A(H), then G(A) is an H-freeordered graph on 2bn=2 verties whose number of edges oinides with the weight of A.To prove the upper bound on ex<(n;H), onsider an ordered graph G on n verties that doesnot ontain H. Apply Lemma 1 (i) to partition the edges of G into subgraphs Gi satisfying theonditions. Sine any nontrivial onneted omponent C of Gi is H-free, the matrix A(C) annotontain A(H). Thus, we have eC � ex(nC ; A(H)), where nC and eC denote the number of vertiesand the number of edges in C. If ex(n;A(H)) = O(n) for some  > 1, then summing these estimatesover all i and over all onneted omponents C of Gi, we obtain that jE(G)j = O(n), as required.In the general ase, summing over all onneted omponents C of a �xed Gi and using the super-additivity property in Lemma 1 (ii) we an onlude that jE(Gi)j � ex(n;A(H)), and hene G hasat most (log n+ 2)ex(n;A(H)) edges. 2As shown by Theorem 2, there is little di�erene between the extremal problems for orderedgraphs and for the orresponding zero-one matries. In many ases, one annot get rid of thelogarithmi fator in the seond inequality. Consider, for instane, the ordered graph G4 withverties v1 < v2 < v3 < v4 and edges v3v1, v1v4, and v4v2. As an unordered graph, G4 is a path oflength 3. Now A(G4) is a 2� 2 matrix onsisting of three 1 entries and a 0 entry. It is easy to verifythat ex(n;A(G4)) = 2n� 1.On the other hand, let G be an ordered graph with verties v1; : : : ; vn; where vi is onneted tovj if and only if ji � jj is a power of 2. Clearly, G is G4-free and its number of edges is at leastn logn� n. Thus, in this ase we haveex<(n;G4) � n logn� n � log n4 ex(n;A(G4)):We remark that Lemma 1 (ii) onerning the super-additivity of the funtion ex(n; P ), does notextend to arbitrary families of forbidden patterns. For instane, let P be the family onsisting of alln � n zero-one patterns of weight 1. Clearly, we have ex(i;P) = i2 for i < n, but ex(i;P) = 0 fori � n.3 TreesWe say that an ordered graph is ayli if its underlying unordered graph ontains no yles. Theaim of this setion is to establish some partial results onerning the following onjeture.Conjeture 1 For any ayli ordered forbidden graph H with interval hromati number 2, wehave ex<(n;H) � n(log n)O(1).Notie that, if true, this statement strongly haraterizes ayli ordered graphs H with �<(H) �2: for any other graph H, there exists " > 0 suh that ex<(n;H) � n1+". Indeed, in view ofTheorem 1, if �<(H) � 3, the extremal funtion ex<(n;H) is quadrati. On the other hand, if Hhas a yle of length k (with any ordering), then its extremal funtion is at least as large as themaximum number of edges that a Ck-free unordered graph of n verties an have, whih is 
(n1+ 1k ).Conjeture 1 is stated with the upper bound n(logn)O(1). We do not know, however, any oun-terexample to this onjeture with the stronger bound O(n log n), whih has been proposed by F�urediand Hajnal [9℄. It would also be interesting to prove a weaker form of the same statement, aordingto whih ex<(n;H) = O(n1+") holds for any " > 0.5



In order to establish Conjeture 1 in some speial ases, we need a ouple of statements relatedto the orresponding problems for zero-one matries.Lemma 2 Assume that the last olumn of a pattern P ontains a single 1 entry, and let P 0 denotethe pattern obtained from P by removing this olumn. Then we haveex(n; P ) = O0�Xi�0 2iex(bn=2i; P 0)1A ;and, onsequently, ex(n; P ) = O (ex(n; P 0) log n) : Furthermore, if ex(n; P 0) = O(n) holds for some > 1; then we have ex(n; P ) = O(n).Proof. It is suÆient to prove the �rst part of the statement, beause it implies the last two laims,just like in the proof of Theorem 2.Let A be an n�m zero-one matrix, whih avoids P and whose weight is maximum, that is, wehave w(A) = ex(n;m;P ). Assume that m is even and onsider the submatrix A1 of A formed by allrows of A that have no 1 entry in their last m=2 positions. Let A2 be the submatrix of A formed bythe remaining rows A. Denote by n1 and n2 the number of rows in A1 and A2, respetively, so thatwe have n1 + n2 = n. Furthermore, for i = 1 and 2, let Ai1 and Ai2 denote the submatries of Aiformed by the �rst m=2 and by the last m=2 olumns of Ai, respetively. Clearly, we haveex(n;m;P ) = w(A) = w(A11) + w(A12) + w(A21) + w(A22);where w(A12) = 0 holds, by de�nition. Sine the other three matries on the right-hand side are sub-matries of A, they all avoid P . Therefore, w(A11) � ex(n1;m=2; P ) and w(A22) � ex(n2;m=2; P ).As for A21; it also avoids the pattern P 0. Indeed, if A21 had a submatrix representing P 0, adding toit a olumn of A22 we would obtain a representation of P . Thus, we have w(A21) � ex(n2;m=2; P 0).This yields ex(n;m;P ) � ex(n1;m=2; P ) + ex(n2;m=2; P ) + ex(n2;m=2; P 0):Assume now that m = 2k. Applying the above bound reursively k times, we onlude thatex(n;m;P ) � kXi=1 2i�1Xj=1 ex(nij;m=2i; P 0) + n;where the nonnegative integers nij satisfy that P2i�1j=1 nij � n, for any 1 � i � k.Every n�mmatrix avoiding P 0 an be partitioned into dn=me submatries of size at most m�m,so that we have ex(n;m;P 0) � dn=meex(m;P 0). This, in turn, impliesex(n; P ) � kXi=1(2i + 2i�1)ex(n=2i; P 0) + n;if n = 2k. Thus, the �rst statement of the lemma holds for powers of 2, and, by the monotoniity ofthe ex funtion, it is also true for all other values of n. 2There are several examples showing that the logarithmi fator in Lemma 2 annot be always re-moved. Let F = � 1 1 01 0 1 �. F�uredi [8℄ and Bienstok-Gy}ori [2℄ proved that ex(n; F ) = �(n log n),6



while Tardos [15℄ found the sharper estimate ex(n; F ) = n logn+O(n): On the other hand, as men-tioned before, the pattern F 0 obtained from F by removing its last olumn satis�es the equationex(n; F 0) = 2n� 1.Applying Theorem 2 one and Lemma 2 several times, one an verify Conjeture 1 for a largelass of graphs. By symmetry, one an apply Lemma 2 to eliminate the �rst olumn or the �rst (last)row of a pattern, provided that it has a single 1 entry. In partiular, the onjeture holds for allperfet mathings, i.e., ordered graphs H whose adjaeny matrix A(H) has preisely one 1 in eahof its rows and olumns. In fat, in this ase, improving some earlier results of Alon and Friedgut[1℄, Marus and Tardos [11℄ established a linear upper bound on ex(n;A(H)). The smallest orderedgraphs H for whih Conjeture 1 annot be proved in this way are paths of length 5 whose adjaenymatrix A(H) is 0� 1 0 11 0 00 1 1 1A ;or one of the three other matries that an be obtained from this one by rotation (or reetion).Before proving Conjeture 1 for this path and for many other patterns, we propose a generalizationof Lemma 2 that would immediately imply Conjeture 1 in its full generality.Conjeture 2 Let P be a pattern whih has a olumn with a single 1 entry, and let P 0 denote thepattern obtained from P by removing suh a olumn. Then we haveex(n; P ) = O(ex(n; P 0) log n):Using the fat that every tree has a vertex of degree 1, it would follow from Conjeture 2 thatex<(n;H) = O(n logjV (H)j�3 n)holds for any ordered tree or forest H whose interval hromati number is 2.In the following two lemmas, we verify Conjeture 2 in some speial ases.Lemma 3 Let P = (pij) be a pattern whose j0-th olumn ontains a single 1 entry at pi0j0 = 1.Assume further that pi0(j0+1) = 1 and that there exists an index i1 with pi1(j0�1) = pi1(j0+1) = 1. LetP 0 denote the pattern obtained from P by removing olumn j0. Then we haveex(n; P ) = O(ex(n; P 0) log n):Proof. Let A = (aij) be an n� n zero-one matrix whih avoids P and whose weight is maximum,that is, w(A) = ex(n; P ). For any i and j, let mij stand for the largest j0 < j with aij0 = 1. In thease when no suh j0 exists, mij is not de�ned.For 0 � l � blog n, de�ne an n�n zero-one matrix Al = (a(l)ij ), as follows. Set a(l)ij = 1 if aij = 1,mij is de�ned, and j � 2l+1 < mij � j � 2l. We have that,blog nXl=0 w(Al) � w(A) � n;asPAl ontains eah 1 entry of A with the exeption of the �rst suh entry in eah row. Obviously,if a(l)ij = a(l)ij0 = 1 and j < j0, then we have j + 2l � j0. Now let A0l denote the n� n zero-one matrix7



obtained by deleting every other 1 entry in every row of Al but keeping w(A0l) � w(Al)=2. Clearly,any two onseutive 1 entries in eah row of A0l are at least 2l+1 positions apart.We laim that, for 0 � l � blog n, the matrix A0l avoids P 0. Assume, to the ontrary, that A0lhas a submatrix B whih represents P 0. Let olumn j0�1 and olumn j0 of B be olumns j0 < j00 inA0l. Let rows i0 and i1 of B be rows i0 and i00 in A0l. As olumn j0 of B orresponds to olumn j0+1of P , and we have pi1(j0�1) = pi1(j0+1) = pi0(j0+1) = 1, we obtain that A0l has 1 entries in eah of thepositions (i00; j0), (i00; j00), and (i0; j00). In partiular, we have j0 + 2l+1 � j00. Now we onsider thesubmatrix C of A onsisting of all rows and olumns that onstitute B and of the additional olumnmi0j00 . As a(l)i0j00 = 1, the value mi0j00 is well de�ned and we have j00 > mi0j00 > j00 � 2l+1 � j0. Thus,the new olumn is olumn j0 of C. As ai0mi0j00 = 1, the submatrix C represents P , a ontradition.Now the proof an be ompleted by simple alulation:ex(n; P ) = w(A) � n+ blog nXl=0 w(Al)� n+ 2 blog nXl=0 w(A0l)� n+ 2 blog nXl=0 ex(n; P 0)= O(ex(n; P 0) log n): 2The proof of the following lemma is very similar to that of Lemma 3 and is, therefore, left to thereader.Lemma 4 Assume that the pattern P = (pij) ontains two olumns j0 and j0 + 1, both of whihhave preisely one 1 entry, at the positions pi0j0 = pi1(j0+1) = 1. Suppose further that pi0(j0�1) =pi1(j0+2) = 1.If there exists a row i2 with pi2(j0�1) = pi2(j0+2) = 1, then we haveex(n; P ) = O(ex(n; P 0) log2 n);where P 0 is obtained from P by removing olumns j0 and j0 + 1. 2By multiple appliation of Theorem 2 and Lemmas 2 and 3, one an easily verify Conjeture 1 forall ordered graphs on at most 6 verties. For ordered graphs on 7 verties, we an proeed similarly(also using Lemma 4), exept when the adjaeny matrix of the forbidden ordered subgraph isequivalent (up to rotation or reetion) to one of the following two patterns:0� 0 1 0 11 0 0 11 0 1 0 1A 0� 0 1 0 11 0 1 01 0 0 1 1AFor these \exeptional" ordered paths of length 6 (a ouple of whih are depited in Figure 1), ourmethods break down. We do not know any upper bound better than O(n5=3), whih follows fromthe fat that the orresponding bipartite graph ontains no K3;4.8



Figure 1.Two exeptional paths of length 6.4 CylesTo formulate our results, we have to onsider the following �ve properties of n�N zero-one matriesM . Properties (a) and (a') orrespond to in�nite families of forbidden subgraphs, inluding manyordered yles. The neessary de�nitions an be found in the Introdution.(a) No olletion of orthogonal yles of M is positive.(a') No orthogonal yle of M is positive.(b) M an be obtained from an n � N real matrix M 0 = (m0i;j) by replaing eah 0 entry by 1and eah nonzero entry by 0. For every 1 � i < n and 1 � j < N , the matrix M 0 satis�esdi;j := m0i+1;j+1 �m0i+1;j �m0i;j+1 +m0i;j > 0.(b') There is a bivariate twie ontinuously di�erentiable real funtion f satisfying ddx ddyf(x; y) > 0for all x and y and real values x1 < x2 < : : : < xn, y1 < y2 < : : : < yN suh that M = (mi;j)is de�ned by mi;j = � 1 if f(xi; yj) = 00 otherwise.() M an be obtained from a matrix M 00 whose entries are 0, 1, and �1, by replaing eah 0 entryby a 1 and eah �1 entry by 0. Every 2� 2 submatrix (bij)j=1;2i=1;2 of M 00 satis�es at least one ofthe following four onditions: b11 = +1, b12 = �1, b21 = �1, or b22 = +1.We start with the simple onnetions between the onditions (a) and (a'), and (b) and (b'),respetively.Lemma 5 For any zero-one matrix M , we have(i) (a))(a');(ii) (b),(b');(iii) if G(M) is onneted, then (a),(a').Proof. We just sketh the simple proofs.Part (i) is trivial.For part (ii), (b'))(b) assume M is obtained from the funtion f as in ondition (b'). We de�neM 0 = (m0i;j) by setting m0i;j = f(xi; yj). Notie thatdi;j = Z xi+1xi Z yj+1yj � ddx ddy f(x; y)� dy dx > 0:9



For the reverse impliation (b))(b'), assume thatM an be obtained from the matrixM 0 = (m0i;j)in the way desribed in ondition (b). Set xi = i for 1 � i � n and yj = j for 1 � j � N and de�nef0(i; j) = m0i;j for integers 1 � i � n and 1 � j � N . Next we extend f0 as a bilinear funtion toeah of the boxes [i; i+1℄� [j; j +1℄ for integers 1 � i < n and 1 � j < N , separately. The resultingfuntion f0 is ontinuously de�ned on [1; n℄ � [1; N ℄ and satis�es ddx ddyf(x; y) = di;j > 0 if x andy are not integers and i and j are their integer parts. However, f is not neessarily di�erentiableat points with at least one integer oordinate. We de�ne f as a twie ontinuously di�erentiableapproximation of f0 satisfying the ondition on the positive mixed derivative everywhere. We anmake sure that f agrees with f0 on the integer points. Finally, we extend f to the entire real planekeeping the mixed derivative positive everywhere. This funtion shows that M satis�es (b0).To establish part (iii) (a'))(a), one has to \ombine" the orthogonal yles of M in a positiveolletion into one big orthogonal yle. To ombine two orthogonal yles C 0 = (p0; : : : ; p2k) andC 00 = (q0; : : : ; q2l) of M , onsider a sequene of positions (r1; r2; : : : ; r2s) that represent a path inG(M) from the vertex orresponding to the row of p0 to the vertex orresponding to the row of q0.Now C = (p0; p1; : : : ; p2k�1; r1; r2; : : : ; r2s; q0; q1; : : : ; q2l�1; r2s; r2s�1; : : : ; r1; p0) is another orthogonalyle of M and we have C(i; j) = C 0(i; j) + C 00(i; j) for every i and j. 2The following 6� 6 matrix shows that the (a))(a') impliation annot be always reversed.0BBBBBB� 0 0 1 0 0 10 0 0 1 1 01 0 0 0 1 00 1 0 0 0 10 1 1 0 0 01 0 0 1 0 0
1CCCCCCATheorem 4 For any zero-one matrix M , onditions (a){() satisfy the following impliations:(a),(b))().Proof. First we show that (b))(a). Assume that an n�N matrix satis�es ondition (b). For anyorthogonal yle C = (p0; : : : ; p2k), easy alulation givesn�1Xi=1 N�1Xj=1 C(i; j)di;j = 2k�1Xl=0 (�1)lm0pl ;where m0pl represents the entry of the matrix M 0 in position pl. If C is an orthogonal yle of M ,then the right hand side is learly 0. Let C be a olletion of orthogonal yles of M . Summing theabove equations we get n�1Xi=1 N�1Xj=1  XC2CC(i; j)! di;j = 0:The linear ombination of the positive terms di;j is zero, therefore one of the oeÆients is negativeor all are zero. This proves property (a).(a))(b) We prove that for an n�N zero-one matrix M either (b) or the negation of (a) holds.Consider the n by N real matrix M 0 = (m0i;j) that has 0 in plae of all 1 entries of M and distintreal variables at all of the remaining positions. Consider the inequalities di;j := m0i+1;j+1�m0i+1;j �m0i;j+1 +m0i;j > 0 on these variables. The strit linear inequalities determine an open region in the10



variable spae, so if this region in nonempty, we an �nd a solution where no variable is zero. In thisase, ondition (b) is satis�ed.In the opposite ase, when our inequalities do not have a solution, Farkas's lemma states theexistene of a positive linear ombination of these inequalities yielding 0 > 0. Let ki;j � 0 be theoeÆient of di;j > 0 in suh a linear ombination. We an assume that these oeÆients are integers,so that ki;j is a nonnegative integer for all i and j, and not all of them are zero. We de�ne ki;j = 0if i = 0 or n, or if j = 0 or N .We build an oriented multigraph G� on the vertex set fvi;j : 1 � i � n; 1 � j � Ng as follows.There are two types of edges in G�: For any 1 � i � n, 1 � j < N , we onnet vi;j and vi;j+1 byjki�1;j � ki;jj horizontal edges. If ki�1;j > ki;j, these edges are direted toward vi;j, otherwise theyare direted toward vi;j+1. Similarly, for any 1 � i < n, 1 � j � N , vi;j and vi+1;j are onnetedby jki;j�1 � ki;jj vertial edges direted toward vi+1;j or vi;j , depending on whether ki;j�1 > ki;j orthe other way around. It is easy to verify that in this graph every vertex has the same indegreeand outdegree. Therefore, the edge set of G� an be partitioned into direted yles. WheneverM has a zero at a position (i; j), we know that the variable m0i;j will anel at the ombinationP ki;jdi;j. This implies that the numbers of inoming and outgoing horizontal edges inident to anysuh vertex vi;j must oinide. Therefore, the yles of the edge partition an be hosen so that noneof them \bends" at suh verties, i.e., all of their bends our at positions where M has an entry1. We annot exlude self-rossing yles that pass through the same vertex more than one. Theorthogonal yles orresponding to edge partitions with the above property are orthogonal yles ofM . Moreover, it is easy to argue that they form a olletion C that satis�es PC2C C(i; j) = ki;j forall i and j. This shows that ondition (a) does not hold for M .(b))() Suppose that M an be obtained from M 0 = (m0i;j) in the way desribed in (b), andde�ne a matrix M 00 = (m00i;j) by setting m00i;j = sign(m0i;j). Consider the submatrix of M 00 de�ned bythe rows i1 < i2 and olumns j1 < j2. We have m0i2;j2�m0i1;j2�m0i2;j1+mi1;j1 =Pj2�1i=j1 Pj2�1j=j1 di;j > 0.This implies that at least one of the following onditions must be satis�ed: m0i1;j1 orm0i2;j2 is positive,or m0i1;j2 or m0i2;j1 is negative. 2We remark that ondition (a'), whih is somewhat weaker than (a), also implies () as an beshown by onstruting the orresponding matrix M 00 entry by entry. The following 6 � 6 matrixsatis�es ondition () for M 00, but the orresponding matrix M does not have property (a). Thus,the impliation (b))() annot be always reversed.0BBBBBB� 0 + + 0 + +� 0 0 � + +� 0 � � � 0� + 0 � 0 ++ + + 0 0 +0 + � � � 0
1CCCCCCATheorem 5 (i) The maximum weight of an n� n zero-one matrix with property () is O(n4=3).(ii) For arbitrarily large values of n, there exist n�n zero-one matries of weight 
(n4=3) that satisfyondition (b') (and thus onditions (a), (a'), (b), and () are also satis�ed).Proof. (i) Let M be an n� n zero-one matrix satisfying ondition (), and let M 00 = (m00ij) be theorresponding matrix with �1, 0, and 1 entries. 11



For a �xed 0 � i � n, we de�ne a linear ordering on the symbols pij, where 1 � j � n. For1 � j < j0 � n, set pij0 < pij if there exists a row 1 � i0 � i with m00i0j � 0 and m00i0j0 � 0. Otherwise,set pij < pij0 .To see that this de�nition indeed gives rise to a linear order, we have to hek that for 1 � j <j0 < j00 � n we annot have pij < pij0 < pij00 < pij, nor an it our that pij < pij00 < pij0 < pij .To exlude the �rst possibility, assume pij00 < pij . Then there exists 1 � i0 � i suh that m00i0j � 0and m00i0j00 � 0. If m00i0j0 � 0, then we have pij00 < pij0, while if m00i0j0 � 0, it follows that pij0 < pij. Ineither ase, we obtain a ontradition.To exlude the seond possibility assume that pij00 < pij0 < pij . Then there exist suitable indies1 � i0 � i and 1 � i00 � i suh that m00i0j � 0, m00i0j0 � 0, m00i00j0 � 0, and m00i00j00 � 0. We laim that fori� = max(i0; i00) we have m00i�j � 0 and m00i�j00 � 0, and hene pij00 < pij , whih is a ontradition. Thislaim is trivial for i0 = i00. If i0 < i00, the laim follows from ondition () applied to the submatrixdetermined by rows i0 and i00 and olumns j and j0. If i0 > i00, it follows from ondition () appliedto the submatrix determined by rows i0 and i00 and olumns j0 and j00.Let us represent pij (0 � i � n, 1 � j � n) by points in the plane, denoted by the same symbols.For a �xed i, we hoose the points pij on the line y = i, ordered from left to right aording to thelinear order de�ned above. For 1 � j � n, we draw a y-monotone urve lj onneting the pointsfpijgni=0. This an be done in a suh a way that lj and lj0 ross at most one between the horizontallines y = i � 1 and y = i. Moreover, suh a rossing ours if and only if the order of p(i�1)j andp(i�1)j0 is di�erent from that of pij and pij0 .It is lear from the de�nition that if pij0 < pij for some 0 � i � n and 1 � j < j0 � n, then wealso have pi0j0 < pi0j for all i < i0 � n. Thus, the total number of intersetions between the urves ljand lj0 is at most one. In other words, these urves form a olletion of pseudolines.For any 1 � i � n, onsider the set of indies Ji = fj j mij = 0g. Let j; j0 2 Ji, j < j0. By thede�nition of the ordering, it is lear that pij0 < pij. On the other hand, it follows from ondition() that p(i�1)j < p(i�1)j0 . Thus, the pseudolines lj, j 2 Ji must pairwise ross eah other betweenthe horizontal lines y = i � 1 and y = i. Modifying these pseudolines within the horizontal stripi� 1 < y < i, we an make sure that all of them pass through the same point Pi. Thus, we obtain aolletion of n pseudolines lj and a set of n points Pi in the plane. The number of point-pseudolineinidenes between them is exatly the same as the number of 1 entries in the matrix M . Aordingto the generalization of the Szemer�edi{Trotter theorem [14℄ by Clarkson et al. and Sz�ekely [6, 13℄,the number of inidenes between n points and n pseudolines is O(n4=3), whih proves part (i).(ii) Consider a olletion of n straight lines and n points in the plane with 
(n4=3) inidenes betweenthem. Assume that all points have distint x oordinates, all lines have distint slopes, and noneof them is vertial. The standard example of a point set and a line set with many inidenes is anpn � pn integer grid with the n lines ontaining the highest number of points. There are manyparallel lines in this example, but we an get rid of them (along with the vertial lines and the pointswith idential x oordinates) using a generi projetive linear transformation that keeps the numberof inidenes unhanged. Denote the points by Pi = (xi; vi) with x1 < x2 < : : : < xn, and the linesby li : y = yix+wi with y1 < y2 < : : : < yn.Let f(x; y) = xy � f1(x) + f2(y);where f1 and f2 are twie ontinuously di�erentiable funtions suh that f1(xi) = vi and f2(yi) = wi.Clearly, we have ddx ddyf(x; y) = 1 > 0. Furthermore, de�ning the matrix M = (mij) as in ondition(b'), we have mij = 1 if and only if f(xi; yj) = 0, whih happens if and only if Pi is inident to lj .12



Thus, the weight of M satis�es w(M) = 
(n4=3), as required. 25 Geometri onsequenes and onluding remarksA. First we dedue Corollary 1, the best known bound on the number of unit distanes determinedby n points in the plane, from Theorem 5.Proof of Corollary 1. Let P be a set of n points in the plane. Let l be a line in general position;i.e., assume that l does not pass through any point in P and that the orthogonal projetions ofthe elements of P onto l are all distint. Let l partition the point set P into two subsets, P1 andP2, ontaining n1 and n2 elements, respetively, where n1 + n2 = n. Construt an n1 � n2 matrixA = (apq), as follows. Let the rows (and olumns) of A orrespond to the points of P1 (and P2,respetively), in the order of their projetions to l. Let the entry apq in the row of A orrespondingto p 2 P1 and in the olumn orresponding to q 2 P2 depend on the Eulidean distane d(p; q)between p and q: apq = 8<: �1 if d(p; q) < 10 if d(p; q) = 11 if d(p; q) > 1:We laim that M 00 := A satis�es the requirement in ondition () formulated at the beginningof Setion 4. To see this, assume without loss of generality that l is horizontal and let p, q, r,and s be points in P with p and q above l, and r and s below l. Furthermore, let q be to theright of p, and let s be to the right of r. We need to show that at least one of the following fourinequalities are valid: d(p; r) < 1, d(p; s) > 1, d(q; r) > 1, d(q; s) < 1. (See Figure 2.) Indeed, ifthe four points form a onvex quadrilateral in the order pqsr, then this follows from the fat, thatthe sum of the lengths of its two diagonals is larger than the total lengths of two opposite edges:d(p; s) + d(q; r) > d(p; r) + d(q; s). If this is not the ase, then p or q is not above the line rs, or r ors is not below the line pq. Let us assume that p or q is not above the line rs. Then rs must intersetl at a point x. Point x is either to the left of r or to the right of s. Assume without loss of generalitythat the �rst possibility holds. Then p or q is to the left of x, so p (whih is to the left of q) must bein the quadrant to the left of x and above l. This implies d(p; r) < d(p; s), so we have d(p; r) < 1 ord(p; s) > 1.
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Figure 2.We an apply Theorem 5 (i) to onlude that A has O(n4=3) zero entries. In other words, thenumber of pairs of points that determine distane one and are separated by the line l is at most13



O(n4=3).We �nish the proof by hoosing a random diretion and, again randomly, plaing in�nitely manyparallel lines in the hosen diretion so that the distane between any two onseutive lines is 2. LetL denote the family of seleted lines. For any l 2 L, let Pl denote the set of points p 2 P withindistane 1 of l. All the unit distane pairs of point in P that l separates are in Pl, so l separatesO(jPlj4=3) pairs.As the sets Pl are disjoint we have Pl2L jPlj � n. The total number of unit distane pairsseparated by a member of L is Pl2LO(jPlj4=3) = O(n4=3). Sine eah unit distane pair of pointshas a positive onstant hane of being separated by a member of L, the result follows. 2Note that the above argument does not use any spei� property of the Eulidean norm. Forany stritly onvex norm N , one an slightly modify the proof to show that a set P of n pointsin the plane has O(n4=3) pairs at N -distane 1. Let l be a line in general position that splits Pinto two parts P1 and P2. Consider a unit irle with respet to the N -norm entered at a pointof l, and take a tangent t to this irle at one of its intersetion points with l. Order the elementsof P1 and P2 aording to their projetions onto l, parallel to t. De�ne the matrix A = (apq) forp 2 P1, q 2 P2 by letting apq = sign(dN (p; q) � 1). As in the Eulidean ase, one an show thatA meets the requirements on M 00 in ondition (). Thus, Theorem 5 implies that the number ofunit-N -distane pairs in P separated by l is O(n4=3). We proeed by randomly hoosing a diretionand, again randomly, plaing in�nitely many lines in this diretion suh that the N -distane betweenany pair of onseutive lines is two. The number of unit-N -distane point pairs in P separated by atleast one of these lines is still O(n4=3). The probability that a segment of N -distane one is ut by aline belonging to the family is bounded from below by a positive onstant depending on N . Hene,the number of unit-N -distane pairs is O(n4=3, where the onstant of proportionality depends onN . We an get rid of the dependene on N by �rst applying an aÆne transformation that bringsthe norm N lose to the Eulidean norm. In other words, we an assume without loss of generalitythat 1 � dN (x; y)=d(x; y) � 2 for all points x 6= y. Now the probability that a unit-N -distanepair is separated by one of the lines in our random olletion is bounded from below by a positiveabsolute onstant. Thus, with respet to any stritly onvex norm, the number of unit distane pairsdetermined by a set of n points in the plane is O(n4=3), where the onstant of proportionality doesnot depend on N .Aording to Brass [4℄ and Valtr [16℄, there exist stritly onvex norms with respet to whih themaximal number of unit distanes among n points in the plane is �(n4=3). One an only hope tomake further progress in bounding the number of unit distane pairs by �nding forbidden patternsharateristi of the Eulidean norm.This is the �rst proof of this result, that does not use any ombinatorial tool other than a\forbidden pattern" argument. Our proof annot be onsidered entirely independent, beause theproof of Theorem 5 was based on Sz�ekely's O(n4=3) upper bound on the number of inidenes betweenn points and n pseudolines in the plane, from where one an diretly dedue Corollary 1.Note that Theorem 5 involves an in�nite lass of forbidden patterns. It would be interestingto ome up with an alternative argument using only a �nite number of forbidden on�gurations,perhaps only 4-yles and nonrossing hexagons.B. For any unordered graph H0, let ex0(n;H0) stand for the maximal number of edges that a simpleunordered graph with n verties an have if it does not ontain H0 as a (not neessarily indued)subgraph. 14



F�uredi and Hajnal [9℄ onjetured that for every ordered graph H with interval hromati number2, the extremal funtion ex(n;A(H)) is lose to ex0(n;H0), where H0 denotes the unordered graphobtained from H by disregarding the ordering of the verties. More preisely, they asked whetherex(n;A(H)) = O(ex0(n;H0) log n)holds for all ordered graphs H with �<(H) = 2.We answer this question in the negative. Let H be any even yle of length k � 8, whose vertiesare ordered in suh a way that �<(H) = 2 and the 1 entries of A(H) form a positive orthogonalyle. (It is easy to see that suh an ordering exists.) Obviously, no matrix satisfying ondition (a)or (a') an ontain A(H). By Theorem 5 (ii), there exist n� n zero-one matries of weight 
(n4=3)whih satisfy ondition (a). Thus, we have ex(n;A(H)) = 
(n4=3). On the other hand, H0 = Ckand, by the Bondy{Simonovits theorem (see [3℄), we have ex0(n;Ck) = O �n1+ 2k�. For k � 8, thesetwo bounds are far apart.Let us remark that F�uredi and Hajnal, perhaps having doubts about their onjeture, also askedif their statement holds at least for trees. This problem is still open and it an be regarded as astrong version of our Conjeture 1.C. Bra�, K�arolyi, and Valtr [5℄ studied ylially ordered graphs and asked whether the verties ofevery graph H0 an be ylially ordered so that the extremal funtions of the unordered and orderedgraphs di�er by at most a onstant fator. Without preisely de�ning ylially ordered (in theirterminology, \onvex geometri") graphs, we note that their onjeture would immediately implythat the verties of any onneted bipartite graph H0 an be ordered in suh a way that the resultingordered graph H has interval hromati number 2 and satis�esex(n; fA(H); (A(H))T g) = O(ex0(n;H0)):Our ounterexample to this onjeture is a tree of seven verties: let H0 onsist of three pathsof length 2, joined at a ommon endpoint. Sine H0 is a tree, we have ex0(n;H0) = O(n). It iseasy to see that for any ordering H of H0 of interval hromati number 2 the matrix A(H) ontainsthe pattern F = � 1 1 01 0 1 � or one of the seven other patterns obtainable from F by rotationor reetion. If A(H) ontains F , then ex(n; fA(H); (A(H))T g) � ex(n; fF; F T g), where the latterextremal funtion is �(n log n) as proved in both of the papers [2, 8℄. By symmetry we have toonsider only one more pattern: let us assume A(H) ontains F1 = � 1 0 11 1 0 �. In this ase wehave ex(n; fA(H); (A(H))T g) � ex(n; fF1; F T1 g). Here we also have ex(n; fF1; F T1 g) = �(n logn) asproved in [15℄. (An earlier lower bound of 
(n logn= log log n) is proved in [2℄.) In neither ase doesthe required inequality hold: the left-hand side is larger than the right-hand side by a fator of logn.D. It is tempting to make the following \optimisti" onjeture that an be regarded as the \leastommon denominator" of the two onjetures disproved above.Conjeture 3 The verties of any unordered graph H0 an be ordered in suh a way that for theresulting ordered graph H we have ex<(n;H) = O(ex0(n;H0) log n).Aknowledgement. We are very grateful to our friend, Rom Pinhasi, for many important obser-vations and valuable insights that led to the birth of this paper.15
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