A Ramsey-type Result for Convex Sets
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Abstract

Given a family of n convex compact sets in the plane, one can always choose n!/? of
them which are either pairwise disjoint or pairwise intersecting. On the other hand, there
exists a family of n segments in the plane such that the maximum size of a subfamily

with pairwise disjoint or pairwise intersecting elements is n'82/1085 < 50431,
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1 Introduction

Ramsey’s theorem [11], [7] states that any graph of n vertices contains either a complete or
an empty subgraph of % logn vertices. Erdos [5] showed that the order of magnitude of this
bound cannot be improved. However, much stronger results are expected for some special
classes of graphs, e.g. for graphs representing the intersection pattern of some family of
geometric figures.

The best known example of this kind is the following. Given any family 7 = {I1, ..., I,}
of intervals on a line with the property that no point is contained in more than p members
of Z, one can always decompose Z into at most p disjoint subfamilies so that each of them
consists of pairwise disjoint intervals (see e.g. [3], [10]). This immediately imp the graph
defined on the vertex set Z by joining I; and I; with an edge if and only if I; N I; # 0, contains
either a complete or empty subgraph of size [/n ]. Pach [8] has pointed out that this result
can be extended to any family C = {Cy, ..., C,} of convex bodies in R¢ with the property
that no C; is too ’longish’, i.e., the ratio between the circumradius and the inradius of C; is
smaller than some constant.

The first interesting open problem that arises is the following: Determine (or estimate)
the largest number g(n) with the property that any family of n segments in the plane in
general position contains at least g(n) members that are either pairwise disjoint or pairwise
crossing [9] (see also [1], p.19). Segments in the plane are of course infinitely "longish’ in the
above sense.

In the present paper we shall address this question in a more general setting. Our main

result is the following.

Theorem 1 Let f(n) denote the mazimum number with the property that given a family of



n conver compact sets in the plane, one can always choose f(n) of them which are either

pairwise disjoint or pairwise intersecting. Then

n0.2 < f(n) < nlog2/10g5 < n0.431

Let us remark that we cannot expect any superlogarithmic lower bound to hold for the
analogously defined functions in higher dimensions. This follows from a result of Tietze [12]
(rediscovered by Besicovitch [2]), which shows that any graph can be represented as the
intersection pattern of a family of 3-dimensional convex bodies.

If instead of general convex compact sets in the plane, we consider rectangles with sides

parallel to the z and y axes, then we can prove the following lower bound.

Theorem 2 Let r(n) denote the mazimum number with the property that given a family of
n rectangles in the plane with sides parallel to the x and y azes, one can always choose r(n)

of them which are either pairwise disjoint or pairwise intersecting. Then

" <r(n)
210g2n_Tn'

Notation. Throughout this paper, let log stand for logarithm to base 2. For a finite family

F of sets, let D(F) denote the maximum size of a pairwise disjoint subfamily of F, and I(F)

the maximum size of a pairwise intersecting subfamily of F.

2 Proof of Theorem 1

We need the following well-known result of Dilworth [4] (actually the statement which we

need is much easier to prove than the full version of Dilworth’s theorem).



Lemma 2.1 For any positive integers n, p, every partial order on at least n elements contains
either a chain (totally ordered subset) of length p or an antichain (a subset of pairwise

incomparable elements) of size [2].

Let C be a family of n compact convex sets. For C € C, let 7(C) denote the projection of
C onto the z-axis. We define four binary relations <;, <92, <3 and <4 on C. One necessary
condition for A, B € C to be in any of these relations is AN B = (. For disjoint A, B € C, we

define (see Fig. 1)

o4 L ) CDO

Figure 1: The relations <1, <2, <3, <4

e A< Bifw(A) C n(B) and A lies below B (“below” means in the y-axis direction).

o A<y Bifnw(A) C n(B) and A lies above B.

4



e A <3 B if the left endpoint of w(B) is to the right of the left endpoint of 7(A), the
right endpoint of 7(B) is to the right of the right endpoint of 7(A) and in the part

where w(A) and 7 (B) overlap (if any), A lies above B.

e A <4 B if the left endpoint of w(B) is to the right of the left endpoint of 7(A), the
right endpoint of 7w(B) is to the right of the right endpoint of 7(A) and in the part

where m(A) and 7(B) overlap (if any), A lies below B.

We need the following elementary claims, whose verification is left to the reader:

Lemma 2.2 FEach of the relations <1, <2, <3, <4 is transitive. O

Lemma 2.3 For any two disjoint convex sets A,B € C, A <; B for some i or B <; A for

some ¢. O

Since a necessary condition on a pair of sets belonging to any of the relations <; is that

they are disjoint, a any two sets in a chain are disjoint. Let us first look at the relation

1/5

<1 on C. By Dilworth’s theorem 2.1, either there is a chain of n*/° elements in <, or an

4/5

antichain A; of at least n*/® elements. In the first case we have n!/® pairwise disjoint sets in

C and we are done, so let us assume the latter case. We look at <9 restricted to A;. Either

1/5

there is a chain of n'/° elements (in which case we are done) or an antichain As of at least

n3/5 elements (of A;). Looking now at < restricted to As, we either obtain a chain with

2/5

n'/® elements or an antichain Az with n2/5 elements. Finally considering <4 restricted to A3

1/5 1/5

either gives an n'/° element chain or an n'/° element antichain A44. Such A4 is an antichain
in each of <1,...,<4, and so by Lemma 2.3 any two sets from .44 must intersect. This proves
the lower bound in Theorem 1.

To establish the upper bound, we need the following.



Construction 2.4 For any two points p,q and any € > 0, there exist five segments p1q1,
P292, ..., P5q5 such that p;q; intersects only the segments p;_1q;—1 and p;+19i+1, and all p;

(all q;) are inside the circle around p (q) with radius € (the indices are taken mod 5. See Fig.

2.)

Figure 2: A representation of the 5-cycle by segments

Let C; be such a family of five segments. Given C;, choose € to be so small that no disk
of radius € around an endpoint of a segment of C; meets any other segment of C;. To obtain
Ci+1, replace each segment pq of C; by a family of five segments satisfying the conditions of
the construction.

Obviously, |C;| = 5° and the maximum size of a subfamily of C; with pairwise disjoint or

pairwise intersecting elements is 2' = |C;[!°8%/1985 < |C;|%43! for every i.

3 Proof of Theorem 2

For an integer m, let 9)(m) denote the minimum 7 such that for any family R of n axis-parallel
rectangles the product D(R)I(R) is at least m. We prove that 1(2%) < k2%, for k = 1,2,....

This is enough to prove Theorem 2: Given a family R of n axis-parallel rectangles, set

k = [logn—Iloglogn|. Then 1 (2%) < k2¥ < n, so D(R)I(R) > 2k > 2logn—loglogn—1 — Tlogn



and Theorem 2 follows.

We proceed by induction on k. We have 1(2) = 2, verifying the claim for k¥ = 1. Let
k > 1 and consider a family R of k2* axis-parallel rectangles. It is easy to see that we
may assume that all the lines defined by the right vertical sides of the rectangles of R are
distinct. TLet v be the tth leftmost of these vertical lines, where t = (k — 1)2F~1. Tet
Ro € R be the subfamily of rectangles intersecting v. We distinguish two cases. First,
if |Ro| > 2%, we have D(R)I(R) > D(Ro)I(Ro) > 2%, by the result concerning intervals
mentioned in the introduction. Second, suppose that |Ro| < 2*, and let R; be the family
of rectangles of R lying in the left closed halfplane defined by v and R, the family of
rectangles of R lying strictly to the right of v. We have |R;| = (k — 1)2¥~! by the choice
of v, and |R;| > |R| — |Ro| — |Ri| > (k — 1)2¥~1. By the inductive hypothesis, we have

D(R)I(Ry) > 2F1, D(R,)I(R;) > 2*~1. Then

D(R)I(R) 2 [I(Ry) + I(R:)]max[D(Ry), D(R;)] 2 I(Ri) D(Ry) + I(R;) D(R;) 2 2,

which finishes the inductive proof. O

Let us remark that for n of the form k2*, we have proved the bound in Theorem 2 with
constant 1. We could make this improvement in general, by careful calculations with various
lower and upper fractional parts, but this would bring technical complications into our simple

proof.

4 Remarks

1. Theorem 1 also holds for any family of compact connected sets that are convex in one
direction, i.e., any line parallel to this direction intersects each member of C in a single

segment.



2. The graphs used in the proof of the upper bound of Theorem 1 can also be represented
as intersection graphs of (left-infinite) halflines (it is easy to see that the segments in
Fig. 2 can be extended to left-infinite halflines). Thus, the n%43! upper bound is also
valid for intersection graphs of halflines. On the other hand, the lower bound proof in
Theorem 1 can be modified to get n'/3 lower bound for families of halflines (since any

two disjoint halflines are comparable in one of the relations <1, <s2).

3. The proof method of Theorem 2 can be used in various other situations; essentially it
shows that we can concentrate on the situation when all sets of the considered family

intersect a common vertical line. For instance, it gives the following result:

Lemma 4.1 Let F be a family of n sets in the plane, such that for every subfamily
Fo C F intersecting a common vertical line we have I(Fy)D(Fy) > Cm®, where m =

|Fo| and C,« are constants, 0 < a < 1. Then

C'n®  fora<1
I(F)D(F) =

Cn —
m fO'I"Ot—].

(C' is a constant depending on C, «). O

4. Tt seems likely that the bound in Theorem 2 can be improved to r(n) > cy/n for a

suitable constant ¢ > 0.

Given a family R of n rectangles in the plane with sides parallel to the axes, let 7(R)
denote the transversal number of R, i.e., the size of the smallest set of points with the
property that every member of R contains at least one of them. It was conjectured by
Gyérfds and Lehel [6] that 7(R) < ¢ D(R), where ¢’ is an absolute constant. Suppose
for a moment that this conjecture is true. In view of the fact that I(R) > n/7(R), this

implies I(R)D(R) > n/c. Hence r(n) > ﬁ\/ﬁ, as required.



Theorem 2 can be easily generalized to higher dimensions.

Theorem 3 Let r4(n) denote the mazimum number with the property that given a
family of n bozes in d-space with sides parallel to the azes, one can always choose r4(n)

of them which are either pairwise disjoint or pairwise intersecting. Then

cd, | ——— < rq(n),
dlgl_d

for a suitable constant cq > 0. O
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