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Abstract. We consider the combinatorial question of how many con-
vex polygons can be made at most by using the edges taken from a
fixed triangulation of n vertices. For general triangulations, there can
be exponentially many: 2(1.5028™) and O(1.62") in the worst case. If
the triangulation is fat (every triangle has its angles lower-bounded by a
constant § > 0), then there can be only polynomially many: Q(nét%ﬂ)
and O(n[%] ). If we count convex polygons with the additional property
that they contain no vertices of the triangulation in their interiors, we
get the same exponential bounds in general triangulations, and Q(n@_gj)

and O(nL%J) in fat triangulations.

1 Introduction

It is a common task in combinatorial ge-
ometry to give lower and upper bounds
for the number of occurrences of a certain
subconfiguration in a geometric structure.
Well-known examples are the number of
vertices in the lower envelope or single face
in an arrangement of line segments, the
number of triangulations that have a given
set of points as their vertices, etc. [10].

In this paper we analyze how many
convex polygons (potatoes) can be con-
structed by taking unions of triangles from a fixed triangulation (mesh) M with
n vertices. Equivalently, we analyze how many convex polygon boundaries can
be made using the edges of a fixed triangulation, see Figure[Il For general trian-
gulations there can be exponentially many. However, the lower-bound examples
use many triangles with very small angles. When n — oo, the smallest angles
tend to zero. To understand if this is necessary, we also study the number of
convex polygons in a triangulation, where all angles are bounded from below by
a fixed constant. It turns out that the number of convex polygons is polynomial
in this case. We also study the same questions when the convex polygons cannot
have vertices of M interior to them (carrots). This is the same as requiring that
the submesh bounded by the convex polygon is outerplanar.

Fig. 1. A mesh M. Three convex poly-
gons that respect M are marked.
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Table 1. Results in this paper; open spaces are directly implied by other bounds

|input mesh  output vegetable lower bound upper bound source |

general fat carrots £2(1.5028™) Section [3]
general any potato O(1.62") Section [3]
o-fat fat potatoes Q(n% L2T7rJ) Section [4]
o-fat any potato o(n!5T) Section [
o-fat fat carrots Q(nﬁ%_gl) Section
o-fat any carrot O(n@_ﬂ) Section
compact fat  any carrot 2(n?) O(n?) Full version
compact fat  fat carrots 2(n) O(n) Full version

Related Work. This paper is motivated by the potato peeling problem: Find
a maximum area convex polygon whose vertices and edges are taken from the
triangulation of a given point set [2] or a given polygon [4U7].

In computational geometry, realistic input models have received considerable
attention in the last two decades. By making assumptions on the input, many
computational problems can be solved provably faster than what is possible
without these assumptions. One of the early examples concerned fat triangles: a
triangle is d-fat if each of its angles is at least d, for some fixed constant § > 0.
Matousek et al. [8] show that the union of n d-fat triangles has complexity
O(nloglogn) while for n general triangles this is £2(n?). As a consequence, the
union of fat triangles can be computed more efficiently as well.

In [TI5619], fat triangulations were used as a realistic input model motivated
by polyhedral terrains, sometimes with extra assumptions. Fat triangulations
are also related to the meshes computed in the area of high-quality mesh gen-
eration. The smallest angle of the elements of the mesh is a common quality
measure [3]. In graph drawing, an embedded planar straight-line graph is said
to have constant angular resolution if any two edges meeting at a vertex make
at least a constant angle. Hence, fatness and constant angular resolution are the
same for triangulations. The original definition of realistic terrains applied to
meshes has stronger assumptions than fatness [9]. It also assumes that any two
edges in the triangulation differ in length by at most a constant factor, and the
outer boundary of the triangulation is a fat convex polygon.

Results. We present lower and upper bounds on the maximum number of convex
polygons in a mesh in several settings. The input can be either a general mesh,
a fat mesh (where every angle of each triangle is at least d), or a compact fat
mesh (where additionally, the ratio between the shortest and longest edge is
at most p). The output can be either a potato (general convex submesh) or a
carrot (outerplanar convex submesh, that is, one that contains no vertex of the
underlying mesh in its interior), and each can additionally be required to be fat
(where the ratio between the largest inscribed disk and the smallest containing
disk is at most 7). Table [I] summarizes our results. Note that p and v do not
show up; the bounds hold for any constant values of p and ~.
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2 Preliminaries

A mesh is a plane straight-line graph with a finite set of vertices, such that all
bounded faces are triangles, the interiors of all triangles are disjoint and the inter-
section of any pair of triangles is either a vertex or a shared edge. We also denote
the set of vertices of a graph G by V(G) and the set of edges by E(G), and say the
size of G is n = |V(G)|. We say a mesh M is mazimal if its triangles completely
cover the convex hull of its vertices[] A polygon P is said to respect a graph G if
all of its edges belong to G.

We assume a mesh M is given. We call M §-fat, for some § € (0, %71’], if every
angle of every triangle of M is at least ¢.

Let S = [0, 27). We define cyclic addition and subtraction (+,—): SxR — S
in the usual way, modulo 27. We call the elements of S directions and implicitly
associate an element s € S with the vector (sin s, cos s).

3 Potatoes in General Meshes

Lower Bound. Let Q be a set of
m points evenly spaced on the up-
per half of a circle. Assume m =
2% 41 for some integer k, and let
the points be vy, ..., vm,—1, clock-
wise. Let M consist of the convex
hull edges, then connect vy and
Um—1 t0 V(m—_1)/2, and recursively

triangulate the subpolygons by al- Fig. 2. A set Q of n points on a half-circle, tri-

ways connecting the furthest pair angulated such that the dual tree is a balanced
to the midpoint. Figure [ illus- binary tree

trates the construction.

Let N(k) be the number of different convex paths in M from vy to vy,—1.
Then we have N(k) = 1 + (N(k — 1))2, N(0) = 1, because we can combine
every path from vy to v(,,_1)/2 With every path from v(,,_1)/2 to vy -1, and the
extra path is vg, v,,—1 itself. Using this recurrence, we can relate the number
m of vertices used to the number P(m) of convex paths obtained: P(3) = 2;
P(5) =5; P(9) = 26; P(17) = 677; etc.

Now we place n points evenly spaced on the upper half of a circle. We trian-
gulate v, ..., v16 as above, and also vig ..., vs32, and so on. We can make n/16
groups of 17 points where the first and last point of each group are the same.
Each group is triangulated to give 677 convex paths; the rest is triangulated ar-
bitrarily. In total we get 677%/16 = 2(1.5028™) convex paths from vy to v,_1. We
omit the one from vy directly to v,,—1, and use this edge to complete every convex
path to a convex polygon. The number of convex polygons is 9(1.5028”)E

' A maximal mesh is also called a triangulation.
2 We can, of course, make larger groups of vertices to slightly improve the lower bound,
but this does not appear to affect the given 4 significant digits.
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Fig. 3. (a) We project each interior vertex of M from p onto the next edge. An example
potato is marked in blue. (b) The graph G obtained by removing the marked edges
and orienting the others around p. The potato becomes a cycle.

Theorem 1. There exists a mesh M with n vertices such that the number of
convex polygons that respect M is (2(1.5028™). This is true even if M is the
Delaunay triangulation of its vertices.

Upper Bound. First, fix a point p inside some triangle of M, not collinear
with any pair of vertices of M. We count only the convex polygons that contain
p for now.

For every vertex v of M, let e, be the first edge of the mesh beyond v that is hit
by a ray from p and through v. Let G be the graph obtained from M by removing
allsuch edgese,, v € V(M). FigureBlshows an example. We turn G into a directed
graph by orienting every edge such that plies to the left of its supporting line. We are
interested in the number of simple cycles that respect G. Note that G has exactly
2n — 3 edges, since every vertex not on the convex hull causes one edge to disappear.

Lemma 1. The number of convex polygons in M that have p in their interior
is bounded from above by the number of simple cycles in G.

Proof. With each convex polygon, we associate a cycle by replacing any edges e,
that were removed by the two edges via v, recursively. This results in a proper
cycle because the convex polygon was already a monotone path around p, and
this property is maintained. Each convex polygon results in a different cycle
because the angle from the vertices of e, via v is always concave. 0

Observation 1. The complement of the outer face of G is star-shaped with p
in its kernel.

Observation 2. Let e be an edge on the outer face of G from u to v. Then u
has outdegree 1, or v has indegree 1 (or both).

If F C E(G) is a subset of the edges of G, we also consider the subproblem of
counting all simple cycles in G that use all edges in F, the fized edges. For a
triple (M, G, F), we define the potential p to be the number of vertices of M (or
G) minus the number of edges in F, i.e., p(M,G, F) = |V(G)|— | F|. Clearly, the
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potential of a subproblem is an upper bound on the number of edges that can
still be used in any simple cycle.

We will now show that the number of cycles in a subproblem can be expressed
in terms of subproblems of smaller potential. Let (k) be the maximum number
of simple cycles in any subproblem with potential k.

Lemma 2. The function Q(-) satisfies

QUR) < QU= 1)+ Q(k — 2). Q) = Q1) = 1, M T
Proof. Let (M,G,F) be a subproblem and let k =

p(M,G,F). If k = 1 then |F| = |[V(G)| — 1, so the ;4( Z',/ﬂ o
number of fixed edges on the cycle is one less than the uw e v ©
number of vertices available. Therefore the last edge
is also fixed, if any cycle is possible. If k = 0, all edges
are fixed.

For the general case, suppose all edges on the outer face of G are fixed. Then
there is only one possible cycle. If any vertex on the outer face has degree 2 and
only one incident edge fixed, we fix the other incident edge too. Suppose there is
at least one edge, e = v, on the outer face that is not fixed. By Observation [2]
one of its neighbors must have degree 1 towards e. Assume without loss of
generality that this is v. We distinguish two cases, see Figure [l

Fig. 4. Two cases for e

(i) The degree of v is 2. Any cycle in G either uses v or does not use v. If
it does not use v we have a subproblem of potential k — 1. If it uses v, it must
also use its two incident edges, so we can include these edges in F' to obtain a
subproblem of potential k—2. So, the potential p(M,G, F) < Q(k—1)+Q(k—2).

(ii) The degree of v is larger than 2. Any cycle in G either uses e or does not
use e. If it uses e, we can add e to F' to obtain a subproblem of potential k£ — 1.
If it does not use e, then consider v and the edge ¢/ = vw that leaves v on the
outer face. Since v has indegree 1 but total degree greater than 2, it must have
outdegree greater than 1. Therefore, by Observation 2] w must have indegree 1.
Therefore, w will not be used by any cycle in G that does not use e, and we can
remove v and w to obtain a smaller graph. We also remove all incident edges; if
any of them was fixed we have no solutions. We obtain a subproblem of potential
k — 2 in this case. Again, the potential p(M,G, F) < Q(k — 1) + Q(k — 2). 0

This expression grows at a rate of the root of 22 —  — 1 = 0, which is approxi-
mately 1.618034.

Because every convex polygon must contain at least one triangle of M, we
just place p in each triangle and multiply the bound by 2n. Since 1.62 is a slight
overestimate (by rounding) of the root, we can ignore the factor 2n in the bound.

Theorem 2. Any mesh M with n vertices has O(1.62™) convex polygons that
respect M .
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Fig.5. (a) Essential part of the construction, allowing I* convex polygons. (b) Final
mesh.

4 Potatoes in Fat Meshes

Lower Bound. Let k = [27], and let [ = /3%. Let Q be a regular k-gon, and
for each edge e of @ consider the intersection point of the supporting lines of the
neighboring edges. Let @’ be a scaled copy of ) that goes through these points.
Now, consider a sequence Q = Q1,Qa,...,Q; = Q' of [ scaled copies of Q such
that the difference in the radii of consecutive copies is equal. We extend the
edges of each copy until they touch Q’. Figure illustrates the constructiond

Observation 3. The constructed graph has at least I¥ different convex polygons.

We now add vertices and edges to build a d-fat mesh. We use (l 21) more vertices
per sector, placing [ — i vertices on each edge of ); to ensure that all angles are
bounded by d. We need O(lk) vertices to triangulate the interior using some
adaptive mesh generation method. The final mesh can be seen in Figure

The construction uses 2ki? + O(kl) vertices, and since we have [ = /2, there

are 3kI? + O(kl) = 3k + O(k\/3r) = 3n + O(V/nk) < n vertices in total.

Observe that the triangles of the outer ring are Delaunay triangles. The in-
ner part can also be triangulated with Delaunay triangles, since the Delaunay
triangulation maximizes the smallest angle of any triangle.

Theorem 3. There exists a 6-fat mesh M of size n such that the number of
12w

convex polygons that respect M is Q(nELTJ). This is true even if M is required

to be the Delaunay triangulation of its vertices.

Upper Bound. We consider paths in M that have roughly consistent directions.

Lemma 3. Let u,v € V(M) be two vertices, and let ¢,d € S be two directions
such that d — ¢ < 2. Then there is at most one convex path in M from u to v
that uses only directions in [c,d).

% Our lower bound constructions use collinear points. We show in the full version that
this is not essential, and the same bounds apply to “strictly convex” potatoes.
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Fig.6. Two vertices v and v that need to be extreme in two directions that differ by
at most 20 (indicated by red and blue) define a unique potential convex chain since
there can be at most one edge in each sector

Proof. Let m = ¢+ %(d — ¢) be the direction bisecting ¢ and d. Because M is
o-fat, for any vertex in V(M) there is at most one incident edge with outgoing
direction in [¢,m), and also at most one with direction in [m, d). Because the
path needs to be convex, it must first use only edges from [¢,m) and then switch
to only edges from [m, d). We can follow the unique path of edges with direction
in [e,m) from u and the unique path of edges with direction in [m + 7,d + )
from v. If these paths intersect, the concatenation may be a unique convex path
from u to v as desired (clearly, the path is not guaranteed to be convex, but for
an upper bound this does not matter). Figure [f] illustrates this. a

Given a convex polygon P that respects M, a vertex v of P is extreme in direction
s € S if there are no other vertices of P further in that direction, that is, if P
lies to the left of the line through v with direction s + %77.

Let I's = {0,24,46,...,27} be a set of directions. As an easy corollary of
Lemma [3], the vertices of a convex polygon P respecting M that are extreme
in the directions of I's uniquely define P. There are at most n choices for each
extreme vertex, so the number of convex polygons is at most n!’s|. Substituting
|I's| = [§] we obtain the following theorem.

Theorem 4. Any §-fat mesh M of size n has at most O(n!51) convez polygons
that respect M.

5 Carrots in Fat Meshes

Recall that carrots are potatoes that have no interior vertices from the mesh. So
we expect fewer carrots than potatoes. However, our lower bound construction
for general meshes only has potatoes that are also carrots. In this section we
therefore consider carrots in fat meshes.

Lower Bound. Let k = |27/34 ], and consider a regular k-gon Q. On each edge
of @, we place a triangle with angles §, 20, and m — 3§. Then, we subdivide
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(a)

Fig.7. (a) An example of a 0-fat mesh obtained from a k-gon (k = 5), which has
2(n*) carrots. (b) A tower of §-6-(m — 26) triangles.

(a) (b)

Fig. 8. (a) A carrot and its dual tree. (b) The skeleton (shown bold) of the dual tree
is the spanning tree of all vertices of degree 2.

each such triangle into ”T*k smaller triangles with angles ¢, §, and © — 24, as

illustrated in Figure Finally, we triangulate the internal region of @) in any
way we want, giving a mesh M.

Lemma 4. M is convez, §-fat, and contains 2(nl31) carrots.

Proof. M is convex because § + 2§ < 27” Every angle in the triangles outside @
is at least d, and the angles in the interior of ) are multiples of 7 > 4. Therefore,
every connected subset of M is a carrot. The dual tree T' of M has a central
component consisting of k vertices, and then k paths of length 7+ — 1. Hence, the

number of subtrees of T is at least (% — 1)*, which is Q(nl3F). O

Theorem 5. There exists a 6-fat mesh M of size n such that the number of
27
convex outerplanar polygons that respect M is Q(nLﬁJ ).

Upper Bound. We will next show that given any d-fat mesh M, the number
of carrots that respect M can be at most O(nl35)).

Consider any carrot. We inspect the dual tree T" of the carrot and make some
observations. Each node of T is either a branch node (if it has degree 3), a path
node (if it has degree 2), or a leaf (if it has degree 1). Path nodes have one edge
on the boundary of the carrot, and leaves have two edges on the boundary of
the carrot. Figure shows an example.
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Fig.9. (a) Every leaf gives rise to a turning angle of 2. (b) Every leaf that is an only
child gives rise to a turning angle of 34.

Observation 4. Let v be a leaf node of T'. The turning angle between the two
external edges of v is at least 20.

Proof. The triangle for node v is d-fat, so all three angles are > §. Therefore,
the angles are < m — 24, and the turning angles are > 26 (Figure . 0

Observation 5. Let v be a leaf node of T' and u a path node adjacent to v. The
turning angle between the external edge of the triangle for w and the furthest
external edge of the triangle for v is at least 36.

Proof. Consider the quadrilateral formed by the two triangles of v and v. The
edge in M separating v from the rest of T has two d-fat triangles incident to
one of its endpoints, and one to its other endpoint. This means that the turning
angle between the edges in the observation is > 34 (Figure . O

By Observation @] the number of leaves in a carrot is bounded by [%|, and
therefore, also the number of branch nodes is bounded by [§] — 2. However,
the number of path nodes can be unbounded. Consider subtree S of T' that is
the spanning tree of all the path nodes. We call S the skeleton of the carrot.
Figure shows an example. By Observation Bl the number of leaves of S is
bounded by | 2% |.

We will charge the carrot to the set of leaves of S, and we will argue that every
set of |2%| triangles in M is charged only constantly often

35
(for constant 9).

Observation 6. Let A be any set of triangles of M. If there exists a carrot that
contains all triangles in A, then there is a unique smallest such carrot.

Lemma 5. Let A be any set of triangles in M. The number of carrots that
charge A is at most 2% ],

Proof. Consider the tree S that is the dual of the unique smallest carrot that
contains A, as per Observation[dl Any carrot that charges A has S as its skeleton.
First, we argue that the set of path nodes in any carrot that charges A is a subset
of S. Indeed, if there was any path node in 7" outside .S, then there would be at
least one leaf component of T' that is disconnected from S, and there would be
an edge outside A that gets charged by the carrot of T'. Therefore, only branch
nodes and leaves can still be added to .S to obtain a carrot that charges A.
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Then, we argue that there are at most 215 ) other nodes that can be part of a
carrot that charges A. We can augment S by adding on components consisting
of only k leaves and k — 1 branch nodes. By Observation[d] each such component
consumes a turning angle of 2kd. Therefore, they can only be added on edges of
S which have a cap angle of at least 2kd. Therefore, there can be at most 27/
potential leaves, leading to 2% ) choicesl O

Theorem 6. Any §-fat mesh M of size n has at most O(nL%J) convez outer-
planar polygons that respect M.

When the mesh is not only fat, but the edge length ratio is also bounded by
a constant, we can prove better bounds. We call such meshes compact fat. We
state the results here but defer the proofs to the full version.

Theorem 7. Any compact fat mesh M of size n has at most O(n) convex fat
outerplanar polygons that respect M.

Theorem 8. Any compact fat mesh M of size n has at most O(n?) conver
outerplanar polygons that respect M.
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