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Abstract

Bialostocki, Dierker, and Voxman proved that for any n > p + 2, there is an integer B(n,p) with
the following property. Every set of B(n,p) points in general position in the plane has n points
in convex position such that the number of points in the interior of their convex hull is 0 mod p.
They conjectured that the same is true for all pairs n > 3, p > 2. In this note, we show that every
sufficiently large point set determining no triangle with more than one point in its interior has n
elements that form the vertex set of an empty convex n-gon. As a consequence, we show that the
above conjecture is true for all n > 5p/6 + O(1).

1 Introduction

We say that a set of points in the plane is in general position if no three of them are collinear. Throughout
this paper, X will denote a set of points in the plane in general position. Let vert(X') denote the vertex
set of the convex hull of X. A polygon is said to be empty, if it contains no elements of X in its interior.
If every triple in vert(X) determines an empty triangle, then X = vert(X) is in convez position or, in
short, convez.

According to a well known theorem of Erdés and Szekeres [ES1, ES2|, for any integer n > 3, there
exists F(n) = O(4") with the property that every set X of at least E(n) points in general position in the
plane has n elements in convex position. (In this case, we say that X determines a convex n-gon.) For
a long time it appeared to be only a technicality that none of the existing proofs yielded the stronger
result that every sufficiently large point set contains the vertex set of an empty convex n-gon. Harborth
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[Ha] showed that every 10-element point set determines an empty convex pentagon, and that this does
not remain true for all 9-element sets. Finally, in 1983 Horton [Ho| surprised most experts by a simple
recursive construction of arbitrarily large finite point sets determining no empty convex heptagons. The
corresponding problem for hezagons is still open.

Bialostocki, Dierker, and Voxman [BDV] proposed the following elegant “modular” version of the
original problem.

Conjecture. For any n > 3 and p > 2, there exists an integer B(n,p) such that every set of B(n,p)
points in general position in the plane determines a convex n-gon such that the number of points in its
interior is 0 mod p.

Bialostocki et al. verified this conjecture for every n > p + 2. The original upper bound on B(n,p)
was later improved by Caro [C], but his proof also relied heavily on the assumption n > p + 2.
In the present note we somewhat relax this condition.

Theorem 1. For any n > 5p/6 + O(1), there ezists an integer B(n,p) such that every set of B(n,p)
points in general position in the plane determines a convex n-gon such that the number of points in its
interior is 0 mod p.

If every triple in vert(X') determines a triangle with at most one point in its interior, then X is said
to be almost conver.
Our proof of Theorem 1 is based on the following

Theorem 2. For any n > 3, there exists an integer K(n) such that every almost convex set of at least
K (n) points in general position in the plane determines an empty conver n-gon. Moreover, we have
K(n) = Q(Z"/Q).

In Sections 2 and 3, we establish Theorems 2 and 1, respectively.

2 Almost convex sets — Proof of Theorem 2

Let X be a set of points in the plane in general position. For any triple z,y,z € X, let Azyz stand for
the triangle determined by z,y, z. Let conv(X) denote the convex hull of X. Given any convex polygon
C, let int(C) denote the interior of C.

First, we rephrase the definition of almost convexity. Let X denote a set of n points in the plane in
general position.

Lemma 2.1. X is almost convex if and only if at least one of the following two conditions is satisfied.
(i) Every triangle determined by X contains at most one point of X in its interior.
(i) For every subset Y C X with |Y| > 3, we have |vert(Y)| > [|Y|/2] + 1.

Proof: To prove part (i), let z,y,z € X, and assume that none of these points lie on the boundary
of conv(X). (The other cases can be settled analogously.) Let wuj,us be the intersection points of
the line zy with the boundary of conv(X), and let z;z] be the edge of conv(X) such that u; € z;2]



(i = 1,2). There is an edge z32z4 of conv(X) such that the Azjz32% contains z. Consequently, C' =
conv({z1, 22, 23, 21, 24, 25 }) 2 Azyz. Since X is almost convex, int(C) contains at most 4 points of X,
so there cannot be more than one point of X in the interior of Axyz.

Next we prove that every almost convex set X satisfies condition (ii). Suppose that a subset )
of X contains at least 3 points. It follows from part (i) that ) is almost convex. Consequently,
[vert(Y)| > [|Y|/2] + 1, as required. On the other hand, if the convex hull of every 5-element subset of
X has at least 4 vertices, then X is almost convex.

Part (ii) of Lemma 2.1 immediately implies
Corollary 2.2. Every subset of an almost convex set is almost convez.

We need the following recursive construction. Let R; be a set of two points in the plane. Assume
that we have already defined Rq,...,R; so that

1. Xj:="R1U...UR; is in general position,
2. the vertex set of the polygon I'; := conv (X)) is R, and
3. any triangle determined by R; contains precisely one point of A in its interior.

Let z1,22,...,% denote the vertices of I'; in clockwise order, and let €;, §; > 0. For any 1 <1¢ <,
let ¢; denote the line through z; orthogonal to the bisector of the angle of T'; at z;. Let zj and 2z be
two points on ¢;, at distance ; from z;. Finally, move z; and z; away from I'; by a distance §;, in the
direction orthogonal to ¢;, and denote the resulting points by u} and u/, respectively. (See Fig. 1.)
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Figure 1.
It is easy to see that if ¢; and §;/¢; are sufficiently small, then R, := {u},u] | ¢ =1,2,...,r} also

satisfies the above three conditions.



We have to verify only the last condition. If a € {u},u;}, b € {u},u]}, and ¢ € {u},uy} are three
points of R, for three disctinct indices 4, j, k, then any point of X;; = X; UR ;1 which belongs to
the interior of Aabc must coincide with the unique point of X; in the interior of Az;z;jz;. If there exist

i # k such that a = u},b = v}, and ¢ € {u}, u}}, then the only point of X;; inside Aabc is z;.

Obviously, we have |Xy| = 2¥*1 — 2 for every k£ > 1. Since no three vertices of an empty convex
polygon determined by A% belong to the same R;, it follows that any such polygon has at most 2k
vertices. Consequently, if K (n) exists, its order of magnitude is at least on/2,

Next we prove the existence of K(n).
In the sequel, we use the following notation. For any subset Y C X, let )’ denote the set of all
points of X belonging to the interior of the convex hull of ).

Lemma 2.3. Suppose that R1,...,Rr C X are in general position in the plane, and they satisfy the
following conditions:

(i) [Ra > 2;

(ii) R; is in convex position, for 1 < j < k;

(iii) every triangle of R; , 1 < j <k, has precisely one point of X in its interior;

(iv) Rj—1 = vert(R}) = vert (int conv(R;) N X), for every 1 < j <k.

Then we have

(a) |Rjt1| = 2|R;|, for every 1 <j <k —1.

(b) If z1,...,2 denote the vertices of R; in clockwise order, then the vertices of Rj1 can be labeled
in clockwise order by c(z1),d(z1),...,c(2r),d(z,) such that every z; (1 < i < r) lies in the intersection
of Ad(z;—1)c(z)d(z;) and Ac(z;)d(z;)c(zit1), where the indices are taken modulo .

(c) X determines an empty convezr 2k-gon.

Proof: It follows from the properties of the sets R; that |R}| = |R;| — 2 and R} ;| = [Rj+1| — 2, for
every 1 < j < k. We also have that
Ryl =Rl + IR},

which proves part (a).

To establish part (b), denote by w1, us,...,us the vertices of R;;1 in clockwise order. Consider
the triangles T; = Au;ui+1uit2, for 1 < ¢ < 2r. Each triangle T; contains exactly one point of X', and
it must belong to R;. Since T1,T3,...,T5—1 are openly disjoint, each point of the r-element set R;
must lie in one of them. The same is true for 75,7Ty,...,T5.. Thus, there are only two possibilities:
each of the regions 11 N T3, T3 N T},..., Ty, 1 N To, contains precisely one point of R;, or each of
ToNT3,T,NTs,..., Ty NT1 contains exactly one point of R;. In either case we are done.

Finally, we prove part (c). Let xz; and y; denote two consecutive vertices of R; in the clockwise
order. Using the notation in part (b), let ;1 := d(z;) and yj41 := ¢(y;), for j = 1,...,k—1. We show
that z1,z9,..., Tk, Y&, Y61, - - - » Y1, in this order, induce an empty convex polygon.

For every 1 < j < k, x; and y; lie inside the polygon conv(R;,1), whose 4 consecutive vertices
are c(z;),d(x;) = zj4+1,¢(yj) = yj+1, and d(y;). It follows from part (b) that the line z;y; intersects
sides c(z;)d(z;) and c(y;)d(y;) of this polygon. Thus, D; = z;r;11yj+1y; is a convex quadrilateral.
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Furthermore, the line z;y; separates z;;1y;41 from R; 11, and D; is empty. To complete the proof,
it suffices to check that these quadrilaterals fit together appropriately. That is, for 1 < j < k, the
angles aj = [xj 175y + Lyjzjrii1 and B; = Ly; 1yiwi + Lx;y:9:41 are smaller than . To see that
a; < 7, notice that it follows from part (b) that both lines d(c(zj—1))zj4+1 and c(z;)y;+1 separate z;
from z;_;. Consequently, z; lies inside Az;_1zj11¢(x}), S0 1,y 41, and y; are on the same side of
the line z;z;11. The other inequality can be checked analogously.

Lemma 2.4. For any positive integers n > 3 and k, there exists L(n,k) such that every almost
conver set X of at least L(n, k) points contains either an empty conver n-gon, or a sequence of subsets
Ri,..., Ry satisfying conditions (i)—-(iv) in Lemma 2.3.

Suppose for a moment that we have already established Lemma 2.4. Now we can prove Theorem 2
as follows.

Let K(n) = L(n,[n/2]), and let X be an almost convex set whose size is at least K(n). By
Lemma 2.4, X either contains an empty convex n-gon, and we are done, or it has a sequence of subsets,
Ri,..-,Ri (k= [n/2]) satisfying conditions (i)—(iv). In the latter case, Lemma 2.3(c) guarantees the
existence of an empty n-gon or (n + 1)-gon, depending on the parity of n. This completes the proof of
Theorem 2.

It remains to verify Lemma 2.4.

By Ramsey’s theorem, there exists a smallest integer r = r3(n, m) with the following property. For
any 2-coloring of the edges of a complete 3-uniform hypergraph of at least r vertices, there is either a
set of n vertices, all of whose triples are colored with the first color, or a set of m vertices, all of whose
triples are colored with the second color.

Let m; = 2, and for j = 1,2,...,k define recursively the numbers n; := r3(n,m;) and mj4q =
2n; — 1. Let L(n, k) = 2n, — 3, and consider an almost convex set X of size at least L(n, k). It follows
from Lemma 2.1 (ii) that |vert(X)| > ng. The set X} := vert(X) is almost convex. Color every triangle
T determined by Xj, with 0 or 1: with the number of points of X in the interior of 7. According to the
definition of ng, in X} we can find either an n-element subset, all of whose triples are of color 0, or an
my-element subset, ), all of whose triples are of color 1. In the former case, there is an empty convex
n-gon. In the latter case, )V} is a convex set, all of whose triangles have precisely one point of X in their
interiors.

Using the notation introduced before Lemma 2.3, let X}, := vert()}). By Corollary 2.2, X} is
almost convex, and for any three consecutive vertices of conv(}), the unique point of X in the interior
of the triangle determined by them belongs to Xj_;. Consequently, we have |Xg_1| > [|Vk|/2] > ng—1.

Repeating the above procedure with X1 in place of X}, we can find either an empty convex n-gon
or an my_1-element subset YV;_1 C AXj_1 in convex position, whose every triple has precisely one point in
its interior. Set A} o := vert();_,), and continue. At some point we either find an empty convex n-gon,
or, after k repetitions, we obtain a sequence of sets, Xy D Vg, ..., X1 2 Vi, such that for j =1,...,k

(i) (V1] > my =2

(ii) X; and Y; are in convex position;

(iii) every triangle determined by ); has exactly one point of X in its interior;



(iv) Xj_1 = vert()}).

Thus, the sets ); have all the properties (i)—(iv) in Lemma 2.4 (and Lemma 2.3) required from R,
except that instead of the last property we have the somewhat weaker relation J;_; C vert(y]’-).

We finish the proof of Lemma, 2.4 by recursively constructing a sequence of sets Ry C V1, ..., R C
Vi meeting the requirements of the lemma. Let R; = )i, and assume that for some 7 < k we have
already found Ri,...,R; such that R,_; = vert(R}) for 1 < i < j, i.e., condition (iv) is satisfied. (The
other conditions are hereditary: they are satisfied for the sets );, so they automatically hold for R;.)

The following statement, applied to A = R; and B = Y11, shows that there exists Rj4+1 C Vj11
such that R; = vert(Rj,;). This completes the recursion step and the proof of Lemma 2.4, and hence
of Theorem 2.

Proposition 2.5. Let A C Y; and B C Yj41 satisfy A C vert(B'). Then there exists a subset C C B
such that A = vert(C').

Proof: Suppose that A # vert(B'), and let w € vert(B') \ A.

We claim that conv(B) has three consecutive vertices, a,b,c, (in this order) such that the triangle
determined by them contains w in its interior.

To verify this claim, observe that any line £ through w, tangent to conv(B'), separates at most two
vertices of B from B'. If / separates precisely one such vertex, then this vertex and the two neighboring
vertices determine a triangle which contains w in its interior. If £ separates two such vertices, x and y,
then it is easy to see that one of the triangles uzy and zyv must contain w in its interior, where u and
v denote the vertices of conv(B) immediately preceding and following {z,y}, respectively. This proves
the claim.

To finish the proof of the lemma, let B; denote the set obtained from B by deleting the point b
whose existence is guaranteed by the claim. We have that B) = B'\ {w}, and A C vert(B]). Note that
vert(B}) is not necessarily a subset of vert(B').

If vert(B}) = A, then C := B; will meet the requirements. Otherwise, repeat the argument with
B1 in place of B to obtain a subset Bs C By with A C vert(B)), etc. After finitely many steps, this
procedure must terminate.

3 Proof of Theorem 1

Let n > 5p/6 + O(1), and let X be a set of N points in the plane. If n > p + 1, then the assertion was
established in [BDV]. Thus, we may assume that n < p+ 1 and that p is sufficiently large. In fact, it
follows from our argument that the theorem holds for n > 5p/6 + 6, provided that p > 264.

By the Erd8s-Szekeres Theorem, there exists a subset X’ C X of N’ > log, N points in convex
position. Let z1, ...,z denote the points of X’ listed in clockwise order.

Definition 3.1. For any set C, let (C) denote the number of points of A" in the interior of the convex
hull of C, and let (C), denote the same number reduced modulo p.



A convex polygon C is said to be modulo p empty or, shortly, p-empty, if (C'), = 0. Given an ordered
triple z;z;x) (1 < 7 < k) and a point z € X in the interior of T' = Az;z;x), we say that « is the lowest
point of X in T (with respect to its “long” side, z;xy) if no point of X’ in T, different from z; and zy, is
closer to the line z;zy than x is. (By slightly perturbing the elements of X, if necessary, we can assume
that this point is uniquely determined.)

Color the triples {z,z’, 2"} C X' with p+ 1 colors, 0,1,...p, according to the following rule.
o {z,z', 2"} gets color p if (z,z',2") = 1.

o {z,2',2"} gets color 1 if (z,z',2"), =1 and (z,2',2") # 1.

o For 0 <i<p,i#1, {z,a',2"} gets color i if (z,z',z"), = 1.

It follows from Ramsey’s Theorem, that there is an M-element subset Y C X', M = Q(logloglog N),
all of whose triples are of the same color, say, color g. Let y1,...,yy be an enumeration of the vertices
of Y, in clockwise order.

Claim 3.2. Ifp and q are not relatively prime and N (hence, M ) is sufficiently large, then X determines
a p-empty convez n-gon.

Proof: Suppose that (p,q) = d > 1. Then there exists an integer s, p/2 < s < 2p/3 such that
sq = 0 mod p.

If ¢ = p, then X Nconv()) is an almost convex set, whose size is at least M, and the result follows
from Theorem 2. Otherwise, consider any triangulation of the polygon P = y1y3ys - . - Y2s+3. Obviously,
P consists of s triangles, so it is p-empty. Since 2p/3+2<n<p+3, wehave 0 <n—s—-2<s+1.
Thus, for i = 1,2,...,n — s — 2, there is a lowest point w; € X in Ays;_1Y2;Y2;+1- Using the fact that,

for every %, yo;_1w;y2;+1 is an empty triangle, we obtain that conv(yi,ys, ..., Y2543, W1,. .., Wnp_s—2) i8
a p-empty convex n-gon.

Thus, we can and will assume in the sequel that p and g are relatively prime.

Definition 3.3. For any triangle T' = Ay;y;y;, (i < j < k) determined by ), and for any point z € X
belonging to T, we say that Ay;zyy is a base sub-triangle. It is called standard if (y;,z,yx)p = 0 or g.
A convex quadrilateral y;zz'y;, is called a base sub-quadrilateral, if z,z' € X lie in the interior of T
It is standard if (y;, z,z',yx) =0, g or 2q mod p.
Let ®(T) (and I'(T")) be defined as the set of all numbers that occur as the remainder of the number
points in a base sub-triangle (resp., base sub-quadrilateral) of 7' upon division by p. That is, let

(1) = {{yi, 2, yx)p | © € X,z € nt(T) U {z;}},
0(T) = {{(yi,z, 2", yk)p | z, 2" € X, z,2' € int(T), yizz'yy convex} .

Clearly, ®(T') can take at most 2P different “values” (sets), and the same is true for I'(T"). Therefore,
by Ramsey’s Theorem, we can find a subset Z C Y, Z = {z1, 29, ..., 2Kk} in clockwise order, such that

K = Q(loglog M) = Q(logloglogloglog N)



and the pair (®(7T'),['(T)) is the same for every triangle T' = Az;zjz, i < j < k.

Claim 3.4. If any triangle determined by Z has a non-standard base sub-triangle (hence, all of them
do) and N (hence, K ) is sufficiently large, then X determines a p-empty convezx n-gon.

Proof: Suppose that there exists a non-standard base sub-triangle S with (S), = s, andlet ¢,0 <t < p,
denote the unique solution of the congruence tg = s mod p. Since S is non-standard, s # 0 and t # 0, 1.
It follows from the choice of the set Z that in every triangle Az;z;z, i < j < k, there is a point z € X
such that (z;,z,2;)p = s. Letting | = p —t, we clearly have 1 <1 < p — 2. We distinguish two cases.

Case 1: 1 <1< 2p/3. Since n > 2p/3 + 3, we can write n — 2 = a(l + 1) + b, where a > 1 and
0 < b <141 are suitable integers. Clearly, we have al +1 > a + b.

The convex polygon 212325 . .. Z2q1+3 has al + 2 vertices, so its triangulations consist of al triangles.
For i = 1,2,...a, let z; be a point of X in Azg_129;29i41 such that (z9;_1,2;,22i+1)p, = s. For
i=a+1,a+2,...a+b, let z; be the lowest point of X in Azg;_129;29;+1 so that Azg;_1x;29i41 i8
empty.

Then P = conv(z1, 23,25, - - - , 22143, L1, L2, - - -  Tq+p) 18 & polygon with al + 2 + a + b = n vertices,
and (P) = alq+ as = alqg + atq = aq(l +t) = 0 mod p.

Case 2: 2p/3 <1 <p—2. Sincen <p+1, we can write p+2 —n = a(t —1) — b, where a > 1
and 0 < b < t — 1 are suitable integers. Then we have n = p 4+ 2 —a(t — 1) + b. Using the fact that
n > 2p/3 + 3, one can easily check that p—at +1>a+b.

The convex polygon 212325 . . . 2a(p_at)4+3 has p—at +2 vertices, so its triangulations consist of p —at
triangles. For i = 1,2,...a, let z; be a point of X in Azg;_129;29i41 such that (29,1, %;, 20i11)p = s.
Fori=a+1,a+2,...a+Db, let z; be the lowest point of X in Azg;_129;29;+1 S0 that Azg;_1x;20i41 i8
empty.

Then P = conv(z1, 23, 25, - - - » 22(p—at)+3> T1> T2; - - -  Ta+p) 18 & polygon with p—at+2+a+b=mn
vertices, and (P) = g(p — at) + as = 0 mod p.

Claim 3.5. If any triangle determined by Z has a non-standard base sub-quadrilateral (hence, all of
them do) and N (hence, K ) is sufficiently large, then X determines a p-empty convex n-gon.

Proof: Suppose that there exists a non-standard base sub-quadrilateral S with (S), = s, and, as
before, let ¢ denote the unique solution of the congruence tg = s mod p in the interval [0, p). Since S is
non-standard, we have s # 0 and ¢ # 0,1,2. It follows that every triangle Az;z;z, i < j < k contains
two points z, 2’ € X such that z;zz'zy, is a convex quadrilateral and (z;, z, 2/, z)p = s. Letting | = p—t,
we clearly have 1 <[ < p — 3. We distinguish two cases.

Case 1: 1 <1 < 2p/3. Since n > 2p/3 + 4, we can write n — 2 = a(l + 2) + b, where ¢ > 1 and
0 < b <1+ 2 are suitable integers. Clearly, we have al +2 > a + b.

The convex polygon 212325 . .. 2241+3 has al + 2 vertices, so its triangulations consist of al triangles.
Fori =1,2,...a,let z; and z} be two points of X' in Azg;_129;22i4+1 such that zo; 12;%}22;+1 is convex and
(22i—1,Ti, T}, 22i41)p = 8. Fori =a+1,a+2,...a+b, let z; be the lowest point of X in Azg;j_129;29i11.
More precisely, in the exceptional case of a + b = al + 2, let z,44 be a point in Azyg;+32K21 such that
AZ9al+3Tq1b21 is empty.



Then P = conv(z1,23, 25, - - -, 224143, T1, L1, T2, Thy « -+ Tay Thyy Tat1s- -+, Tarp) 1S & convex polygon
with al + 2 4 2a + b = n vertices, and (P) = alq + as = alg + atq = aq(l + t) = 0 mod p.

Case 2: 2p/3 <1 <p—3. Since n < p+ 1, we can write p+ 2 —n = a(t — 2) — b, where a > 1 and
0 < b < t— 2 are suitable inetegers. Then n = p+ 2 — a(t — 2) + b. Using the fact that n > 3p/4 + 4,
one can easily check that p —at +1> a + 0.

The convex polygon 212325 . . . Za(p_at)+3 has p — at +2 vertices, so its triangulations consist of p —at
triangles. For i = 1,2,...a, let z; and z be two points of X in Azy;_122;29i11 such that zo;_1x;z} 209,11
is a convex quadrilateral with (zo;—1, z;, 2}, 22i11)p = 8. Fori = a+1,a+2,...a+b, let z; be the lowest
pOiIlt of X in AZQi_lzgiZQH_l.

Then P = conv(21,23, 25, - - - » 22(p—at)+3: L1, L1, T2, L, - - -, Tas Tgs Ta+1, - - - ; Latb) 18 & convex polygon
with p — at + 2 + 2a + b = n vertices, and (P) = q(p — at) + as = 0 mod p.

From now on we assume that all base sub-triangles and base sub-quadrilaterals of the triangles
determined by Z are standard.

Definition 3.6. For any triangle T' = Az;z;z, i < j < k, define a partial order on the points in the
interior of T' as follows. For z,y € T, x <7 y if and only if Az;yz; contains z. The rank of y is the

largest number o for which there exist 1,9, ...z, in T such that 1 <7 x9,... <7 4 <7 Y.
Claim 3.7. Let T = Az;zjz, 1 < j < k.

If g # 1, 1%1, then there exist o, x1,...,7q 1 in T such that z;xox1...Tq 12k 1S an empty convex
(g + 2)-gon.

If g = ’%1, then there exist xo,x1 in T such that z;xox12; is an empty conver quadrilateral.

Proof: Suppose that ¢ # 1. Let xy,z1,...,z, be the points of rank 0 in the interior of T, listed in
counter-clockwise order of visibility from z;. It follows from the fact that every base sub-triangle is
standard that » > ¢ — 1. For every 0 <1 < r — 1, the quadrilateral z;z;z; 12, is convex and empty.

If, in addition, ¢ # 1%1, then there is no base sub-quadrilateral containing precisely one element of
X, for such a quadrilateral would be non-standard. Consequently, z;x;x;+12;422; is an empty convex
pentagon for 0 <[ < ¢ — 3, and the claim is true.

Claim 3.8. Suppose that K > 4p — 1 and ¢ = 1. Then X determines a p-empty convezr n-gon.

Proof: Consider the triangle T = Az;zjz;, where ¢ = 1,5 = 2p and k = 4p — 1. Clearly, T (as any
other triangle determined by Z) satisfies (T'), = 1 and (T) # 1.

Let z denote any point of rank r in 7. Since every base sub-triangle is standard, it follows by an
easy induction that (z;,x,z;) > §p if r is even, and (z;, z, z;) > T;—lp + 1 if r is odd.

Suppose first that 7" does not contain a point of rank 4. Then T' contains at least p+ 1 points, all of
rank 0,1,2 or 3. Let Py :=T. We show how to construct a sequence of convex polygons P;, P, ..., Ps

satisfying the conditions

(i) z; and 2 are vertices of P; (1 <t <s);
(ii) P; has at most 6 vertices (1 <t < s);
(iii) every point of X in P; belongs to the closure of P,y1 (0 <t < s—1);



(iv) Pj is empty.

Suppose that we have already defined P; for some t > 0. If (P;) = 0, then set s := t. Otherwise,
construct Pyy1 = zjy1 ... Yr2, where 1 <r < 4, as follows. Let y; be the first point of A’ lying in P, in
counter-clockwise order of visibility from z;. Let 7; denote the set of points of & lying in P; but not
contained in Az;jy; 2.

If 71 = 0, then letting r = 1, P,y1 = zjy12; meets all the requirements. Otherwise, let yo be
the first point of 7; in counter-clockwise order of visibility from 7. Clearly, z;y1y22; is a convex
quadrilateral, and the rank of yo is smaller than that of ;. Let 72 denote the set of points of 71 not
contained in the quadrilateral z;y1y22. If To = 0, then letting r = 2, P,y = 2zjy1y22, meets all the
requirements. Otherwise, let y3 be the first point of 75 in counter-clockwise order of visibility from
y2. Clearly, z;y192y321 is a convex pentagon, and the rank of y3 is smaller than that of y2. Finally,
let 73 denote the set of points of 73 not contained in the pentagon z;yi1ysyszi. If T3 = 0, then letting
r = 3, Pi1 = 2jy1y2y32, meets all the requirements. Otherwise, let y4 be the first point of 73 in
counter-clockwise order of visibility from y3. Clearly, z;y192y3y42, is a convex hexagon, and the rank
of y,4 is smaller than that of y3. Therefore, the rank of 44 is 0, and every point of 73 is contained in the
hexagon z;y1y2y3ya2k, which satisfies all the conditions (i)—(iv).

Figure 2.

Suppose next that T contains a point z of rank 4. Let z’' denote the intersection point of the line
zjz and the segment z;z;. Now Az;zz; contains at least 2p points of X. Thus, we may assume without
loss of generality that Azz'z; contains at least p points of X, all of rank 0,1,2 or 3. In this case, let
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Py = zjz' z,.
In the same way as above, one can construct a sequence of convex polygons Py, Ps, ..., P, satisfying
the conditions

(i) 2j, 2k, and z are vertices of P, (1 <t <'s);

(ii) P; has at least 4 and at most 7 vertices (1 <t < s);

(iii) every point of X' in P; belongs to the closure of P,y1 (0 <t < s—1);

(iv) Ps N Azjzzy is empty.

In both cases, it follows from the properties of the polygons P; that (P;) > (Piy1) > (P;) — 4, for
0 <t < s — 1. Furthermore, we have (Py) — (Ps) > p — 4. Therefore, there exists an integer 1 <t <s

such that (Py) = 7+ r —n for some 0 < 7 < 7. Then P = conv(Py, zj12, Zj14,- - -, Zj+2(n—7—r)) 18 @
p-empty polygon. Suppose Py has 7— 1’ vertices for some 0 <7/ < 4. Form =1,2,...,7+71', let w,, be
the lowest point of X in Az om—22j12m—1%j+2m- Then conv(P,wy, wy,...,wy4,) is a p-empty n-gon.

Claim 3.9. Suppose that K > 4p — 1 and 2 < q < 6. Then X determines a p-empty conver n-gon.

Proof: Consider the triangle T = Az;z;z, where i = 1,5 = 2p and k = 4p — 1. Let x be the point of
X in int(T), closest to the line z;z;.

Then Az;jzzy is a standard base sub-triangle, so that (z;,z,zx), = 0 or g. Since (T'), = ¢, we have
(2j,z,2k)p = p— 1 or ¢ — 1. In the first case, choose an integer 1 < a < p — 1 such that ag = 1 mod p.
In the second case, choose an integer 1 < a < p — 1 such that ag = p — ¢ + 1 mod p. In either case,
(p—q+1)/g<a<(plg—1)+1)/q.

The polygon conv(z;, 2j12, Zj+4, - - - , Zj+2a, 2k, &) has a+3 vertices and is p-empty. Since n > 5p/6+4,
g<6andp>23 wehavea+3 <n<p+1<alg+1)+3. Thus, there is a non-negative integer
f < aq such that f + a+ 3 = n. Note that ¢ < 1’%1, so we can apply Claim 3.7 to conclude that, for
every 1 < m < a, there is a g-element subset U, C X in the interior of Az 2m_22j42m—12j+2m, Which,
together with z;j om—2 and 219y, forms the vertex set of an empty convex (g + 2)-gon. Let U be an
f-element subset of U; U... UU,. Then conv(2;, 2j12, Zj+4, - - - y Zj+2as 2y T,U) is a p-empty n-gon.

For the rest of the proof, we assume that K > 4p—1and ¢ > 7. Fix T = Az;zjz;, whered = 1,5 = 2p
and k =4p — 1.

Claim 3.10. Suppose that all points of X in the interior of T have rank 0. Then X determines a
p-empty convez n-gon.

Proof: Let xg,z1,%2,...2s denote the points of X' in the interior of T', listed in counter-clockwise

order of visibility from z;. Clearly, we have s > ¢ — 1. There is an integer 1 < a < ¢ — 1 such that
[%J +3<n< [@J + 2. Then n = [%J +3+b, where 0 < b < [gJ < [a—qu. Write ap = ¢ mod ¢
with1 <c<qg-—1.

The convex polygon P = 2;ziy2 ... 219 ap/q| %jLc has [%J +3 vertices and contains (P) = ¢ [?J +c=

0 mod p points in its interior. For [ = 1,2,...b, let y; be the lowest point of X in Az; 91 92191 12it+2
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with respect to the side z; 91 22,421 Then conv(zj, zi+2,. .., 2it2|ap/q|> %> Tes Y1, - - - Yp) 1S & p-empty

convex polygon with [%J + 3 + b = n vertices.
It remains to prove

Claim 3.11. Suppose that there is a point of X in the interior of T', whose rank is 1. Then X determines
a p-empty convex n-gon.

Proof: Let z € X be a point of rank 1 in the interior of T. Then Az;xz; is a standard, non-empty base
sub-triangle with at least g points in its interior, all of which have rank 0. Let xg, z1,...,z, denote the
points of X' in the interior of Az;zzy, listed in counter-clockwise order of visibility from z;. Suppose
that the line z;z separates xo,...,z; from x;q,...,z,. Since r > ¢ — 1, we may assume without loss of
generality that ¢t > tg = [¢/2] — 1.

Letting so := (2, %o, z, 2j), we have (z;,Tm,z,2;) = so +m, for 0 < m < t. Choose an integer
1 < sy < p satisfying sj = so mod p. Let I C {1,2,...,q} be an interval of consecutive integers, defined

as follows: )

{2,3,..., lg/2] + 2}, 7 <q<1l;
I'=<{la/31-1,...,|54/6]}, if12<q# (p+1)/2%
{la/31+1,...,15¢/6] +2}, ifq=(p+1)/2.

In view of the fact that (p,q) = 1, we have that |[{bp mod q | b € I}| = |I| > |g/2| + 1. Furthermore,
|{a mod q | s{; < a < sp+to}| =to+1 = [g/2]. Thus, by the pigeonhole principle, there are integers a, b
satifying sj < a < sj+1tg, b € I such that bp = amod q. Let a = cg+7r,0 <7 < g. Then0 < c < p/q+1

and bp = Cq + r, where C = |bp/q]|. Let a' = a — s{,. Clearly, we have C —¢>0and 0 <d’ <t.

The polygon P = 2212214 - - - Zi49(C—c)%jTTa has C' —c+4 vertices and (P) = (C—c)g+sp+a' =
Cq+r—a+sy+a =bp=0modp.

By modifying P, we will increase the number of vertices to n without changing the number of interior
points. For m = 1,2,...,C — ¢, let U, C Azj1om—22i+om—1%i+2m denote a set of ¢ points if ¢ # ’%1
’%1, whose existence is guaranteed in Claim 3.7. Let Y = Uy U ... Ul —_.

|u| _ {Q(C_C)a 1fq7é 1%1;
= e o
2(C —c), ifqg=12-.
One can readily check that C —c+4 < C +4 < 5p/6 + 6 < n. It is sufficient to prove that || >
n— (C —c+4). Then there exists alf' CU, U'| =n— (C —c+4) such that conv(P UU’) is a p-empty
n-gon. We distinguish three cases.

Case 1: 7 < g < 11. In this case, p > 264 > 2q(q+ 1), so that C —c¢ > p/q—2 > p/(qg+1). Note
that ¢ # ’%1. Thus, [U| +C —c=(q+1)(C —c) > p > n —4, and the statement follows.

Case 2: 12 < q # ’%1. We also have p > 24, so that 1/3 —2/qg—1/(¢+1) > 2/p and C — ¢ >
p/3 —2p/q—2>p/(qg+ 1), as in the previous case.

Case 3: ¢ = EEL. In this case, ¢ < 2 and C > p/3+ 1. This implies Y| +C —c=3(C—c) > p—3 >
n — 4, and we are done.

and a set of 2 points if ¢ =
Then we have
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Note that the condition n > 5p/6 + O(1) is heavily used in the proofs of Claims 3.9 and 3.11, and
our arguments do not allow to replace it by a weaker bound.
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