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Abstract

We consider a variation of Ramsey numbers introduced by Erdős
and Pach [6], where instead of seeking complete or independent sets we
only seek a t-homogeneous set, a vertex subset that induces a subgraph
of minimum degree at least t or the complement of such a graph.

For any ν > 0 and positive integer k, we show that any graph G
or its complement contains as an induced subgraph some graph H on
` ≥ k vertices with minimum degree at least 1

2 (`−1)+ν provided that

G has at least kΩ(ν2) vertices. We also show this to be best possible in
a sense. This may be viewed as correction to a result claimed in [6].

For the above result, we permit H to have order at least k. In the
harder problem where we insist that H have exactly k vertices, we do
not obtain sharp results, although we show a way to translate results
of one form of the problem to the other.

1 Introduction

Recall that the (diagonal, two-colour) Ramsey number is defined to be the
smallest integer R(k) for which any graph on R(k) vertices is guaranteed to
contain a homogeneous set of order k — that is, a set of k vertices corre-
sponding to either a complete or independent subgraph. The development
of asymptotic bounds for these numbers is an important and challenging
area of mathematics with a history of more than eighty years. Since the
work of Erdős and Szekeres [8] and Erdős [5], there has been no progress in
improving bounds on the first-order term of lnR(k), so even seemingly small
improvements in asymptotic bounds on R(k) are of major importance [3].
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We consider a degree-based generalisation of R(k) where, rather than
seeking a clique or coclique of order at least k, we seek instead an induced
subgraph of order at least k with high minimum degree (clique-like graphs)
or low maximum degree (coclique-like graphs). We call this the variable
quasi-Ramsey problem. By gradually relaxing the degree requirement, we
get a spectrum of Ramsey-type problems where we see a sharp change at a
certain point. Erdős and Pach [6] introduced such problems and obtained
some interesting results summarised below.

1.1 The variable quasi-Ramsey problem

For a graph G = (V,E), we write G for the complement of G. As a starting
point, Erdős and Pach observed the following.

Proposition 1 ([6]).

(a) For 0 ≤ α < 1
2 , there exists a constant C(α) such that, for each k ∈ N

and any graph G with at least C(α)k vertices, G or G has an induced
subgraph H on ` ≥ k vertices with minimum degree at least α`.

(b) For 1
2 < α ≤ 1, there exists a constant C(α) > 1 such that, for each

k ∈ N, there is a graph G with at least C(α)k vertices satisfying the
following. If H is any induced subgraph of G or G on ` ≥ k vertices,
then H has minimum degree less than α`.

Investigating the abrupt change at α = 1
2 , Erdős and Pach [6] proved the

following much stronger result, using graph discrepancy to prove part (a)
and a weighted random graph construction to prove part (b).

Theorem 2 ([6]).

(a) There exists a constant C > 0 such that, for each k ∈ N, k > 1, and
any graph G with at least Ck ln k vertices, G or G has an induced
subgraph H on ` ≥ k vertices with minimum degree at least 1

2`.

(b) For any ρ ≥ 0, there is a constant Cρ > 0 such that, for large enough
k, there is a graph G with at least Cρk ln k/ ln ln k vertices satisfying
the following. If H is any induced graph of G or G on ` ≥ k vertices,
then H has minimum degree less than 1

2`− ρ.

Our first goal is to further investigate the abrupt change described above.
We obtain sharp results by the application of a short discrepancy argument
and the analysis of a probabilistic construction similar to Proposition 1(b).

Theorem 3.

(a) Let ν ≥ 0 and c > 4/3 be fixed. For large enough k and any graph G
with at least kc10

6ν2+4/3 vertices, G or G has an induced subgraph H on
` ≥ k vertices with minimum degree at least 1

2(`− 1) + ν
√

(`− 1) ln `.
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(b) There is a constant C > 0 such that, if ν(·) is a non-decreasing non-
negative function, then for large enough k there is a graph G with
at least Ckν(k)

2+1 vertices such that the following holds. If H is any
induced subgraph of G or G on ` ≥ k vertices, then H has minimum
degree less than 1

2(`− 1) + ν(`)
√

(`− 1) ln `.

Theorem 3 exhibits a theshold phenomenon which we elucidate in Sec-
tion 1.3, where we also make comparisons to Proposition 1 and Theorem 2.
Erdős and Pach claimed that their argument for Theorem 2(a) could be
extended to prove the statement of Theorem 3(a) with the term kc10

6ν2+4/3

replaced by Ck ln k and 1
2(`−1)+ν

√
(`− 1) ln ` replaced by 1

2`+ν
√
`(ln `)3/2.

Their claimed result contradicts Theorem 3(b) for ν(`) = ν ln `.
Slightly before the abrupt change occurs, we have found the construction

for Theorem 2(b) remains valid, and this yields the following. This improve-
ment is mainly technical in nature, but we have included it for completeness.

Theorem 4. For any ν > 0, there exists Cν > 0 such that, for large enough
k, there is a graph G with at least Cνk ln k/ ln ln k vertices satisfying the
following. If H is any induced subgraph of G or G on ` ≥ k vertices, then
H has minimum degree less than (12 − `

−ν)(`− 1).

1.2 The fixed quasi-Ramsey problem

So far, we have discussed the variable quasi-Ramsey problem where we seek
to guarantee the existence of a clique-like or coclique-like induced subgraph
of order at least k. It is also natural to ask for such an induced subgraph
of order exactly k, and we call this the fixed quasi-Ramsey problem. In
Section 4, we provide a probabilistic thinning lemma (Lemma 11) that allows
us to translate results about the variable problem into results about the fixed
problem. The lemma roughly says that, in any graph of large minimum
degree, we can find an induced subgraph of any order that (approximately)
preserves the minimum degree condition in an appropriate way. We can use
this thinning lemma to establish bounds similar to Proposition 1(a). We
can also use it, together with Theorem 2(a), to prove the following result.

Theorem 5. There exists a constant C > 0 such that, for large enough
k and any graph G with at least Ck ln k vertices, G or G has an induced
subgraph H on exactly k vertices with minimum degree at least 1

2(k − 1) −
2
√

(k − 1) ln k.

The bound Ck ln k in Theorem 5 is tight up to a ln ln k factor by Theo-
rem 4. A similar but different result was proved with discrepancy arguments.

Theorem 6 ([6]). There exists a constant C > 1 such that for every k, ν ∈ N
and any graph G with at least Cνk2 vertices, G or G has an induced subgraph
H on exactly k vertices with minimum degree at least 1

2k + ν.
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1.3 Thresholds and bound comparisons

We introduce some terminology and notation to facilitate easy comparison
of the above results and to exhibit threshold phenomena. A t-homogeneous
set is a vertex subset of a graph that induces either a graph of minimum
degree at least t or the complement of such a graph. Let f : Z+ 7→ N
be a non-decreasing non-negative integer function satisfying f(`) < ` for
all `. For any positive integer k the variable quasi-Ramsey number Rf (k)
is defined to be the smallest integer such that any graph of order Rf (k)
contains an f(`)-homogeneous set of order ` for some ` ≥ k. For integers
t and k with 0 ≤ t < k, the fixed quasi-Ramsey number R∗t (k) is defined
to be the smallest integer such that any graph of order R∗t (k) contains a
t-homogeneous set of order k. We refer to both Rf (k) and R∗t (k) as quasi-
Ramsey numbers. Versions of these parameters were introduced in [6].

Note that Proposition 1 shows that, for any fixed ε > 0, as f changes
from a function satisfying f(`) ≤ (12 − ε)` for all ` to a function satisfying
f(`) ≥ (12 + ε)` for all `, Rf (k) changes from polynomial (indeed, linear)
growth in k to superpolynomial (indeed, exponential) growth in k. Theo-
rem 2(a) narrows this gap by showing that we can replace (12−ε)` above with
1
2` to achieve polynomial growth in k. Theorem 3 shows that as f changes

from a function satisfying f(`) ≤ 1
2`+ o(

√
` ln `) for all ` to a function satis-

fying f(`) ≥ 1
2`+ω(

√
` ln `) for all `, Rf (k) changes from polynomial growth

in k to superpolynomial growth in k.
The fixed quasi-Ramsey numbers are less well understood. Theorem 5

shows that R∗t (k) = O(k ln k) for t ≤ 1
2k − ω(

√
k ln k), while Theorem 6

shows that R∗t (k) = O(k2) for t = 1
2k+O(1). Since R∗f(k)(k) ≥ Rf (k), The-

orem 3(b) implies that R∗t (k) is superpolynomial in k if t ≥ 1
2k+ω(

√
k ln k).

1.4 Further related work

We mention work on the fixed quasi-Ramsey problem by Chappell and Gim-
bel [2]. Using an Erdős–Szekeres-type recursion, they proved for t ≥ 1 that

R∗t (k) ≤ (k − t− 1)

(
2(t− 1)

t− 1

)
+

(
2t

t

)
≤ (k − t+ 3)4t−1.

They gave an exact formula for R∗t (k) when t is small: if 1 ≤ t ≤ 1
4(k + 2),

then R∗t (k) = k+2t−2. They also showed the lower bound of k+2t−2 holds
for all t ≤ 1

2(k + 1); a construction certifying this is depicted in Figure 1.

Notation. Chappell and Gimbel chose the complementary interpretation
for R∗t (k) — so the sets of order k have maximum degree bounded by t —
and referred to the parameters as defective Ramsey numbers. Our R∗t (k) is
essentially the same as what is R∗t/k(k) in the notation of Erdős and Pach,
while our Rf slightly refines their Rα allowing for more precise statements.
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P Q

R

Figure 1: An illustration of the construction by Chappell and Gimbel that gives
Rt(k) ≥ k + 2t − 2 for all t ≤ 1

2 (k + 1). In this example, P is a clique of order
2(t − 1), Q is a coclique of order 2(t − 1), R is a coclique of order k − 2t + 1, all
possible edges between P and R are present, all possible edges between Q and R
are absent, and the bipartite subgraph induced by the edges between P and Q is
(t− 1)-regular. (Note that the subgraph on R could instead be chosen arbitrarily.)

Structure of the paper. We prove Theorem 3(a) in Section 2. We prove
Theorem 3(b) and discuss related results in Section 3. We state and prove
the thinning approach and discuss its applications, such as Theorem 5, in
Section 4. In Section 5, we prove Theorem 4. We give some concluding
remarks and prompt some questions for further investigation in Section 6.

Acknowledgement. We thank John Gimbel for stimulating discussions
as well as for sending us the manuscript [2].

2 An upper bound using discrepancy

We use a result on graph discrepancy to prove Theorem 3(a). Given a graph
G = (V,E), the discrepancy of a set X ⊆ V is defined as

D(X) := e(X)− 1

2

(
|X|
2

)
,

where e(X) denotes the number of edges in the subgraph G[X] induced by
X. We use a result of Erdős and Spencer [7, Ch. 7], which is the same result
used by Erdős and Pach for their proof of Theorem 2(a).

Lemma 7 (Theorem 7.1 of [7]). Provided n is large enough, if t ∈ {1, . . . , n},
then any graph G = (V,E) of order n satisfies

max
S⊆V,|S|≤t

|D(S)| ≥ t3/2

103

√
ln(5n/t).

Proof of Theorem 3(a). Fix ν ≥ 0 and let G = (V,E) be any graph on at
least N = kc10

6ν2+4/3 vertices. For any X ⊆ V , we define the following skew
form of discrepancy:

Dν(X) := |D(X)| − ν
√
|X|3 ln |X|.
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Let X ⊆ V be a set attaining maximum skew discrepancy. By symmetry
we may assume that D(X) > 0. Then for any x ∈ X we have

deg(x) ≥ 1
2(|X| − 1) + ν

√
|X| ln |X|. (1)

To see (1), suppose x ∈ X has strictly smaller degree than claimed and set
X ′ := X \ {x}. Then

Dν(X ′) ≥ e(X ′)− 1

2

(
|X| − 1

2

)
− ν
√

(|X| − 1)3 ln(|X| − 1)

> e(X)− 1

2

(
|X|
2

)
− ν
√
|X| ln |X| − ν

√
(|X| − 1)3 ln(|X| − 1).

Note that
√
|X|3 ln |X| >

√
|X| ln |X| +

√
(|X| − 1)3 ln(|X| − 1), which by

the above implies Dν(X ′) > Dν(X), contradicting the maximality of Dν(X).
If k is large enough, then by Lemma 7 there exists a set of at most k4/3

vertices with discrepancy at least νk2
√
c ln k. In evaluating this set’s skew

discrepancy, the ordinary discrepancy term will dominate the ‘skew term’,
which is equal to −νk2

√
4/3 ln k. We may thus assume that Dν(X) ≥ k2 if k

is large enough, but now note that this implies that |X| ≥ k, as required.

This argument is considerably shorter than Erdős and Pach’s proof of
Theorem 2(a). If we follow the original approach more closely, then after
appropriate adjustments we can obtain a slight improvement upon Theo-
rem 3(a) whereby kc10

6ν2+4/3 with c > 4/3 is replaced by 200(k ln k)c10
6ν2+1

with c > 1. Note that with ν = 0 this results in a bound akin to Theo-
rem 2(a). For clarity of exposition, we elected for the shorter argument,
which still yields the threshold phenomenon we desire.

3 Random graph lower bounds

Next we give probabilistic lower bounds for the quasi-Ramsey numbers. We
elaborate on an observation by Erdős and Pach. We apply upper bounds
on the order of largest t-homogeneous sets in random graphs to extend
the classic lower bounds on R(k) [5, 11]. We rely on analysis from [10],
which amongst other things thoroughly describes the expected behaviour of
t-dependent sets — i.e. vertex subsets that induce subgraphs of maximum de-
gree at most t — in the random graph Gn,1/2 with vertex set [n] = {1, . . . , n}
and edge probability 1

2 . We need a result best stated with large deviations
notation. For more on large deviations, consult [4]. Let

Λ∗(x) =

{
x ln(2x) + (1− x) ln(2(1− x)) for x ∈ [0, 1]

∞ otherwise
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(where Λ∗(0) = Λ∗(1) = ln 2). This is the Fenchel-Legendre transform of
the logarithmic moment generating function associated with the Bernoulli
distribution with probability 1

2 (cf. Exercise 2.2.23(b) of [4]). Some easy
calculus checks that Λ∗(x) has a global minimum of 0 at x = 1

2 , is strictly
decreasing on [0, 12) and strictly increasing on (12 , 1]. The following bounds
the probability that a given subset of order k in Gn,1/2 is t-dependent.

Lemma 8 (Lemma 2.2(i) of [10]). Given t̄, k with t̄ ≤ 1
2(k − 1),

P(∆(Gk,1/2) ≤ t̄) ≤ exp

(
−
(
k

2

)
Λ∗
(

t̄

k − 1

))
.

Proposition 9. For any ε ≥ 0 let f(`) be any function satisfying f(`) ≥
(12 + ε)(`− 1) for all `. Then, as k →∞,

Rf (k) ≥ (1 + o(1))
k

e
exp

(
k − 1

2
Λ∗
(

1

2
− ε
))

.

Proof. For any δ > 0 and some large enough integer k, let

n =

⌊
1

1 + δ

k

e
exp

(
k − 1

2
Λ∗
(

1

2
− ε
))⌋

.

Consider the random graph G ∼ Gn,1/2. Given a subset S ⊆ [n] of ` ≥ k

vertices, let AS be the event that δ(G[S]) ≥ f(`) or δ(G[S]) ≥ f(`), where
δ(·) denotes the minimum degree of the graph. Since ε ≥ 0, we have by
Lemma 8 that

P(AS) ≤ 2 exp

(
−
(
`

2

)
Λ∗
(
`− f(`)− 1

`− 1

))
≤ 2 exp

(
−
(
`

2

)
Λ∗
(

1

2
− ε
))

.

Note that we allow the possibility that ε > 1/2, in which case the above
inequality gives P(AS) ≤ 0. So the probability that AS holds for some set
S ⊆ [n] of ` ≥ k vertices is at most∑

S⊆[n],|S|≥k

P(AS) ≤
n∑
`=k

(
n

`

)
2 exp

(
−
(
`

2

)
Λ∗
(

1

2
− ε
))

≤ 2

n∑
`=k

(
en

`
· exp

(
−`− 1

2
Λ∗
(

1

2
− ε
)))`

≤ 2

n∑
`=k

(1 + δ)−` < 1,

where in this sequence of inequalities we have used the definition of n, the
fact that ` ≥ k, and a choice of k large enough. Thus, for k large enough,
there exists a graph on n vertices for which each induced subgraph of order
` ≥ k and its complement have minimum degree less than f(`). Since we
proved this statement holds for any δ > 0, the result follows.
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As we see now, Theorem 3(b) follows the same argument.

Proof of Theorem 3(b). Into the proof of Proposition 9, we substitute

ε = ε(`) = ν(`)

√
ln `

`− 1
.

By the Taylor expansion of Λ∗ (for 0 ≤ ε ≤ 1/2), we have that

Λ∗
(

1

2
− ε
)

=

(
1

2
− ε
)

ln(1− 2ε) +

(
1

2
+ ε

)
ln(1 + 2ε)

=

∞∑
j=1

(2ε)2j

2j(2j − 1)
≥ 2ε2.

Note that Λ∗
(
1
2 − ε

)
≥ 2ε2 in fact holds for all ε ≥ 0. Now for any δ > 0 let

n =

⌊
1

1 + δ

kν(k)
2+1

e

⌋
,

where k is some large enough integer. Again consider the random graph
G ∼ Gn,1/2. Let f(`) = (12 + ε(`))(`− 1) and AS be as in Proposition 9. As
we did before, but also using the Taylor expansion above, we obtain that
the probability AS holds for some set S ⊆ [n] of ` ≥ k vertices is at most

∑
S⊆[n],|S|≥k

P(AS) ≤ 2
n∑
`=k

(en
`
· exp

(
−(`− 1)ε2

))`
= 2

n∑
`=k

( en

`ν(`)2+1

)`
≤ 2

n∑
`=k

(1 + δ)−` < 1,

by the choice of n, ` ≥ k, ν(`) ≥ ν(k), and k large enough. Thus, for k large
enough, there is a graph on n vertices where each induced subgraph of order
` ≥ k and its complement have minimum degree less than f(`). This holds
for any δ > 0, so the result follows.

For the fixed quasi-Ramsey numbers R∗t (k), we can get a constant factor
improvement upon the bound implied by Proposition 9 by additionally using
the Lovász Local Lemma as Spencer [11] did for R(k). In particular, for
t = t(k) ≥ (12 + ε)(k − 1), the factor is exp

(
Λ∗
(
1
2 − ε

))
. This is standard

and the calculations are similar to those used above, so we omit the proof.

Proposition 10. For ε ≥ 0, let t = t(k) ≥ (12 +ε)(k−1). Then, as k →∞,

R∗t (k) ≥ (1 + o(1))
k

e
exp

(
k + 1

2
Λ∗
(

1

2
− ε
))

.
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4 A thinning argument for upper bounds

We start this section by explicitly stating our thinning approach.

Lemma 11. For any 0 < c < 1 and ε > 0, let k be such that

exp

(
1

2
ε2(k − 1)

)
> k. (2)

If H is a graph of order ` ≥ k such that δ(H) ≥ c`, then there exists
S ⊆ V (H) of order k such that δ(H[S]) ≥ (c− ε)(k − 1).

For Lemma 11, we require a Chernoff-type bound for the hypergeometric
distribution. Given positive integers N , b, a with a, b ≤ N , choose S ⊆ [N ]
with |S| = b uniformly at random (u.a.r.). The random variable given by
X = |S ∩ [a]| is a hypergeometric random variable with parameters N , b, a.

Lemma 12 (Theorem 2.10 and (2.6) of [9]). If X is a hypergeometric ran-
dom variable with parameters N , b, a, and d ≥ 0, then

P
(
X ≤ ab

N
− d
)
≤ exp

(
−d

2N

2ab

)
.

Proof of Lemma 11. Assume c, ε, k, and H are as in the statement of the
lemma. Given a vertex v ∈ V (H) and a subset T ⊆ V (H) \ {v} of order
k − 1, we call (v, T ) a pair. We say that a pair (v, T ) is good if degT (v) ≥
(c− ε)(k − 1); otherwise it is bad. Given a subset U ⊆ V (H) of order k, we
say it is good if (w,U \ {w}) is good for all w ∈ U ; otherwise it is bad.

Note that if we can find a good U in H, then we are done. Also observe
that if U is bad for all U ⊆ V (H) of order k, then there must be at least

(
`
k

)
distinct bad pairs. However, there are `

(
`−1
k−1
)

pairs in total. So there exists
a good U provided that, when choosing a pair (v, T ) u.a.r.,

P((v, T ) is bad) <

(
`

k

)/
`

(
`− 1

k − 1

)
=

1

k
.

We pick (v, T ) u.a.r. by choosing v u.a.r. before choosing T u.a.r. Note that,
given v and a uniform choice of subset T ⊆ V (H) \ {v} of order k − 1, the
random variable degT (v) has a hypergeometric distribution with parameters
`, k − 1, deg(v). Since c` ≤ deg(v) ≤ `, we have by Lemma 12 that

P((v, T ) is bad | v) = P(degT (v) < (c− ε)(k − 1))

≤ P
(

degT (v) <
deg(v)(k − 1)

`
− ε(k − 1)

)
≤ exp

(
−ε

2(k − 1)`

2 deg(v)

)
≤ exp

(
−1

2
ε2(k − 1)

)
.
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By (2), the last quantity is less than 1/k so it follows that

P((v, T ) is bad) =
1

`

∑
v

P((v, T ) is bad | v) <
1

k
,

as desired.

Our first application of the thinning lemma is the following simple bound.
This complements the bounds of Chappell and Gimbel mentioned in the
introduction. Since it is not close to the lower bound, we did not attempt to
optimise it, though it can easily be improved to roughly (ε−1/2

√
1/2 + ε) ·k.

Theorem 13. Let ε > 0. If t = t(k) ≤ (12 − ε)(k − 1), then

Rt(k) ≤ ε−1/2
√

1 + ε · (k + o(k)).

Proof. Choose k large enough so that it satisfies (2) with ε halved, and let G
be a graph of order n ≥ ε−1/2

√
1 + ε(k+γk) for some small fixed γ > 0. By

considering G or its complement, we may assume without loss of generality
that |E(G)| ≥ 1

2

(
n
2

)
. We require the following explicit form of Theorem 1(a).

This is essentially given as Exercise 12.8 in [1], so we omit the proof. (The
idea is to repeatedly remove any vertex of too small degree.)

Lemma 14. Let 0 ≤ α < 1/2 and suppose that

n ≥
√

1− α(
1
2 − α

)1/2 · k ·
(

1 +
1

k(1− α)
(
1
2 − α

)1/2
)1/2

(for k chosen large enough). If G is a graph with |V (G)| = n and |E(G)| ≥
1
2

(
n
2

)
, then it has a subgraph H of order at least k such that δ(H) ≥ α|V (H)|.

For large enough k, our choice of n satisfies the hypothesis of the lemma
with α = 1

2(1 − ε). So we are guaranteed a subgraph H with |V (H)| ≥ k
and δ(H) ≥ 1

2(1− ε)|V (H)|. By Lemma 11 with c = 1
2(1− ε) and ε halved,

there exists S ⊆ V (H) ⊆ V (G) of order k with δ(G[S]) ≥ (12 −ε)(k−1).

We also apply our thinning lemma to prove Theorem 5.

Proof of Theorem 5. Let G be a graph of order Ck ln k, where C is the same
constant as in Theorem 2(a). Then G or G contains a subgraph H of order
`, where k ≤ ` ≤ Ck ln k, with δ(H) ≥ 1

2`. For the application of Lemma 11,

set c = 1
2 and ε =

√
2 ln(k + 1)/(k − 1). Then exp

(
1
2ε

2(k − 1)
)

= k+1 > k,
and so Lemma 11 yields a set S ⊆ V (H) ⊆ V (G) of order k such that

δ(G[S]) = δ(H[S]) ≥
(

1

2
− ε
)

(k − 1) ≥ 1

2
(k − 1)− 2

√
(k − 1) ln k,

which proves the theorem.
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5 A weighted random graph construction

In this section, by a careful analysis of the weighted construction that Erdős
and Pach used for Theorem 2(b), we extend the validity of that result,
thereby establishing Theorem 4.

Proof of Theorem 4. By the monotonicity of Rt(`), there is no loss of gener-

ality in assuming ν < 2
7 . Let ν ′ = 1

2ν + 1
7 . Let k be some sufficiently large

integer. Let g(·) be the function defined by

g(x) =

⌊
ν ′

8

lnx

ln lnx

⌋
and write z = g(k). Construct a graph G = (V,E) randomly as follows.
The vertex set is defined V = V1 ∪ · · · ∪ Vz, for disjoint sets V1, . . . , Vz with

|V1| = · · · = |Vz| =
⌊(

1− 1

2z

)
k

⌋
.

Note that |V | < k ln k and

|V | ≥ z(k − 1) ≥
1
2ν + 1

7

10
· k ln k

ln ln k
.

Thus we can safely choose Cν = ν/20 for the statement of the theorem. The
random edge set E of G is determined according to a skewed distribution.
Given vertices vi ∈ Vi and vj ∈ Vj , the probability of their being joined by
an edge is defined by

P(vivj ∈ E) = pij =

{
1
2 − (2z)−4(i+j)−1 if i 6= j;
1
2 + (2z)−8i if i = j.

The remainder of the proof is devoted to proving that G has the prop-
erties we desire with positive probability. Let X be an arbitrary subset of
` ≥ k vertices and for convenience write `i = |X∩Vi| for every i ∈ {1, . . . , z}.
We will show that X is t-homogeneous with very small probability, where
t = (1− ε̂)(`− 1) for some ε̂ = ε̂(`) > 0 to be specified later.

First we concentrate on the minimum degree of the graph G[X] induced
by X. To this end, let j′ be the largest integer that satisfies `j′ ≥ `/(4z2),
so that `i < `/(4z2) for all i > j′. By this choice of j′, note that∑

i<j′

`i ≥ `− |Vj′ | −
z`

4z2
≥ `−

(
1− 1

2z

)
k − `

4z

=

(
1− 1

4z

)
(`− k) +

k

4z
≥ `

4z
,
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for large enough k. We consider the minimum degree only among vertices
in X ∩ Vj′ . Let v ∈ X ∩ Vj′ . Since the degree of v in G[X] is the sum∑

i e(v,X ∩ Vi) (where e(v, S) denotes the number of edges between v and
S), its expectation satisfies

E(degG[X](v)) = (`j′ − 1)pj′j′ +
∑
i 6=j′

`ipij′

= (`j′ − 1)

(
1

2
+

1

(2z)8j′

)
+
∑
i 6=j′

`i

(
1

2
− 1

(2z)4(i+j′)+1

)
≤ 1

2
(`− 1) +

`j′ − 1

(2z)8j′
−
∑
i<j′

`i

(2z)4(i+j′)+1

≤ 1

2
(`− 1) +

`j′ − 1

(2z)8j′
− `(2z)2

2(2z)8j′
≤
(

1

2
− 1

(2z)8z

)
(`− 1),

for large enough k. We also easily have that E(degG[X](v)) ≥ 1
3(`−1). Since

degG[X](v) is a sum of independent Bernoulli random variables, it follows by
Hoeffding’s inequality (cf. [9, Eq. (2.14)]) that, for any ε > 0, provided k is
large enough,

P(degG[X](v) > (1 + ε)E(degG[X](v)))

< exp(−1
3ε

2 E(degG[X](v))) ≤ exp(−1
9ε

2(`− 1)). (3)

Although this bound is already quite small, for our purposes we require
an even stronger bound on P(δ(G[X]) > (1 + ε)E(degG[X](v))). For this,
we restrict our attention further by bounding the minimum degree among
vertices of some arbitrary subset Y ⊆ X ∩ Vj′ of order 1

2ε`j′ . Now if v ∈ Y
has degree in G[X] greater than (1 + ε)E(degG[X](v)), then the number of

neighbours of v outside Y must be greater than (1 + 1
2ε)E(degG[X](v))).

Note that the random variables that count the number of neighbours of v
in G[X] outside Y for all v ∈ Y are mutually independent. Also, since Y
is small, the following analogue of (3) holds for each v ∈ Y , as long as k is
large enough:

P(e(v,X \ Y ) > (1 + 1
2ε)E(degG[X](v))) < exp(− 1

36ε
2(`− 1)).

Combining these observations, it follows, for any ε > 0, that if k is suffi-
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ciently large then

P
(
δ(G[X]) > (1 + ε)

(
1

2
− 1

(2z)8z

)
(`− 1)

)
≤ P(δ(G[X]) > (1 + ε)E(degG[X](v)))

≤ P(∀v ∈ Y : degG[X](v) > (1 + ε)E(degG[X](v)))

≤
∏
v∈Y

P(e(v,X \ Y ) > (1 + 1
2ε)E(degG[X](v)))

≤ exp(− 1
72ε

3(`− 1)`j′) ≤ exp

(
−ε

3(`− 1)`

288z2

)
. (4)

Next we concentrate on the minimum degree of the complement of G[X].
To this end, let j∗ ∈ {1, . . . , z} be such that `j∗(2z)

−4j∗ is maximised. Using
simple averaging, this choice of j∗ implies

`j∗

(2z)4j∗
≥ `j∗

(2z)4z
≥ `

z(2z)4z
≥ `− 1

z(2z)4z
.

We shall consider the maximum degree only among vertices in X ∩Vj∗ . Let
v ∈ X ∩ Vj∗ . Then we have that the expected degree of v in G[X] satisfies
for all large enough k that

E(degG[X](v)) = (`j∗ − 1)pj∗j∗ +
∑
i 6=j∗

`ipij∗

= (`j∗ − 1)

(
1

2
+

1

(2z)8j∗

)
+
∑
i 6=j∗

`i

(
1

2
− 1

(2z)4(i+j∗)+1

)

≥ 1

2
(`− 1) +

`j∗ − 1

(2z)8j∗
− `j∗(z − 1)

(2z)8j∗+1
≥ 1

2
(`− 1) +

`j∗

2(2z)8j∗

≥
(

1

2
+

1

(2z)8z+1

)
(`− 1).

We also easily see that E(degG[X](v)) ≤ 2
3(`− 1). By similar arguments as

above, but for the complement G of G, we obtain, for any ε > 0, that if k is
large enough then

P
(
δ(G[X]) > (1 + ε)

(
1
2 − (2z)−8z−1

)
(`− 1)

)
≤ exp

(
−ε

3(`− 1)`

72z(2z)4z

)
. (5)

To tie everything together, we apply (4) and (5) with a common choice
of ε. In particular, let ε̂(·) be the function defined by

ε̂(x) = (2g(x))−8g(x)−2

and let ε = ε̂(k ln k). Note that since k ≤ ` ≤ |V | < k ln k we have that
ε < ε̂(`) ≤ ε̂(k). By our definition of g(·), we obtain that as k →∞ both

ε̂(k) ∼ k−(1+o(1))ν′ and ε ∼ k−(1+o(1))ν′ ,
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so that ε̂(`) > `−ν for large enough k, by the choice of ν ′. Also, for large k,

(1 + ε)
(
1
2 − (2z)−8z

)
≤ (1 + ε)

(
1
2 − (2z)−8z−1

)
≤ 1

2 − ε̂(k) ≤ 1
2 − ε̂(`) ≤

1
2 − ε.

Then, by (4) and (5), the probability that the set X is ((12 − ε̂(`))(` − 1))-
homogeneous is, for all k sufficiently large, at most

2 exp

(
− ε3(`− 1)`

288z(2z)4z

)
≤ 2 exp

(
− `(`− 1)

144(2g(k ln k))28g(k ln k)+7

)
= 2 exp(−`2−(1+o(1))7ν′/2) < 2 exp(−k2−(1+o(1))7ν′/2).

The above estimate holds for any X with ` ≥ k vertices. Thus the
probability that G has a ((12 − ε̂(`))(` − 1))-homogeneous set with ` ≥ k
vertices is less than

2zk · 2 exp(−k2−(1+o(1))7ν′/2),

which is less than 1 for k large enough, since z = ko(1) and ν ′ < 2
7 . For

large enough k we have ε̂(`) > `−ν , and so conclude there is a graph of
order at least Cνk ln k/ ln ln k in which no vertex subset of order ` ≥ k is
((12 − `

−ν)(`− 1))-homogeneous, as required.

6 Concluding remarks and open problems

Theorem 3 demonstrates that the threshold between polynomial and super-
polynomial growth of the variable quasi-Ramsey numbers Rf (k) occurs for
f(`) = 1

2` + Θ(
√
` ln `). Erdős and Pach did not notice this phenomenon

and indeed presumed a different outcome. It is rare to see sharp asymptotic
results in this area of mathematics, so this highlights the power of both
graph discrepancy and the probabilistic method.

We may also ask for finer detail on the abrupt change in the variable
quasi-Ramsey problem for minimum density around 1

2 .

• For ε > 0, what precisely is the least choice of f(`) for which Rf (k) =
Ω(k(ln k)1+ε)? We only know it satisfies 1

2` ≤ f(`) ≤ 1
2`+ o(

√
` ln `).

• Does a form of Theorem 3(a) hold for ν = ν(`)→∞ as `→∞?

Our understanding of fixed quasi-Ramsey numbers R∗t (k) is less clear,
even if thinning has brought us to a slightly better viewpoint. We be-
lieve that it would be difficult to determine the second-order term in the
polynomial-to-super-polynomial threshold for R∗t (k). The threshold might
be at t = 1

2k+Θ(
√
k ln k), this being the boundary case for super-polynomial
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behaviour in Proposition 9 or 10. We cannot rule out that the thresh-
old is close to t = 1

2k + Θ(ln k), this being the boundary case for polyno-
mial behaviour in Theorem 6. It is unlikely that one can use the thinning
method to obtain sharp bounds for the fixed quasi-Ramsey number R∗t (k)
for t ≥ 1

2(k − 1). It seems that for this one would need bounds on the
variable quasi-Ramsey numbers that contradict Theorem 3(b).

We concentrated on the case of minimum density around 1
2 , but it would

also be interesting to better understand the parameters further away from
the threshold. Intuitively, tightening the existing bounds in the exponential
regime could be as difficult as the analogous problem for R(k), but in the
linear regime there is room for improvement, especially near the threshold.

Let us examine the bounds for R∗t (k). Fix α ∈ [0, 1] and suppose t = t(k)
satisfies t ∼ α(k− 1) as k →∞. If α > 1

2 , then Proposition 9 or 10 and the
Erdős–Szekeres-type bound of Chappell and Gimbel together give

1

2
Λ∗(1− α) + o(1) ≤ 1

k
lnR∗t (k) ≤ 2α ln 2 + o(1).

Recall that Λ∗(1− α) ↓ 0 as α ↓ 1
2 and Λ∗(0) = ln 2. It is curious that these

bounds do not imply that 1
k lnR∗t (k) is strictly smaller than 1

k lnR(k) for
any α > 1

2 , but there might be a way to prove such a statement without
improving the exponential bounds directly. If 1

4 ≤ α < 1
2 , then the lower

bound certified in Figure 1 and Theorem 13 together give

2α+ 1 + o(1) ≤ 1

k
R∗t (k) ≤

√(
1
2 − α

)−1
+ 1 + o(1).

The thinning upper bound can be improved slightly, but close to α = 1
2

a new idea may be needed for upper and lower bounds that agree up to
a constant multiple, independent of 1

2 − α. For α < 1
4 , there is the exact

formula of Chappell and Gimbel.
To conclude, we reiterate a problem left open by Erdős and Pach, which

asks about arguably the most interesting case for R∗t (k), the symmetric
choice t = 1

2(k − 1), rounded up or down. They showed that

R∗1
2
(k−1)(k) = Ω

(
k ln k

ln ln k

)
and R∗1

2
(k−1)(k) = O(k2),

but what is the correct behaviour of R∗1
2
(k−1)(k)?
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