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Abstract. Given d + 1 hyperplanes h1, . . . , hd+1 in general posi-
tion in R

d, let △(h1, . . . , hd+1) denote the unique bounded simplex
enclosed by them. There exists a constant c(d) > 0 such that for
any finite families H1, . . . , Hd+1 of hyperplanes in R

d, there are
subfamilies H∗

i
⊂ Hi with |H∗

i
| ≥ c(d)|Hi| and a point p ∈ R

d

with the property that p ∈ △(h1, . . . , hd+1) for all hi ∈ H∗

i
.

1. The main result

Throughout this paper, let H1, . . . , Hd+1 be finite families of hyper-
planes in R

d in general position. That is, we assume that (1) no element
of ∪d+1

i=1 Hi passes through the origin, (2) any d elements have precisely
one point in common, and (3) no d + 1 of them have a nonempty in-
tersection. A transversal to these families is an ordered (d + 1)-tuple

h = (h1, . . . , hd+1) ∈
∏d+1

i=1 Hi, where hi ∈ Hi for every i.
Given hyperplanes h1, . . . , hd+1 ⊂ R

d in general position in R
d, there

is a unique simplex denoted by △ = △(h1, . . . , hd+1) whose boundary
is contained in ∪d+1

1 hi. Clearly, this simplex is identical to the convex
hull of the points

(1.1) vi =
⋂

j 6=i

hj, i ∈ [d + 1]

where, as in the sequel, [n] stands for the set {1, 2, . . . , n}.

Our main result is the following.

Theorem 1.1. For every d ≥ 1 there is a constant c(d) > 0 with the
following property. Given finite families H1, . . . , Hd+1 of hyperplanes
in R

d in general position, there are subfamilies H∗
i ⊂ Hi with |H∗

i | ≥
c(d)|Hi| for i = 1, . . . , d+1 and a point p ∈ R

d such that p is contained

in △(h) for every transversal h ∈
∏d+1

i=1 Hi.

It follows from the general position assumption that the simplices
△(h) in Theorem 1.1 also have an interior point in common.

It will be convenient to use the language of hypergraphs. Let H =
H(H1, . . . , Hd+1) be the complete (d+1)-partite hypergraph with vertex
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classes H1, . . . , Hd+1. We refer to H as the hyperplane hypergraph, or h-
hypergraph associated with the hyperplane families H1, . . . , Hd+1. The
hyperedges of H are the transversals of the families H1, . . . , Hd+1. Our
main result can now be reformulated as follows.

Theorem 1.2. For every positive integer d, there is a constant c(d) > 0
with the following property. Every complete (d+1)-partite h-hypergraph
H(H1, . . . , Hd+1) contains a complete (d + 1)-partite h-subhypergraph
H∗(H∗

1 , . . . , H
∗
d+1) such that |H∗

i | ≥ c(d)|Hi| for all i ∈ [d + 1] and
⋂

h∈H∗ △(h) 6= ∅.

In some sense, our theorem extends the following recent and beautiful
result of Karasev [7].

Theorem 1.3. [7] Assume r is a prime power and t ≥ 2r − 1. Let H
be a complete (d + 1)-partite h-hypergraph with partition classes of size
t. Then there are vertex-disjoint hyperedges (transversals) h1, . . . , hr of
H such that

⋂r

j=1 △(hj) 6= ∅.

Two hyperedges (transversals) h and h′ of H are vertex-disjoint if hi

and h′
i are distinct for each i.

Our Theorem 1.1 implies a weaker version of Karasev’s theorem.
Namely, the same conclusion holds with arbitrary r and t ≥ r/c(d).
Since c(d) will turn out to be doubly exponential in d, our result is
quantitatively much weaker than the bound t ≥ 4r that follows from
Karasev’s theorem for any r.

Karasev’s result is a kind of dual to Tverberg’s famous theorem [10].
In the same sense, our result is dual to the homogeneous point selection
theorem of Pach [9] (see also [8]), which guarantees the existence of an
absolute constant cd > 0 with the following property. Let X1, . . . , Xd+1

be finite sets of points in general position in R
d with |Xi| = n for every

i. Then there exist subsets X∗
i ⊂ Xi of size at least cdn for every

i ∈ [d + 1] and a point p ∈ R
d such that p ∈ conv{x1, . . . , xd+1} for all

transversals (x1, . . . , xd+1) ∈
∏d+1

i+1 X∗
i . Here the assumption that the

sets Xi are of the same size can be removed (see e.g. [5]).

To establish Theorem 1.2, we need some preparation. Let h and h′

be two edges of the hypergraph H = H(H1, . . . , Hd+1). As in (1.1), let
vi (and v′

i) denote the vertex of △(h) (and △(h′)) opposite to the facet
contained in hi (and h′

i, respectively). The edges h and h′ are said to
be of the same type if, for each i ∈ [d + 1], the vertices vi and v′

i are
not separated by either of the hyperplanes hi and h′

i. We say that the
h-hypergraph H is homogeneous if every pair of its edges is of the same
type.

The heart of the proof of Theorem 1.2 is the following “same type
lemma” for hyperplanes.

Lemma 1.4. For any d ≥ 1, there exists a constant b(d) > 0 with
the following property. Every complete (d + 1)-partite h-hypergraph
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H(H1, . . . , Hd+1) contains a complete (d + 1)-partite subhypergraph
H∗(H∗

1 , . . . , H
∗
d+1) with |H∗

i | ≥ b(d)|Hi| for all i ∈ [d + 1] which is
homogeneous.

The rest of this note is organized as follows. In Section 2, we deduce
Theorem 1.2 from Lemma 1.4. In Sections 3 and 4 we present two
proofs for Lemma 1.4. The first proof, which provides a better estimate
for the value of the constant b(d), uses duality and is based on a same
type lemma for points, due to Bárány and Valtr [3] (see also [8]). The
second proof is shorter, but it utilizes a far reaching generalization of
the same type lemma to semialgebraic relations of several variables,
found by Fox, Gromov, Lafforgue, Naor, and Pach [5], see also Bukh
and Hubard [4] for a quantitative form. The same result for binary
semialgebraic relations was first established by Alon, Pach, Pinchasi,
Radoičić, and Sharir [1].

2. Proof of Theorem 1.2

In this section, we deduce Theorem 1.2 from Lemma 1.4. The proof
of the lemma is postponed to the last two sections.

Let H∗ denote the complete (d+1)-partite subhypergraph of H whose
existence is guaranteed by the lemma. For a fixed h = (h1, . . . , hd+1) ∈
H∗, let h+

i denote the half-space bounded by hi that contains vertex vi

of △(h), for i ∈ [d + 1]. The lemma implies that, for every hyperedge
k = (k1, . . . , kd+1) ∈ H∗ and for every i, the half-space h+

i contains the
vertex ui of △(k) opposite to hyperplane ki. To prove the theorem, it
suffices to establish the following claim.

⋂

h∈H∗

△(h) 6= ∅.

For h = (h1, . . . , hd+1) ∈ H∗, let ρ(h) denote the distance between
h1 and v1 = ∩d+1

2 hj, and let h′ ∈ H∗ be the edge for which ρ(h) is
minimal. By the general position assumption, we have ρ(h′) > 0. Set
v′ = ∩d+1

2 h′
j . We show that v′ ∈ △(h) for every h ∈ H∗, which implies

the claim. To see this, we have to verify that v′ ∈ h+
i for every h ∈ H∗

and for every i.
This is trivial for i = 1. Suppose that i ≥ 2. By symmetry, we

may assume that i = d + 1. We have to show that v′ ∈ h+
d+1 for every

hd+1 ∈ H∗
d+1.

Assume to the contrary that v′ /∈ h+
d+1 for some hd+1 ∈ H∗

d+1. Setting
k = (h′

1, . . . , h
′
d, hd+1), we clearly have k ∈ H∗. The simplices △(k) and

△(h′) share the vertex vd+1 = ∩d
1h

′
i. As vd+1 ∈ h+

d+1, by the construc-
tion, v′ /∈ h+

d+1 implies that hd+1 intersects the segment [vd+1, v
′] in a

point u in its relative interior, see Figure 1. On the other hand, we
know that u = ∩d+1

2 ki is the vertex of △(k) opposite to h1 = k1. Thus,
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h′

1

h′

2

h′

3

h3

v′

u

ρ(k)

ρ(h′)

Figure 1. Illustration for Theorem 1.2, d = 2

u is closer to h1 = k1 than v′ is. Therefore, we obtain that ρ(k) < ρ(h′),
contradicting the definition of h′. �

It follows from the above proof that Theorems 1.2 and 1.1 hold with
c(d) = b(d).

3. A same type lemma for hyperplanes

—First proof of Lemma 1.4

Before turning to the proof of Lemma 1.4, we need some preparation.
A collection of m ≥ d + 1 finite sets of points, X1, . . . , Xm ⊂ R

d, is
said to be strongly separated if every hyperplane intersects at most d
of the sets convXi, i ∈ [m]. This property can be rephrased in several
equivalent forms; see, e.g., [6, 3, 9, 8].

Proposition 3.1. A collection of finite point sets X1, . . . , Xm in R
d

with m ≥ d + 1 is strongly separated if and only if every d + 1 of them
are strongly separated.

Proposition 3.2. A collection of finite sets X1, . . . , Xd+1 in R
d is

strongly separated if and only if for every subset I ⊂ [d + 1] the sets
⋃

i∈I Xi and
⋃

i∈[d+1]\I Xi can be strictly separated by a hyperplane.
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Two transversals (x1, . . . , xm) and (y1, . . . , ym) ∈
∏m

i=1 Xi are said to
be of the same type if the orientations of the simplices conv{xi1 , . . . , xid+1

}
and conv{yi1, . . . , yid+1

} are the same for all 1 ≤ i1 < i2 < . . . < id+1 ≤
m. In other words, the signs of the determinants of the matrices

(

xi1 xi2 . . . xid+1

1 1 . . . 1

)

and

(

yi1 yi2 . . . yid+1

1 1 . . . 1

)

are the same.

Proposition 3.3. A collection of finite sets X1, . . . , Xm in R
d with

m ≥ d +1 is strongly separated if and only if every pair of transversals
of Xi (i ∈ [m]) are of the same type.

As usual, we say that a set of points X ⊂ R
d is in general position

if no d + 1 elements of X lie on a hyperplane. We need the same type
lemma of Bárány and Valtr [3] for points.

Theorem 3.4. [3] For every positive integer d and every m ≥ d +
1, there is a constant c(d, m) > 0 with the following property. Let
X1, . . . , Xm be a collection of pairwise disjoint finite point sets in R

d

such that their union is in general position. Then there exist subsets
X∗

i ⊂ Xi with |X∗
i | ≥ c(d, m)|Xi| for all i ∈ [m] such that the collection

X∗
1 , . . . , X

∗
m is strongly separated.

Now we turn to the proof of Lemma 1.4. We use the standard duality
between points a ∈ R

d\{0} and hyperplanes h ⊂ R
d with 0 /∈ h. Every

hyperplane not passing through the origin 0 is of the form

(3.1) h = {x ∈ R
d : a · x = 1},

with a unique a ∈ R
d \{0}. Conversely, every a ∈ R

d \{0} gives rise to
a unique hyperplane h via (3.1). By the general position assumption,
no element of ∪d+1

i=1 Hi passes through the origin. For any i ∈ [d + 1],
let Ai denote the set of points dual to the hyperplanes in Hi via the
standard duality (3.1).

Applying Theorem 3.4 to the sets A0 = {0}, A1, . . . , Ad+1, we obtain
a collection of subsets A∗

0 = {0}, A∗
1 ⊂ A1, . . . , A

∗
d+1 ⊂ Ad+1 with |A∗

i | ≥
c(d, d+2)|Ai| for all i ∈ [d+1] such that all (d+2)-transversals of them
are of the same type. The sets of hyperplanes dual to the elements
of A∗

1, . . . , A
∗
d+1, denoted by H∗

1 , . . . , H
∗
d+1, form a complete (d + 1)-

partite h-hypergraph H∗(H∗
1 , . . . , H

∗
d+1), which is a subhypergraph of

the original hypergraph H.

Claim 3.5. The h-hypergraph H∗ is homogeneous.

Proof. We show that, given hi ∈ H∗
i and hj, kj ∈ H∗

j (where j 6= i), hi

does not separate the points v = ∩j 6=ihj and u = ∩j 6=ikj. By symmetry,
it suffices to prove this in the case i = d + 1.

Consider the simplices △0 = △(h1, . . . , hd+1), △1 = △(k1, h2, . . . , hd+1),
△2 = △(k1, k2, h3, . . . , hd+1), . . ., △d = △(k1, . . . , kd, hd+1). Let ui be
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h3

h2

h1 k1

k2

u0

u1

u2

Figure 2. Illustration for Claim 3.5, case d = 2

the vertex opposite to hd+1 in △i. We have u0 = v and ud = u. Obvi-
ously, it is sufficient to verify that hd+1 does not separate ui−1 and ui

for i ∈ [d], see Figure 2.
Again, by symmetry, it is enough to consider the case i = 1. Assume

that h1 and k1 are given by the equations a1 · x = 1 and a′
1 · x = 1,

respectively. Set a(t) = (1− t)a1 + ta′
1 for t ∈ [0, 1] and let h(t) be the

hyperplane with equation a(t)·x = 1, and let △(t) be the corresponding
simplex (if it exists, which is not entirely clear at the moment) with
vertex u(t) opposite to hd+1.

We move h1 to k1 by the homotopy h(t) and check how u(t) behaves.
The common vertex of △0 and △1 is z = ∩d+1

2 hi. The segment [z, u0]
is an edge of △0. We define the half-line L = {z + λ(u0 − z) : λ > 0}.

We will show that h(t) ∩L is a single point for every t ∈ [0, 1]. This
will complete the proof, because h(0) ∩ L = u0, h(1) ∩ L = u1, and
L lies completely on one side of hd+1. Suppose the contrary and let
T ∈ [0, 1] be the smallest t ∈ [0, 1] such that for all τ ∈ [0, t), h(τ) ∩ L
is a single point but h(t) ∩ L is not. (General position implies that
T > 0.) This can happen in two different ways: either h(T ) contains z
or h(T ) becomes parallel to L.

Case 1: z ∈ h(T ). Then the equations

a(T ) · x = 1, a2 · x = 1, . . . , ad+1 · x = 1
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have a common solution, namely z. The points a(T ) ∈ convA∗
1, a2 ∈

A∗
2, . . . , ad+1 ∈ convA∗

d+1 lie on the same hyperplane, namely on {x :
x · z = 1}. But this is impossible, as A∗

1, . . . , A
∗
d+1 satisfy Theorem 3.4.

Case 2. h(T ) is parallel to L or, equivalently, to u0−z. Then u0−z
is a solution of the equations

a(T ) · x = 0, a2 · x = 0, . . . , ad · x = 0,

and also to a0 · x = 0 where a0 = 0. Therefore, the points a0 ∈
A∗

0, a(T ) ∈ convA∗
1, . . . , ad ∈ convA∗

d lie on the same hyperplane, namely
on the one with equation x · (u0 − z) = 0. This is again impossible. �

In view of the above arguments, in Lemma 1.4 and in Theorems 1.1,1.2,
one can take c(d) = b(d) = c(d, d + 2) = 2−(d+1)2d

, where c(d, d + 2)
comes from Theorem 3.4.

4. Semi-algebraic relations

—Second proof of Lemma 1.4

A real semi-algebraic set in R
d is the locus of all points that satisfy a

given finite Boolean combination of polynomial equations and inequal-
ities in the d coordinates. We say that the description complexity of
such a set is at most s if in some representation the number of equations
and inequalities is at most s and each of them is of degree at most s.
Such a representation is usually called quantifier-free. Note that semi-
algebraic sets can also be defined using quantifiers involving additional
variables, but these quantifiers can always be eliminated (see [2]).

Let H1, . . . , Hm be families of semi-algebraic sets of constant descrip-
tion complexity, and let R be an m-ary relation on

∏m

1 Hi. We assume
that R is also semi-algebraic, in the following sense. We associate each
h ∈ Hi with a point h ∈ R

di (say, with the point whose coordinates
are the coefficients of the monomials in the polynomial inequalities
defining h). We say that R is a semi-algebraic m-ary relation if its
corresponding representation

R =
{

(h1, . . . , hm) ∈ R
d1+···+dm

∣

∣

∣
h1 ∈ H1, . . . , hm ∈ Hm, (h1, . . . , hm) ∈ R

}

is a semi-algebraic set.
We need the following result of Fox et al. [5]. Its proof is based on

the case m = 2, established by Alon et al. [1].

Theorem 4.1. Let α > 0, let H1, . . . , Hm be finite families of semi-
algebraic sets of constant description complexity, and let R be a fixed
semi-algebraic m-ary relation on H1×· · ·×Hm such that the number of
m-tuples that are related (resp. unrelated) with respect to R is at least
α
∏m

i=1 |Hi|. Then there exists a constant c′ > 0, which depends on α, m
and on the maximum description complexity of the sets in Hi (i ∈ [m])
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and R, and there exist subfamilies H∗
i ⊆ Hi with |H∗

i | ≥ c′|Hi| (i ∈ [m])
such that

∏m

1 H∗
i ⊂ R (resp.

∏m

1 H∗
i ∩ R = ∅).

Proof of Lemma 1.4. We apply Lemma 4.1 with m = d + 1 for the
families of hyperplanes Hi, i ∈ [d + 1]. As in the previous section, we
associate each hyperplane hi ∈ Hi with its dual vector ai ∈ R

d \ {0}
satisfying

hi = {x ∈ R
d : ai · x = 1}.

As in (1.1), given a (d + 1)-tuple of hyperplanes (h1, . . . , hd+1) ∈
∏d+1

1 Hi, for every i ∈ [d + 1], let vi = ∩j∈[d+1]\{i}hj . That is, vi is the
unique solution of the equations aj · x = 1 for j ∈ [d + 1] \ {i}. Using
the assumption that the hyperplanes are in general position, we have
vi /∈ hi. Therefore, vi must lie in one of the open half-spaces bounded
by hi, depending on sign(ai · vi − 1).

Define 2d+1 different (d + 1)-ary relations on
∏d+1

1 Hi, depending on
the sign pattern

(sign(a1 · v1 − 1), . . . , sign(ad+1 · vd+1 − 1)).

For example, one of these relations is the relation R+, according to
which (h1, . . . , hd+1) are related if and only if sign(ai · vi−1) > 0 for all

i ∈ [d + 1]. Obviously, each (d + 1)-tuple (h1, . . . , hd+1) ∈
∏d+1

1 Hi is
related by precisely one of the above relations. Therefore, for at least
one relation R, the number of (d + 1)-tuples related with respect to R

is at least 1
2k

∏d+1
i=1 |Hi|. Hence, if R is a semi-algebraic relation, then

Lemma 1.4 follows directly from Lemma 4.1.

To see that the above relations are semi-algebraic, it is sufficient to
observe the following. Let A be the d by d matrix whose columns are
a2, . . . , ad+1, and write Ak for the matrix obtained from A by replacing
its kth column by a column whose each entry is 1. Since v1 is the unique
solution of the equations aj ·x = 1 for j ∈ [d+1]\{1}, by Cramer’s rule
we obtain that the kth coordinate of v1 ∈ R

d is det Ak/ det A. Thus,
we have

a1 · v1 − 1 =

d
∑

k=1

a1k

det Ak

det A
− 1,

where a1k denotes the kth component of a1. Consequently,

sign(a1 · v1 − 1) = sign

[

det A

(

d
∑

k=1

a1k det Ak

)

− (det A)2

]

.

The last expression in square brackets is a polynomial in the variables
aik, i ∈ [d + 1], k ∈ [d]. Analogously, sign(a2 · v2 − 1), . . . , sign(ad+1 ·
vd+1−1) can be written as the sign of a polynomial, which implies that
the above relations are indeed semi-algebraic. �

This proof gives a weaker constant in Lemma 1.4 and consequently in
Theorem 1.1. Namely, using a quantitative version of a weaker form of
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Lemma 1.4 obtained by Bukh and Hubard [4], we obtain c(d) = b(d) =

3−(d+1)3d
2
+d+1

. Note that Fox et al. [5] used Theorem 4.1 to establish a
much stronger structure theorem for semi-algebraic relations.
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