
How many ways 
an one draw a graph??J�anos Pa
h1 and G�eza T�oth1R�enyi Institute, Hungarian A
ademy of S
ien
es, Budapest, HungaryDedi
ated to Mikl�os Simonovits on his sixtieth birthdayAbstra
t. Using results from extremal graph theory, we determine theasymptoti
 number of string graphs with n verti
es, i.e., graphs that 
anbe obtained as the interse
tion graph of a system of 
ontinuous ar
s inthe plane. The number be
omes mu
h smaller, for any �xed d, if werestri
t our attention to systems of ar
s, any two of whi
h 
ross at mostd times. As an appli
ation, we estimate the number of di�erent drawingsof the 
omplete graph Kn with n verti
es under various side 
onditions.1 Introdu
tionGiven a simple graph G, is it possible to represent its verti
es by simply 
on-ne
ted regions in the plane so that two regions overlap if and only if the 
or-responding two verti
es are adja
ent? In other words, is G isomorphi
 to theinterse
tion graph of a set of simply 
onne
ted regions in the plane? This de-
eptively simple extension of propositional logi
 and its generalizations are of-ten referred to in the literature as topologi
al inferen
e problems [CGP98a℄,[CGP98b℄,[CHK99℄. They have proved to be relevant in the area of geographi
information systems [E93℄, [EF91℄ and in graph drawing [DETT99℄. In spite ofmany e�orts [K91a℄, [K98℄ (and false 
laims [SP92℄, [ES93℄), until very re
entlyno algorithm was known for their solution. Two years ago, we showed [PT02℄that the problem is de
idable. Shortly after a more elegant proof was found byS
haefer and Stefankovi�
 [SS01a℄, who went on proving that the question is inNP [SS01b℄.Sin
e ea
h element of a �nite system of regions in the plane 
an be repla
edby a simple 
ontinuous ar
 (\string") lying in its interior so that the interse
tionpattern of these ar
s is the same as that of the original regions, it is enoughto restri
t our attention to string graphs, i.e., to interse
tion graphs of planar
urves. As far as we know, these graphs were �rst studied in 1959 by S. Benzer[B59℄, who investigated the topology of geneti
 stru
tures. Somewhat later theywere also 
onsidered by F. W. Sinden [S66℄ in Bell Labs, who was interested inele
tri
al networks realizable by printed 
ir
uits. Sinden 
ollaborated with R. L.Graham, who popularized the notion among 
ombinatorists at a 
onferen
e inKeszthely (Hungary), in 1976 [G78℄. Soon after G. Ehrli
h, S. Even, and R. E.? J�anos Pa
h has been supported by NSF grant CR-00-98246, PSC-CUNY Resear
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Tarjan [EET76℄ studied string graphs (see also [K83℄ and [EPL72℄ for a spe
ial
ase). The aim of this paper is to estimate the number of di�erent string graphson n verti
es.To formulate our main result pre
isely, we have to agree on the terminology.Let G be a simple graph with vertex set V (G) and edge set E(G). A stringrepresentation of G is an assignment of simple 
ontinuous ar
s to the elements ofV (G) su
h that two ar
s 
ross ea
h other if and only if the 
orresponding verti
esof G are adja
ent. Graph G is a string graph if it has a string representation.We assume that any two ar
s share only �nitely many points and that at ea
h
ommon point the ar
s properly 
ross, i.e., one ar
 passes from one side of theother ar
 to the other side. An interse
tion point of two ar
s is 
alled a 
rossing.For any d > 0, graph G is a string graph of rank d if it has a string represen-tation with the property that any two strings have at most d 
rossings.A 
lass P of labeled graphs, whi
h is 
losed under isomorphism, is said tobe a property. A property P is 
alled hereditary if every indu
ed subgraph ofevery member of P belongs to P . Let Pn denote the set of all (labeled) graphson the vertex set f1; 2; : : : ; ng that belong to P . In the 
ombinatori
s literature,the fun
tion jPnj � 2(n2) is often 
alled the speed of property P , and there areseveral well known estimates on its growth rate as n in
reases.Let S and Sd denote the 
lasses of all string graphs and all string graphsof rank d, respe
tively. Clearly, these are hereditary properties and we haveS1 � S2 � � � � � S. Our �rst goal is to estimate their speeds.Theorem 1. For the number jSnj of all string graphs on n labeled verti
es, wehave 2 34 (n2) � jSnj � 2( 34+o(1))(n2):Theorem 2. For any d > 0, the number jSnd j of all string graphs of rank dsatis�es jSnd j � 2o(n2).We do not have any better lower bound on jSnd j than 2
(n logn), whi
h followsfrom the fa
t that the vertex set has this many di�erent permutations.A drawing of a graph is a mapping f whi
h assigns to ea
h vertex of G adistin
t point in the plane and to ea
h edge uv a 
ontinuous ar
 between f(u)and f(v), not passing through the image of any other vertex. For simpli
ity, thepoint assigned to a vertex is also 
alled a vertex and an ar
 assigned to an edgeis also 
alled an edge of the drawing, and, if this leads to no 
onfusion, it is alsodenoted by uv. We assume that (a) two edges have only �nitely many points in
ommon, and (b) if two edges share an interior point p, then they properly 
rossat p. Two drawings of G are said to be essentially equivalent the set of 
rossingpairs of edges is the same in the two drawings. Otherwise, they are essentiallydi�erent.Let �(n) and ��(n) denote the number of essentially di�erent drawings andessentially di�erent straight-line drawings, resp., of the 
omplete graph Kn withn verti
es. For any d > 0, let �d(n) denote the number of drawings with the



property that any two edges have at most d points in 
ommon. Clearly, we have��(n) � �1(n) � �2(n) � �3(n) � : : : � �(n);for every n.In Se
tions 2 and 3, we review the extremal graph theoreti
 tools used in thispaper and establish Theorem 1, respe
tively. In Se
tion 4 we prove Theorem 2in the spe
ial 
ase d = 1. The proof in the general 
ase is based on the sameideas, but it is te
hni
ally more 
ompli
ated, and it is omitted in this extendedabstra
t. In Se
tion 5, we dedu
e the following estimates.Theorem 3. For the number of essentially di�erent drawings of Kn under var-ious restri
tions, we have(i) 2
(n logn) � ��(n) � 2O(n logn);(ii) 2
(n2) � �1(n) � 2O(n2 logn);(iii) 2
(n2 log n) � �d(n) � 2o(n4); for any �xed d � 2;(iv) 2
(n4) � �(n) � 2O(n4):2 Tools from extremal graph theoryOne of the 
entral questions in extremal graph theory [B78℄ is the following.Given a graph H , what is the maximum number of edges that a graph of n ver-ti
es 
an have if it does not 
ontain H as a (not ne
essarily indu
ed) subgraph?This quantity is usually denoted by ex(n;H).Obviously, the property that a graph is H-free, is hereditary. Let Forb(n;H)denote the speed of this property, i.e., the number of graphs on n labeled verti
esthat do not 
ontain H as a subgraph. It turns out that the growth rate of thesefun
tions 
ru
ially depends on the 
hromati
 number �(H) of H .Theorem 2.1. (Erd}os-Stone [ES46℄, Erd}os-Simonovits [ES66℄) For any graphH, we have ex(n;H) = �1� 1�(H)� 1� n22 + o(n2):Theorem 2.2. (Erd}os-Frankl-R�odl [EFR86℄) For any graph H, we haveForb(n;H) = 2(1+o(1))ex(n;H):If we want to establish analogous results for graphs 
ontaining no indu
edsubgraph isomorphi
 to H , then the �rst diÆ
ulty we have to fa
e is the follow-ing: unless H is a 
omplete graph, the maximum number of edges that a graphof n verti
es 
an have without 
ontaining an indu
ed 
opy of H is �n2�. Thus,Theorem 2.1 does not have a dire
t analogue. Nevertheless, setex�(n;H) := �1� 1�(H) � 1� n22 + o(n2);



where the relevant quantity, �(H), taking the pla
e of the 
hromati
 number isde�ned as follows.We say that H is (r; s)-
olorable for some 0 � s � r if there is an r-
oloringof the vertex set V (H), in whi
h the �rst s 
olor 
lasses are 
liques (i.e., indu
e
omplete subgraphs) and the remaining r � s 
olor 
lasses are independent sets(i.e., indu
e empty subgraphs). Let C(r; s) denote the 
lass of all (r; s)-
olorablegraphs, i.e., C(r; s) = fH : H is (r; s){
olorableg :Let �(H) be the minimum integer r su
h that H is (r; s)-
olorable for all 0 �s � r. Clearly, we have �(H) � �(H); for every H .Let Forb�(n;H) stand for the number of graphs on n labeled verti
es whi
hdoes 
ontain H as an indu
ed subgraph.Theorem 2.3. (Pr�omel-Steger [PS92℄) For any graph H, we haveForb�(n;H) = 2(1+o(1))ex�(n;H):Using Szemer�edi's Regularity Lemma, Bollob�as and Thomason [BT97℄ gen-eralized this result to any nonempty hereditary graph property P . De�ne the
oloring number r(P) of P as the largest integer r for whi
h there is an s su
hthat all (r; s)-
olorable graphs have property P . That is,r(P) = maxfr : there exists 0 � s � r su
h that P � C(r; s)g:Consequently, for any 0 � s � r(P) + 1, there exists an (r(P) + 1; s)-
olorablegraph that does not have property P .In the spe
ial 
ase when P is the property that the graph does not 
ontainany indu
ed subgraph isomorphi
 to H , we have r(P) = �(H)� 1.Theorem 2.4. (Bollob�as-Thomason [BT97℄) Let P be a nontrivial hereditaryproperty of graphs, and let Pn denote the set of all graphs in P on the vertex setf1; 2; : : : ng. Then the speed of property P satis�esjPnj = 2�1� 1r(P)+o(1)�(n2);where r(P) is the 
oloring number of P.3 String graphs { Proof of Theorem 1We start with the lower bound. Consider four pairwise tangent non-overlappingdisks Di; 1 � i � 4; in the plane (see Fig. 1). Assume for simpli
ity that n isdivisible by 4. The proof for other values of n is analogous. Repla
e the boundaryof ea
h Di by n=4 slightly smaller 
on
entri
 
ir
les Cik ; 1 � k � n=4; runningvery 
lose to it. Fix a pair (i; j), 1 � i < j � 4. By lo
al deformation of everyCik in a small neighborhood of the point of tangen
y of Di and Dj , we 
ana
hieve that every Cik has a point lying outside every other Cih; h 6= k. Forevery 1 � l � n=4 and for any predetermined set of indi
es Kl � f1; 2; : : : ; n=4g;



we 
an now slightly modify Cjl so that it would interse
t a 
urve Cik if andonly if k 2 Kl. In other words, we 
an arbitrarily spe
ify the bipartite 
rossingpattern between the 
urves Cik and Cjl; 1 � k; l � n=4. Repeating the samepro
edure for every pair (i; j), we 
an obtain any 4-partite 
rossing patternbetween the 4 
lasses, ea
h 
ontaining n=4 
urves. Note that every Cik is a
losed 
urve, but deleting any point of it whi
h does not belong to another 
urveit be
omes a string. Thus, the number of essentially di�erent string graphs is atleast 2 6n216 > 2 34 (n2):

Figure 1.Lower bound 
onstru
tion for the number of string graphs.Next, we establish the upper bound. For any r � 2, let Gr be a graph withvertex set V (Gr) = fvij : 1 � i; j � rgand edge set E(Gr) = fvijvik : 1 � i; j; k � r; j 6= kg ;where vij = vji, for every i and j. In other words, the verti
es of Gr repre-sent the verti
es and the edges of the 
omplete graph Kr, two verti
es of Grbeing 
onne
ted if the 
orresponding two edges of Kr share an endpoint or the
orresponding edge and vertex of Kr are in
ident.Lemma 3.1. We have �(Gr) = r.Proof. The verti
es v1j ; 1 � j � r form a 
lique of size r. Therefore, we have�(Gr) � �(Gr) � r.Now we show by indu
tion on r that �(Gr) = r. This is true for r = 2. Letr > 2 be �xed and assume �(Gr�1) = r � 1: We have to show that, for any0 � s � r; the verti
es of Gr 
an be 
olored by r 
olors so that s 
olor 
lassesindu
e 
liques and the remaining r � s 
olor 
lasses are independent sets.For s = 0, the following 
oloring will satisfy the requirements. For any 1 �k � r, 
olor a vertex vij with 
olor k if and only if i+ j � k mod r. Clearly, ea
hvertex of Gr re
eives a 
olor and ea
h 
olor 
lass is an independent set.If s > 0, 
olor ea
h vertex of the 
lique fv1j : 1 � j � rg with 
olor 1. Theun
olored verti
es indu
e a subgraph isomorphi
 to Gr�1, for whi
h we have



�(Gr�1) = r � 1, by the indu
tion hypothesis. So the remaining verti
es 
an be
olored by r � 1 
olors so that s � 1 
olor 
lasses indu
e 
liques and the otherr � s are independent sets. 2Lemma 3.2. G5 is not a string graph.Proof. Suppose that G5 has a string representation. Continuously 
ontra
t ea
hof string (ar
) representing vii (1 � i � 5) to a point pi, without 
hanging the
rossing pattern. For every pair i 6= j; 
onsider the portion of the ar
 representingvij between the points pi and pj . These ar
s de�ne a drawing of K5, in whi
hno two independent edges 
ross ea
h other. However, K5 is not a planar graph,hen
e, by a well known theorem of Hanani and Tutte [Ch34℄, [T70℄, no su
hdrawing exists. 2Now we 
an 
omplete the proof of Theorem 1. By Lemma 3.2, a string graph
annot have an indu
ed subgraph isomorphi
 to G5. Thus, in view of Lemma3.1, Theorem 1 dire
tly follows from Theorem 2.3:jSnj � Forb�n(G5) = 2( 34+o(1))(n2):4 String graphs of a �xed rank { Proof of Theorem 2In order to show that there are 2o(n2) string graphs of rank d, in view of Theorem2.4, it is enough to exhibit a (2; 0)-
olorable, a (2; 1)-
olorable, and a (2; 2)-
olorable graph su
h that none of them is a string graph of rank d.Here we present the argument only in the spe
ial 
ase d = 1.Let H3;3 denote a graph with verti
es ui, vj , and wij , 1 � i; j � 3 andedges uiwij ; wijvj , for every i and j. In other words, H3;3 is the graph obtainedfrom K3;3, the 
omplete bipartite graph with three verti
es in its 
lasses, bysubdividing ea
h of its edges by an extra vertex.For any k, let Tk denote a graph with verti
es vi; (1 � i � k) and uI ; forevery I � f1; 2; : : : ; kg. Let vi and vj be 
onne
ted by an edge of Tk, for any1 � i < j � k, and let vi be 
onne
ted to uI if and only if i 2 I . Let T 0k denotethe graph obtained from Tk by adding the edges uIuJ , for every I 6= J .Clearly, H3;3 is (2; 0)-
olorable (bipartite), Tk is (2; 1)-
olorable, and T 0k is(2; 2)-
olorable, for every k. Therefore, if P = P(H3;3; Tk; T 0k) denotes the prop-erty that a graph does not 
ontain H3;3, Tk, or T 0k as an indu
ed subgraph, thenP is a hereditary property with 
oloring number r(P) =1. Hen
e, by Theorem2.4, for the number of graphs on n labeled verti
es, satisfying property P , wehave jPnj = 2o(n2).It remains to prove the following statement, whi
h implies that Sn1 � Pn ifk is large enough.Lemma 4.1. A string graph of order 1 
annot 
ontain H3;3, Tk, or T 0k as anindu
ed subgraph, provided that k is suÆ
iently large.Proof. It is well known that a string graph 
annot 
ontain H3;3 as an indu
edsubgraph (see e.g. [EET76℄,



Using the notation in the de�nition of Tk (and T 0k), let vi, 1 � i � k and uI ,I � f1; 2; : : : ; kg stand for the verti
es of Tk (and T 0k, resp.), and suppose thatTk (and T 0k, resp.) has a string representation in whi
h any two strings 
ross atmost on
e. For simpli
ity, we use the same notation for the strings as for the
orresponding verti
es.Fix arbitrarily an orientation of ea
h string. For any triple (x; y; z), 1 � x <y < z � k, let fxyz = 1 if along vy the 
rossing with vx follows the 
rossing withvz . Otherwise, set fxyz = 0.By Ramsey's theorem, there exists a \homogeneous" subset J � f1; 2; : : : ; kg,jJ j � log log k, su
h that fxyz is 
onstant over all triples (x; y; z), 1 � x <y < z � k, x; y; z 2 J . We 
an assume without loss of generality that J =f1; 2; : : : ;mg, where m � log log k.For any 1 � i � m, the string vi 
rosses all other vj , 1 � j � m, i 6= jexa
tly on
e. Sin
e fxiz is 
onstant over all triples (x; i; z), 1 � x < i < z � k,one 
an �nd a non-
rossing point on vi that divides vi into two parts, v<i andv>i , 
ontaining all 
rossings between vi and vx with x < i and between vi and vzwith z > i, respe
tively. The ar
s v<i and v>i are 
alled the lower part and theupper part of vi, respe
tively.Constru
t two 42-uniform hypergraphs, H< and H>, both on the vertex setf1; 2; : : : ;mg, as follows. For any 1 � x1 < x2 < � � � < x83 � m, there existsa string u = ufx1;x2;:::;x83g that 
rosses vx1 ; vx2 ; : : : ; vx83 , but no other vj . Thestring u 
rosses either the lower or the upper part of ea
h vxi , so for at least 42indi
es 1 � i � 83 it will 
ross, say, the lower (resp., upper) part. Suppose, forexample, that u 
rosses the lower (resp., upper) parts of vx1 ; vx2 ; : : : ; vx42 . Thenadd the hyperedge fx1; x2; : : : ; x42g to H< (resp., to H>).Repeating the above pro
edure for every 83-tuple 1 � x1 < x2 < � � � <x83 � m, the total number of hyperedges in H< and H> with repetitions is �m83�.However, the multipli
ity of ea
h hyperedge is at most �m�4241 �. Thus, the totalnumber of distin
t hyperedges in H< and H> is 
(m42) (i.e., at least 
onstanttimes m42). Suppose without loss of generality that H< has 
(m42) distin
thyperedges.We 
an now apply a well known result of Erd}os [E65℄ (see also [B78℄ and[PA95℄, p. 151) to 
on
lude that, for any �xed l and suÆ
iently large m, our hy-pergraph H< 
ontains a 
omplete 42-partite, 42-uniform subhypergraph K42l;:::;lwith l elements in ea
h of its 
lasses. (That is, K42l;:::;l has 42l verti
es, dividedinto 42 
lasses of size l, and it 
onsists of all 42-tuples that 
ontain one vertexfrom ea
h 
lass.)For simpli
ity, denote by sji , 1 � i � 42, 1 � j � l the lower parts v<xk ofthe strings vxk 
orresponding to the verti
es of K42l;:::;l. By the 
onstru
tion, forea
h 42-tuple (j1; : : : ; j42), 1 � j1; : : : ; j42 � l, there exists a string uj1;:::;j42 that
rosses sj11 ; : : : ; sj4242 , but no other string sji .
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s 42 ss 4242 Figure 2.Some of the strings representing a K423;:::;3.Color the 42-tuples (j1; : : : ; j42) with 42! 
olors, a

ording to order in whi
hthe 
rossings with sj11 ; : : : ; sj4242 o

ur along uj1;:::;j42 . Thus, we 
an �nd at least
(l42) 42-tuples of the same 
olor (say, white). Suppose without loss of generalitythat, for ea
h su
h 42-tuple (j1; : : : ; j42), the string uj1;:::;j42 �rst 
rosses sj11 , thensj22 ,..., and �nally sj4242 . Applying Erd}os's result again, if l is suÆ
iently large, we
an �nd a subhypergraph K423;:::;3 � K42l;:::;l, all of whose 42-tuples are white.Again, we 
an assume without loss of generality that the strings 
orrespondingto the verti
es of K423;:::;3 are sji , 1 � i � 42, 1 � j � 3. Re
all that ea
h sji isthe lower part of an original string vx, therefore, no two sji 
an 
ross ea
h other.(Indeed, the interse
tion of vx and vy, x < y, must belong to the upper part ofvx and at to the lower part of vy.)Summarizing: we have 3 � 42 = 126 strings sji , 1 � i � 42, 1 � j � 3, no twoof whi
h interse
t. Moreover, for ea
h 42-tuple (j1; : : : ; j42), 1 � j1; : : : ; j42 � 3,there is a string uj1;:::;j42 that interse
ts the strings sj11 ; : : : ; sj4242 in this order,and does not interse
t any other sji . (See Fig. 2.) We would like to show thatthere are two di�erent strings of the type uj1;:::;j42 that 
ross more than on
e.First, we give a lower bound for the number of 
rossings 
r(u; u) between stringsof type uj1;:::;j42 .Let 1 � x � 41 be �xed. For any pair y; z, 1 � y; z � 3, 
onsider all stringsuj1;:::;j42 with jx = y and jx+1 = z, and let �y;z denote the set of their portionsbetween their interse
tions with syx and szx+1. Clearly, we have j�y;zj = 340:Pi
k one element from ea
h �y;z, 1 � y; z � 3, and noti
e that at least onepair among these 9 ar
s must be 
rossing, otherwise, together with the stringss1x; s2x; s3x; s1x+1; s2x+1; s3x+1; they would give a string representation of H3;3, whi
his impossible (see the �rst paragraph of this proof). Thus, for a �xed x, the totalnumber of 
rossings between the elements of �y;z and �y0;z0 over all y; z; y0; z0,



1 � y; z; y0; z0 � 3, (y; z) 6= (y0; z0) is at leastQ1�y;z�3 j�y;zj37�40 = 39�4037�40 = 380:Here the denominator, 37�40, is the number of 9-tuples of ar
s, one from ea
hset �y;z, 1 � y; z � 3, in whi
h a 
rossing pair of ar
s is �xed. Repeating this
ount for every x, 1 � x � 41 and noti
ing that every time we 
ount di�erent
rossings, we obtain that 
r(u; u) � 41 � 380:On the other hand, the number of strings of type uj1;:::;j42 is 342. If any twoof them 
ross at most on
e, than 
r(u; u) < 384=2, whi
h is a 
ontradi
ts theabove inequality. This 
ompletes the proof of the lemma. 25 Drawings of 
omplete graphs { Proof of Theorem 3(i) It is easy to see that the order type on the verti
es of Kn (i.e., the orientationof its triples) determines the set of 
rossing pairs of edges, So the upper boundfollows from a result of Goodman and Polla
k [GP86℄, that there are at most n6ndi�erent order types on n points. On the other hand, we 
an pla
e the verti
esof Kn on a 
ir
le, in (n � 1)! di�erent 
y
li
 order, and ea
h pla
ement gives adi�erent list of 
rossing pairs of edges. It is also easy to 
ome up with a list ofn
(n) drawings su
h that by relabelling the verti
es of any one of them, we donot obtain a drawing essentially the same as another.(ii) Suppose n is divisible by 4, and let vi = (�1; i); uj = (1; j); and wk =(0; k=2), for any 1 � i; j � n=4 and 1 � k � n=2. For every 1 � k < n=2,
onne
t wk and wk+1 by a straight-line segment. Furthermore, 
onne
t everyvi to every uj by a line segment so that ea
h su
h segment passes throughsome point wk . By slightly bending ea
h edge viuj , but keeping its endpoints�xed, we 
an a
hieve that it passes either slightly above or slightly below wi+j .At ea
h edge viuj , we have two 
hoi
es, so there are 2n2=16 possibilities. Inea
h drawing, any two edges 
ross at most on
e, and di�erent 
hoi
es give riseto di�erent 
rossing patterns. (Indeed, viuj passes above wi+j if and only ifit 
rosses the edge wi+jwi+j+1.) Finally, one 
an slightly perturb the verti
esso that no three of them would be 
ollinear, and 
onne
t the missing pairs bystraight-line segments without 
reating more than one 
rossing between any pairof edges. Therefore, the number of di�erent 
rossing patterns is at least 2n2=16.
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Figure 3.The eight 
ombinatorially di�erent drawings of K4.As for the upper bound, for a �xed drawing, for ea
h vertex vi, list the edgesin
ident to vi in 
lo
kwise order around vi. For every vertex, we have (n � 2)!possibilities, so there are ((n � 2)!)n < 2n2 logn di�erent sets of lists. We 
laimthat this set of lists uniquely determines the 
rossing pattern. To see this take twoedges, v1v2 and v3v4, and 
onsider the drawing of K4 indu
ed by these verti
es,as a drawing on the sphere. Two spheri
al drawings of K4 are 
ombinatoriallyequivalent if the 
orresponding maps are isomorphi
. There are 8 
ombinatoriallydi�erent drawings of K4, with the property that any two edges have at most onepoint in 
ommon (see Fig. 3), and these drawings 
an be distinguished by lookingat the 
y
li
 orders of edges in
ident to a vertex. Hen
e, the 
y
li
 order of edgesat the verti
es determines whether v1v2 and v3v4 
ross ea
h other.(iii) Suppose n is divisible by 3. For i = 1; 2; : : : ; n=3, let vi = (�1; i), wi = (0; i),and ui = (1; i). Conne
t every vi to every uj , as follows. Choose a number k,0 � k < n=3, and 
onne
t both vi and uj to (0; k+") by a segment. Also 
onne
tany two 
onse
utive wi's by a segment. In the resulting drawing, any two have atmost two 
ommon points, and a di�erent 
hoi
e for any viuj results a di�erent
rossing pattern. Therefore, the number of di�erent 
rossing patterns is n=3n2=9.Clearly, ea
h of these drawings 
an be extended to a drawing of the 
ompletegraph su
h that still any two have at most two 
ommon points. For instan
e,slightly perturb the points together with the existing edges, so that the pointsare in general position, and add the missing edges as segments.



For the upper bound, apply Theorem 2 for the edges of Kn regarded as �n2�strings.(iv) Suppose n is even, and let vi = (�1; i), ui = (1; i), for 1 � i � n=2. Forany i; j, 1 � i < j � n=2, 
onne
t vi with (0; ni + j) and 
onne
t (0; ni + j)with vj . Now, all verti
es vi and all edges 
onne
ting them are on the left sideof the line x = 0 su
h that ea
h of the edges has exa
tly one point on that line,and all these points are di�erent. On the other hand, all verti
es ui, are on theright-hand side of the line x = 0. So, for any p; q, 1 � p < q � n=2, and forany set Kpq � f(i; j) : 1 � i < j � n=2g, we 
an draw the edge vpvq so that it
rosses uiuj (i < j) if and only if (i; j) 2 Kpq (
f. proof of Theorem 1). 2Referen
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