Geometric Graphs and Hypergraphs

Jénos Pach!

Abstract

A geometric hypergraph H is a collection of i-dimensional simplices called hyperedges or, simply,
edges, induced by some (i + 1)-tuples of a vertex set V in general position in d-space. In the case
d = 2,i+ 1, H is called a geometric graph. We survey some extremal problems on geometric
graphs and hypergraphs.

1 From thrackles to geometric graphs

Let G be a graph with vertex set V(@) and edge set E(G), and assume that it has no loops or multiple
edges. A drawing of G is a representation of G in the plane such that every vertex corresponds to
a point, and every edge is represented by a Jordan arc connecting the corresponding two points
without passing through any other vertex. Two edges (arcs) are said to cross each other if they have
an interior point p in common. For simplicity, we always assume that no three edges cross at the
same point. A crossing p is called proper if in a small neighborhood of p one edge passes from one
side of the other edge to the other side.

There are many well-known unsolved problems for graph drawings. For example, even for some
very simple graphs G, we do not how to find the crossing number of G, i.e., the minimum number of
crossing pairs of edges in a planar drawing of G. In the case when G is a complete bipartite graph,
this is Turdn’s brick factory problem [26],[14]. The determination of the crossing number is known
to be NP—complete [10].

Another well-known open problem that illustrates our ignorance about graph drawings was raised
by Conway more than thirty years ago. He defined a thrackle as a drawing of a graph G with the
property that any two distinct edges either

(i) share an endpoint, and then they do not have any other point in common; or

(ii) do not share an endpoint, in which case they meet exactly once and determine a proper
crossing.
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Conjecture 1 (Conway) The number of edges of a thrackle cannot exceed the number of its vertices.

A graph that can be drawn as a thrackle is said to be thrackleable. Assuming that the above
conjecture is true, Woodall [27] characterized all thrackleable graphs. With this assumption, a finite
graph is thrackleable if and only if it has at most one odd cycle, it has no cycle of length four, and
each of its connected components contains at most one cycle. Note that it is quite straightforward
to check the necessity of these conditions. Using a construction suggested by Conway, the thrackle
conjecture can be reduced to the following statement: If a graph G consists of two even cycles meeting
in a single vertex then G is not thrackleable (cf. [27],[24]).

The best known upper bound on the number of edges of a thrackle is the following.
Theorem 1.1 [19] Every thrackle of n vertices has at most 2n — 3 edges.

The proof is based on the following result.
Theorem 1.2 [19] Every thrackleable bipartite graph is planar.

It has been known for a long time that the thrackle conjecture is true for geometric graphs, i.e.,
for drawings where every edge is represented by a segment [15],[9],[21].

2 Turan-type results for geometric graphs

A graph drawn in the plane by possibly crossing straight-line segments is called a geometric graph.
More precisely, a geometric graph G consists of a set of points (vertices) V(G) in general position
in the plane and a set of closed segments (edges) E(G) whose endpoints belong to V(G). If V is
the vertex set of a convex n-gon, then G is called a convexr geometric graph. We say that H is a
geometric subgraph of G if V(H) C V(G) and E(H) C E(G). The systematic study of geometric
graphs was initiated by P. Erdés, Y. Kupitz [17], and M. Perles.

In the spirit of Turdn’s classical theorem for abstract graphs [25], one can raise the following
general question. Given a class H of so-called forbidden geometric subgraphs, what is the maximum
number of edges that a geometric graph of n vertices can have without containing a geometric
subgraph belonging to H? The result quoted in the last paragraph of the preceding section provides
an answer to this question in the special case when the forbidden configuration consists of two disjoint
edges, i.e., H is the class of all 4-point geometric graphs with two disjoint edges (that cannot share
even an endpoint).

Theorem 2.1 [23] If a geometric graph contains no k pairwise disjoint edges, then its number of
edges cannot exceed (k —1)%n.

It is an interesting problem to determine the best possible bound on the number of edges in the
above theorem, at least for k = 3 (see [12]).
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Encouraged by 2.1, one is tempted to conjecture that for every fixed k&, the maximum number of
edges of a geometric graph of n vertices, which does not contain k pairwise crossing edges, is O(n).
For k = 2, this follows from the fact that every planar graph with n > 3 vertices has at most 3n — 6
edges. For k = 3, the conjecture has been verified in [1]. For larger values of k, the best known result
is the following.

Theorem 2.2 [22],[1] Let k > 3 be fized. If a geometric graph of n vertices does not contain k
pairwise crossing edges, then its number of edges is O(n(logn)?*~9).

The analogous problem for convezr geometric graphs has been completely settled in [4].

Theorem 2.3 Let n > 2k. The mazimum number of edges that a convex geometric graph of n
vertices can have without containing k pairwise crossing edges, is 2(k — 1)n — (2k2_ 1).

A non-crossing tree is called a caterpillar if it contains no three disjoint paths of length two
starting from the same vertex. We close this section with an unpublished result of Perles.

Theorem 2.4 If a geometric graph with n vertices has more than |n(k—2)/2] edges, then it contains
a k-vertex caterpillar of every possible type.

3 Ramsey-type results for geometric graphs

The (3) segments determined by n points in the plane, no three of which are collinear, form a complete
geometric graph with n vertices. In classical Ramsey—theory, we want to find large monochromatic
subgraphs in a complete graph whose edges are colored with several colors [3], [13]. Most questions
of this type can be generalized to complete geometric graphs, where the monochromatic subgraphs
are required to satisfy certain geometric conditions.

The following two statements were conjectured by A. Bialostocki and P. Dierker.

Theorem 3.1 [16] If the edges of a finite complete geometric graph are colored by two colors, there
ezists a non-selfintersecting spanning tree, all of whose edges are of the same color.

Theorem 3.2 [16] If the edges of a complete geometric graph with 3n —1 vertices are colored by two
colors, there exist n pairwise disjoint edges of the same color.

The analogues of Theorems 3.1 and 3.2 for abstract graphs, i. e., when the geometric constraints
are ignored, were noticed by Erdés—Rado (see [8]) and Gerencsér—Gydrfas [11], respectively. In fact,
Gerencsér and Gyarfas proved the stronger result that for any 2-coloring of the edges of a complete
graph with 3n — 1 vertices, there exists a monochromatic path of length 2n — 1. This statement, as
well as Theorem 3.2, is best possible, as is shown by the following example. Take the disjoint union
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of a complete graph of n — 1 vertices and a complete graph of 2n — 1 vertices, all of whose edges are
red and blue, respectively, and color all edges between the two parts red.

It seems that a key to obtaining strong Ramsey-type results for geometric graphs is the intro-
duction of suitable ordering relations which store a lot of information about the geometric structure.
The proofs of the last two theorems in this section are based on the following wellknown (and very
easy) lemma of Dilworth.

Lemma 3.3 [6] Any partially ordered set of size n? + 1 either has a totally ordered subset of size
n+ 1 or contains n + 1 pairwise incomparable elements.

Theorem 3.4 [16] If the edges of a complete geometric graph of n? + 1 vertices are colored by red
and blue, one can find either a non-selfintersecting red path of length n or a non-selfintersecting blue
path of length n.

Theorem 3.5 [18], [16] Let r = r(n) denote the smallest positive integer with the property that any
family of r closed segments in general position in the plane has n members that are either pairwise
disjoint or pairwise crossing. We have

n2.322 < ,r(n) < ,n’5'

4 Geometric hypergraphs

For many applications of geometric graph theory, we have to find the right generalizations of the
above results to systems of surfaces or surface patches in d-space. For simplicity, we will only discuss
the case when these surface patches are flat (simplices).

Definition 4.1 A d-dimensional geometric r-hypergraph H;i is a pair (V, E), where V is a set of
points in general position in R, and E is a set of closed (r — 1)-dimensional simplices induced by
some r-tuples of V.. The sets V and E are called the vertex set and edge set of HY, respectively.

Akiyama and Alon [2] proved the following theorem. Let V =V, U.. .UV, (|Vi| = ... = |V4| = n)
be a dn-element set in general position in R¢, and let E consist of all (d — 1)-dimensional simplices
having exactly one vertex in each V;. Then E contains n disjoint simplices. Combining this with a
result of Erdds [7], we obtain a non-trivial upper bound for the number of edges of a d-dimensional
geometric d-hypergraph of n vertices that contains no k pairwise disjoint edges.

If we want to exclude crossings rather than disjoint edges, we face the following problem. Even
if we restrict our attention to systems of triangles induced by 3-dimensional point sets in general
position, it is not completely clear how a “crossing” should be defined. If two segments cross, they
do not share an endpoint. Should this remain true for triangles? We have to clarify the terminology.
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Definition 4.2 Two simplices are said to have a non-trivial intersection, if their relative interiors
have a point in common. If, in addition, the two simplices are vertex disjoint, then they are said to
Cross.

More generally, k simplices are said to have a non-trivial intersection, if their relative interiors
have a point in common. If, in addition, all simplices are vertex disjoint, then they are said to cross.

Consider k simplices. It is important to note that the fact that every pair of them has a non-
trivial intersection does not imply that all of them do. To emphasize that this stronger condition is
satisfied, we often say that the simplices have a non-trivial intersection in the strong sense, or simply
that they strongly intersect. Similarly, a set of pairwise crossing simplices is not necessarily crossing.
If want to emphasize that they all cross, we will say that they cross in the strong sense, or shortly
that they strongly cross.

Generalizing the basic problem of Section 2, one can try to determine the maximum number of
edges that a d-dimensional geometric r-hypergraph H? of n vertices can have without containing
some fixed crossing pattern. The following results are taken from [5].

Theorem 4.1 For any fized k > 1, one can select at most O(nl4/?1) d-dimensional simplices induced
by n points in d-space with the property that no k of them share a common interior point. This bound
18 asymptotically tight.

Theorem 4.2 Let E be any set of d-dimensional simplices induced by an n-element point set V C
R4. If E has no two crossing elements, then |E| = O(n?), and this bound is asymptotically tight.

Theorem 4.3 Let E be a family of (d — 1)-dimensional simplices induced by an n-element point set
V C R? such that E has no k members with pairwise non-trivial intersections (d,k > 1). Then, for
k=2 and 3, we have |E| = O(n®!). Otherwise, |E| = O(n% 110g?*~6n).

It is an outstanding open problem to decide whether the order of magnitude of the above bound
can be improved e.g. for d = 4,k = 2. However, one can show that the following related result is
asymptotically tight.

Theorem 4.4 Let E be a family of (d — 1)-dimensional simplices induced by an n-element point set
V C Re. If E has no two crossing members, then |E| = O(n®1), and this bound cannot be improved.

Theorem 4.5 Let E be a family of (d — 1)-dimensional simplices induced by an n-element point set
V CRe, where d,k > 1. If E has no k pairwise crossing members, then |E| = O(nd_(l/d)k_Q).

We close this paper with a generalization of 3.2.

Theorem 4.6 Let us color with two colors all (d — 1)-dimensional simplices induced by (d+1)n —1
points in general position in RE. Then one can always find n disjoint simplices of the same color.
This result cannot be improved.
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