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Abstract

J. Urrutia asked the following question. Given a family of pairwise disjoint compact convex
sets on a sheet of glass, is it true that one can always separate from one another a constant
fraction of them using edge-to-edge straight-line cuts? We answer this question in the negative,
and establish some lower and upper bounds for the number of separable sets. We also consider
the special case when the family consists of intervals, axis-parallel rectangles, ‘fat’ sets, or ‘fat’
sets with bounded size.

1 Introduction

Let P be a subset of the plane, and let H; and Hy be the two open half-planes bounded by a
straight line ¢. Cutting P along ¢, we obtain two pieces P, = PN H; and P, = PN Hy. We say
that m pairwise disjoint sets in the plane are separable if we can cut the plane into two parts, and
successively cut each part into smaller pieces until we obtain m pieces, each containing precisely
one of our m sets. (See Figure 1.)

For two positive functions defined on the positive integers, we use the notation f(n) = Q(g(n))
to express that f(n) > cg(n) for some positive constant c.

Jorge Urrutia [U96] raised the following problem. Is it true that any family of n pairwise disjoint
compact convex sets in the plane has at least (n) separable members?

In the following special case, the answer is easily seen to be in the affirmative.
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Figure 1.

Proposition 1.1 Let R > r > 0 be fized, and let F be a family of n pairwise disjoint compact
conver sets in the plane, each containing a circle of radius r and contained in another circle of
radius R.

Then F has at least cn separable members, where ¢ = ¢(r, R) > 0.

Proof: Choose j at random, uniformly in [0, 8R], and cut the plane into squares along the lines
z =8Ri+ j and y = 8Ri + j for all integers i. The expected number of members of F intersected
by these lines is at most n/2. Since there are at most 64R?/(r?7) members of F contained in the
same square, we can find a separable subfamily of size at least (r?r/(128R?))n. O

The above statement does not remain true without the assumption on the circumradii and
inradii of the members of F. That is, the answer to Urrutia’s question, in full generality, is in the
negative.

Theorem 1.2 There exists a family of n pairwise disjoint straight-line segments in the plane such
that all separable subfamilies are of size O(nl°82/1083),

Proof: It is enough to show that for every positive integer k there is a family Cj, of 3% disjoint
intervals, such that Cj has at most 2* separable members.

We construct Cy recursively. During the construction we make sure that the endpoints of the
intervals in C are in general position: no three of them lie on the same straight line.



The case k = 1 is shown on Figure 2(a). Notice that, for an arbitrary segment pg and any
€ > 0, the construction can be carried out in such a way that each of the three segments has one
of its endpoints in the disk of radius € around p and the other in the disk of radius € around ¢ (see
Figure 2(b)). Denote such a configuration Ci(p, g, ¢).

For k > 1, replace each segment pg of Cy_; by Ci(p,q,e). If € > 0 is sufficiently small, the
resulting family C}, consists of disjoint segments. Consider a separable subfamily F. It contains at
most two members from each of the sets C1(p,q,€). Let F' be the members pg of Cy_1 such that
F contains at least one element from Ci(p,q,e). Recall that the segments of Cy_; are in general
position. Thus, if ¢ is sufficiently small, then F’ is also separable. Thus, |F| < 2|F'| < 2*. O
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Figure 2.

Next we state some positive results.

Theorem 1.3 Any family of n pairwise disjoint compact convex sets in the plane has at least
Q(n'/3) separable members.

The construction proving Theorem 1.2 uses only segments. For families of segments, the esti-
mate in Theorem 1.3 can be improved.

Theorem 1.4 Any family of n pairwise disjoint straight-line segments in the plane has at least
Q(n'/?) separable members.

It seems plausible that, for families of axis-parallel rectangles, the answer to Urrutia’s question
is in the affirmative. We can only prove a somewhat weaker result.



Theorem 1.5 Any family of n pairwise disjoint azis-parallel rectangles in the plane has Q(n/logn)
separable members.

We believe that among the worst possible families of n convex sets from the point of view
of separability, i.e., among those which have the fewest number of separable members, there is
one which contains only straight-line segments. This conjecture is supported by the fact that for
families of not too ‘longish’ sets, we can establish much stronger results than Theorem 1.4.

A family F of plane convex sets is called e-fat if, for each member of F, the ratio of the inradius
and the circumradius is at least £ (cf. [MMP91]).

Theorem 1.6 For any ¢ > 0, there exists a constant c¢. > 0 such that every e-fat family of n
pairwise disjoint compact convex sets in the plane has at least ccn/logn separable members.

The proofs of Theorems 1.3-1.5 are presented in Section 2. Section 3 contains the proof of the
last theorem and a corollary. In Section 4, we improve Theorem 1.6 in the special case when the
ratio of the sizes of the largest vs. the smallest members of a family of size n is bounded, say, by a
polynomial of n. Unfortunately, the improved bound given in Theorem 4.1 is still sublinear in n,
unless the ratio is bounded by a constant, in which case Theorem 4.1 reduces to Proposition 1.1.
In Section 5, we discuss analogous questions in higher dimensions, while the last section contains a
few concluding remarks.

2 Proofs of Theorems 1.3—-1.5

In order to establish Theorem 1.3, we need four simple but useful observations. As usual, we fix an
orthogonal system of coordinates (x,y) in the plane, and call the directions of the z-axis and the
y-axis horizontal and vertical, respectively.

Lemma 2.1 Given n compact convex sets in the plane and a positive integer k < n, there exists a
vertical line £ satisfying at least one of the following two conditions:

(i) £ intersects at least k + 1 sets;

(i) both half-planes bounded by £ contain at least (n —k)/2 sets.

Proof: For a compact set F' in the family consider the largest z coordinate zy of a point in the
set and let z( be the [(n — k)/2]-th smallest of these values. Either (i) holds for the line z = z( or
the number of sets lying on the right-hand side of z = x¢ + ¢ for a small enough ¢ > 0 is at least
n—[(n—k)/2] —k+ 12> [(n—k)/2], in which case (ii) is true. O

A set of intervals on the line is said to be nested, if any pair of its elements are comparable by
inclusion. In particular, the intervals of a finite nested set have a point in common.



Lemma 2.2 Let F be a family of k pairwise disjoint compact convez sets in the plane, whose
orthogonal projections onto the x-azis form a nested set of intervals.
Then F has at least (k + 3)/4 separable members.

Proof: The proof is by induction on k. For k < 2, the assertion is obviously true. Let k& > 3,
and assume that we have already established the statement for all integers smaller than k. Let F;
denote the member of F with the i-th largest projection onto the z-axis, and let p; and g; be (one
of) the leftmost and rightmost points of Fj, respectively (1 < ¢ < k). Clearly, the line p;g; does not
intersect any F; with j > 4.

Assume first that, for some 7 < 3, both half-planes bounded by p;q; fully contain at least one
member of F; say, one of these half-planes contains ki > 1, the other ko > 1 members, where
k14 ke > k — 3. Applying the induction hypothesis to these k1 and ke members, respectively, we
obtain that F has at least

ki+3 k2+3_k1+k2+6>k+3
4 + 4 4 - 4
separable members, as required.

Thus, we can suppose that, for every i < 3, at least one of the half-planes bounded by p;q; does
not contain any member of . In this case any one of Fi, F5 and F3 must be below all F; for
J > 3 or it must be above all F; for j > 3 in the ordering of F according to the y-coordinates of
the intersections of its members with a vertical line passing through all of them. In this ordering
either the highest two or the lowest two positions are occupied by members of {F, F5, F3}. Any
line separating this consecutive pair may intersect the third one but must avoid every other set
Fj. Using the induction hypothesis again, we can conclude that F has at least 1 + W > %
separable members. O

Lemma 2.3 Let (Fy,...,Fy) be a sequence of pairwise disjoint compact convez sets in the plane,
intersecting a vertical line in this order. Let p;q; denote the orthogonal projection of F; onto the
z-axis, and assume that p1 <p2 < ... <pr < q1 < g2 < ... < .

Then Fi,..., Fy are separable.

Proof: According to our notation, for any ¢ < j, F; lies ‘below’ F};. For each 4, 1 <14 < k, pick
a line /; that separates F; from F; ;. It is easy to check that a line £; with minimum slope cannot
intersect any F;. Thus, ¢; separates {Fi,...,F;} from {Fji1,...,F;}, and these two subfamilies
are separable, recursively. O

The following well known statement can be regarded as a special case to Dilworth’s theorem
[D50] on partially ordered sets.

Lemma 2.4 [ES35] Let k1 and ko be positive integers. Any sequence of kiks + 1 reals contains a
monotone increasing subsequence of length k1 + 1 or a monotone decreasing subsequence of length
ko+1. 0



Now we are in a position to complete the

Proof of Theorem 1.3: Let m(n) denote the maximum number m such that every family of n
pairwise disjoint compact convex sets in the plane has m separable members. We prove by induction
that m(n) > n'/3/2.

The base case n = 2 is trivial. Suppose that n > 2 and that we have already proved the claim
for all positive integers smaller than n. Fix any family F of n pairwise disjoint compact convex
sets in the plane.

Assume first that there is a vertical line £ intersecting at least k := [n/2] members Fi, ..., Fj €
F. Let p;q; be the orthogonal projection of F; (p; < ¢ < i, 1 < i < k). Renumbering the sets, if
necessary, we can assume that p; < ps < -+ < pg. According to Lemma 2.4,

(a) there is a strictly increasing sequence i, j = 1,2,...,k; := [n2/3 /4], such that gi; is monotone
increasing; or
. . . . - . o 1/3 3 .
) - ) 7+ L 9 i
(b) there is a strictly increasing sequence i, j = 1,2 ko := [2n*/°], such that ¢;; is monotone
decreasing.

In case (a), applying Lemma 2.4 again, we obtain that (i;) has a subsequence i) <) < ...

of length [n!/3/2] with the property that £ meets Fi, 1y Fijyy, - - - in this (or in the opposite) order.
In view of Lemma 2.3, these sets are separable.
In case (b), the orthogonal projections of F;; onto the z-axis, j = 1,2,...,ky, form a nested

family of intervals. Lemma 2.2 implies that there are at least (ko + 3)/4 > n'/3/2 separable
members.

Thus, we can assume that no vertical line intersects k¥ = [n/2] members of F. In this case, by
Lemma 2.1, there are two subfamilies F;, F» C F, each of size at least n/4, which can be separated
by a vertical line. Applying the induction hypothesis to F; and F3, we obtain that F has at least

om ([n/4]) > 2(n/4)'/3/2 > n'/3 /2

separable members, as required. O

Proof of Theorem 1.4: Let F be a family of n pairwise disjoint closed segments in the plane.
We prove by induction on n that F has at least \/n/2 separable members.

For n = 1,2, there is nothing to prove. So we can suppose that n > 2 and that we have already
proved the claim for all families having fewer than n members. If there is no vertical line intersecting
at least k := [n/2] members of F, then F has two [n/4]|-membered subfamilies separated by a
line, and the proof can be completed in exactly the same way as that of Theorem 1.3.

Thus, we can assume that there is a vertical line £ intersecting at least k members, Fy,..., Fj €
F, numbered from bottom to top in the order of their intersections with £. By Lemma 2.4,
there is a strictly increasing sequence i;, 7 = 1,2,...,h = [\/E], such that the slopes of the
lines containing F;,, ..., F;, form a monotone increasing or monotone decreasing sequence. If this
sequence is monotone increasing (decreasing), consider the segment F;; extending farthest to the left



(right), and notice that the line containing it cannot meet any other member of G = {F;,,..., F;, }.
Therefore, a line running parallel and very close to F;; will still be disjoint from all members of G
and will separate them into two non-empty groups. Recursively, both of these groups are separable,
and so is G. Thus, F has |G| = h = [Vk] > \/n/2 separable members. O

Proof of Theorem 1.5: Let m(n) denote the largest number 7 such that any family of n pairwise
disjoint axis-parallel rectangles in the plane has 77 separable members. In view of the fact that any
family of pairwise disjoint axis-parallel rectangles intersecting the same vertical line is separable by
horizontal cuts, Lemma 2.1 yields the recurrence relation

m(n) > Ogllgzcnmin (k, 2m (’Vn ; k-‘)) .

This immediately implies that m(n) > n/(2logyn). O

3 Proof of Theorem 1.6

We say that a family of sets permits a line transversal, if all of its members can be intersected by a
line. The proof of Theorem 1.5 works for any family of sets, F, satisfying the condition that every
subfamily G C F with a vertical line transversal has at least c|G| separable members (where ¢ > 0
is a constant). Therefore, to prove Theorem 1.6, it is sufficient to establish the following.

Theorem 3.1 For any € > 0, there exists a constant d = d(e) > 0 such that every family of n
pairwise disjoint convex compact e-fat sets in the plane, which permits a line transversal, has at
least dn separable members.

Proof: Let 0 < £ < 1/10 be fixed, and let F be a family of n pairwise disjoint compact convex
e-fat sets in the plane, all of which intersect the y-axis, say.

For any F € F, let r(F) and R(F) denote the inradius and circumradius of F', respectively.
By the assumption, r(F)/R(F) > e. The intersection of F' with the y-axis is a segment arbp
whose lower endpoint is ar and upper endpoint is bp. Choose two tangent lines to F' at ap and
br, and denote the (smallest) counter-clockwise angles from the y-axis to these lines by ar and
Br, respectively (ap,Br € (0,7)). In case all of F' has non-negative (respectively non-positive)
z-coordinates we set ap = 0, B = 7 (respectively ap = 7, B = 0. Notice that, if ap = fp,
then F' must lie in a parallel strip whose vertical cross-section is of length by — ap, and so 2r(F) <
(br — ap) sinap. In general, we have

7ﬂ(F)<bF;“F

sinap + R(F)sin |fr — ap (1)



Partition the elements F' € F into a constant number (at most [1007/e]2) of classes, according
to the values [100ar/e| and |1008r/c]. Let Fy be one of the largest classes, i.e., |Fy| = Q2(n). We
distinguish two cases.

CASE A: There is an interval I C [0,7) of length ¢/10 such that, for every F' € Fj, we have
afp, ,@F el

CASE B: There are two intervals, I and I, each of length £/100, which are at least 9¢/100 apart,
and ap € I and O € I, for every F € Fy.

It is sufficient to prove that, if |Fy| > 2, then in both cases we can find a separating line (i.e.,
a straight line having at least one member of Fy on both of its sides) which meets at most five
members of Fy. Indeed, cutting along such a line £y, and recursing on the subfamilies lying in the
two complementary half-planes bounded by ¢y, we obtain that Fy has at least (|Fy|+5)/6 separable
members, which will complete the proof of the lemma. (We applied exactly the same argument in
the proof of Lemma, 2.2.) Notice that the existence of the separating line is trivial for 2 <n < 7 so
we may suppose n > 8.

In CASE A, (1) implies that, for every F' € Fy,

b —
eR(F) <r(F) < FTaF sinap + R(F) sin 16—0 (2)

Using the fact that sin {5 < {5, we have

R(F) < 93 (b — ar) sin .
€
Plugging the relation brp — ap < 2R(F') into (2), we also obtain that

9
sinap > Ee,

which shows that in CASE A the interval I cannot be closer to 0 or to 7 than (9/10)e — (1/10)e =
(4/5)e.

Fix a line £ that can be reached from the y-axis by a counter-clockwise turn through an angle
belonging to I, and project every member of F to the y-axis parallel to £. Let the projection of F'
be a’ybly, where ay, < b Obviously, apbr C a/pbly. It follows from the last two inequalities, using
the law of sines, that )

F —QF
BETIE 3)

Let F; be the family consisting of those three members F' € Fy, whose intersections with the
y-axis, apbp, are the longest (break ties arbitrarily). (3) implies that no member of Fy \ F; can
intersect any of the three straight lines parallel to £, passing through the midpoints of the segments

max(ap — alp, by — bp) <



arbp, F € Fi. If one of these three lines is a separating line, we are done. Otherwise, there are
two possibilities:

(i) two members of F; occupy the two highest positions, or

(ii) two members of F; occupy the two lowest positions in the ordering of the members of Fy
according to the y-coordinates of their intersections with the y-axis.

Suppose without loss of generality that (i) holds, and let F; and F» denote the members of F;
occupying the highest and the second highest positions, respectively. One can find a straight line £
in a direction in I separating F from F,. To see this blow up the the two sets, each from one of its
points, until they touch each other. One can find £, through the intersection of the enlarged sets.
Using (3) for the projections in the direction of £y, one can verify again that ¢y cannot intersect
any member of Fy except perhaps the third member of F;. This completes the proof in CASE A.

In CASE B, suppose without loss of generality that I; = [¢/,qa], Io = [3,5'], where 0 < o/ <
a< f < <rw LetI:=|a,0]. Note that in this case, for any F € Fy, the tangents to F at ap
and bg must intersect in the left half-plane x < 0. It is easy to see that, if the direction of a line £
is in I, then in the left half-plane £ can intersect at most one member of Fj.

For any F' € Fy, let pr be a rightmost point of F'. The distance of pr from the y-axis is called
the depth of F. Assign a line £ to F, as follows.

1. Let £r be any line through pr, whose angle with the y-axis belongs to I and which intersects
the segment apbp, if such a line exists.

2. If no such line exists, then either the line £, through ar in direction « passes above pgp or
the line £ through br in direction 3 passes below pr. Set £r := £, or £r := Lg, respectively.

Since £F intersects F' in the left half-plane z < 0, it cannot intersect any other member of Fy in
the left half-plane. If £r intersects some other member G # F of Fj in the right half-plane, then
the depth of G must be larger than the depth of F. If £y passes through pr, then this is obvious,
otherwise, it follows from the fact that F' is e-fat.

Let F; be the family consisting of those five members of F, whose depths are the largest (break
ties arbitrarily). By the above observation, the lines £p for F' € F; cannot intersect any member
of Fo \ F1. Thus, if any of them is a separating line (i.e., has at least one member of F on both
of its sides), then we are done. Otherwise, we can finish the proof similarly as in CASE A. That is,
we can assume that
(i) three members of F; occupy the three highest positions, or
(ii) three members of F; occupy the three lowest positions in the ordering of the members of F
according to the y-coordinates of their intersections with the y-axis.

Assume with no loss of generality that (i) holds, and denote the three members at the highest
positions by Fi, Fo, and Fj, in this order. We may also suppose that the depth of F5 is greater
than that of F3 as otherwise ¢, would be separating. From the fact that F5 is e-fat it follows that



there is a straight line separating F from F3, whose direction is in the interval (0, 5], and that any
such line is disjoint from all members of Fy \ F;.
This settles CASE B and finishes the proof of Theorem 3.1 and hence Theorem 1.6. O

The following result is a direct corollary of Theorem 1.6.

Theorem 3.2 Any family of n pairwise disjoint homothetic copies of a compact convex set F in

the plane has at least cn/logn separable members, where c is a positive constant not depending on
F.

Proof: If F' is a segment, the entire family is separable. Otherwise, there is an affine transformation
of the plane which takes F' into a convex body, whose circumradius is at most twice larger than
its inradius (consider the Lowner-Johns ellipse [G63]). The proof now follows from the observation
that the separability problem is invariant under affine transformations. O

4 Separation of fat sets with bounded size

As we noted in the Introduction, it seems plausible that any family of n pairwise disjoint axis-
parallel rectangles in the plane has 2(n) separable members. However, we were unable to verify
this even for axis-parallel squares. We include the following modest improvement on Theorem 1.6
in case the sizes of the sets do not vary too much.

In order to achieve this improvement, we need to bound the variance of the sizes of our sets,
i.e., to put an upper bound V on the ratio of the circumradii of the largest and smallest members
of the family.

Theorem 4.1 For any € > 0, there exists a constant Ce > 0 with the following property.

Any family F of n pairwise disjoint compact convex e-fat sets in the plane contains at least
CcnloglogV/logV separable members, where V > 2 is an upper bound of the ratio of the circum-
radii of any two sets in F.

The bound given in the above theorem is sublinear, unless the variance V of the family is
bounded from above by some constant. For constant V', Theorem 4.1 reduces to Proposition 1.1. If
V grows polynomially in n, Theorem 4.1 gives a slightly better bound than Theorem 1.6. However,
for large variance V, Theorem 1.6 is stronger, as its statement is independent of V.

The somewhat weaker bound C:n/logV can be easily deduced from Proposition 1.1. Indeed,
notice that scaling shows that the constant ¢ = ¢(r, R) in Proposition 1.1 depends only on the
ratio r/R. If F satisfies the conditions in Theorem 4.1, it can be partitioned into [log V| ‘uniform’
subfamilies such that within each subfamily the variance is at most 2, therefore the circumradius
of any member is at most 2/¢ times the inradius of any other member. Applying Proposition 1.1 to
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the largest uniform subfamily, the weaker bound follows. (Throughout this section, all logarithms
will be base 2.)

The idea of the proof is that we first cut the plane into appropriate size squares so that many
members of F are fully contained in one of these cells, but not too many lie in the same cell. Then
we apply Theorem 1.6 within each cell, separately.

Proof: Let us denote the circumradius of a set F' by R(F'). Without loss of generality we may
assume that V = 2%, for a positive integer k, and 1 < R(F) < 2¥, for any set F' € F. We partition
F into k subfamilies, as follows. For every i, 1 <1 < k, let

Fi={F e F |2t <R(F) < 2%}.

Claim A. There exists an integer 1 < a < k such that

(i) X5 1Fil 2 n/2,
(i) Xfp1 |7 > 52 n for every 1 < b < a.
Define recurswely a sequence ag > a1 > az > ..., as follows. Set ag := k. If a; 1 has already

been defined for some j, choose a; to be a non-negative integer smaller than a;_; such that

aj-1 it —
3 |f,~|<%kﬂn.
i=a;j+1

If there is no such integer, we stop. Let a; be the last element of this sequence.
Clearly, a := a; satisfies (ii). As for condition (i), notice that

a aj—1

L as k —
S IF = |1F| - Z > |f|>n_z%n:n_ 2kan2n/2_
i=1 j=li=a;+1 j=1

This inequality proves Claim A.
Fix an integer a satisfying the conditions of Claim A. Let F' = U%_,F;. Assign weights to the

elements of F' in the following way. For i = 1,...,a, assign the weight
1
F):= ——
w(F) a+1—1

to every member F € F;.

Claim B. The total weight assigned to the elements of F' is at least m—, provided that n is
sufficiently large.

Let W denote the total weight of the elements in F’. By Claim A, we have

—ial};'_z Elllfl Z(zm( a+i_b)>

= 1=b+1

11



n/2 %2 /a—b 1 1 n n % 1 n  n(loga—1)
> —— — = — 4+ — —_ > — 4+ —.
= +;(2kn(a—b a+1—b>) 2a+2kb§1a—|—1—b 20 T T 3k
For small values of a, the first term of the last expression exceeds the bound stated for W, for large
values of A, the second term does. This proves Claim B.

We proceed similarly as in the proof of Proposition 1.1. Cut the plane along all horizontal and
vertical lines z = 42913 + j and y = i2%T3 4 j, where 4 runs over the integers and j is selected at
random, uniformly from the interval [0,2%"3]. The probability that a given member of F' is not
met by any of these lines is at least 1/2, since the circumradius of the sets in F’ is bounded by
2%. Hence, by the linearity of the expectation, the expected total weight of the intact (i.e., uncut)
members of F’ is at least half of the total weight of all members. There is a particular choice of
4, for which the total weight of the family G of all intact members of F’ is at least as large as its
expectation. According to Claim B, we have

nlogk
ngw(F) > = (4)

After this first round of cuts, the plane falls into squares of side-length 273, Fix one such piece,
and denote by Gy the family of all members of G belonging to it. Let Wy := 3} pcg, w(F) be the
total weight of the elements in Gy.

Recall that all members of F (and thus of Gj) are e-fat with some constant ¢ > 0, and that
k =logV, where V was the upper bound for the ‘variance’ of the set sizes in F.

We can now finish the proof of Theorem 4.1 by combining (4) with the following

Claim C. Gy has a separable subfamily whose size is at least Wy = €3 peg, w(F), for some
constant ¢ = ¢. > 0 depending only on €.

To verify the claim, let m := |Gy| and notice that, if m > 1, then Theorem 1.6 guarantees the
existence of a separable subfamily of size c.(m/logm) in Gy. It remains to show that log”m > cWy,
for a suitable constant ¢ > 0 depending on e.

Since Gy consists of pairwise disjoint sets packed into a square of side-length 223, and the area
of an e-fat set F is at least (eR(F))2m > 2742~ 2/%(F)  we have

40+3 > 527[' Z 4a72/w(F)_
Fego

On the other hand, using the convexity of the function 4~%/* over the interval w = w(F) € (0, 1],
we obtain that the right-hand side of the above inequality is at least e2wm4% 2m/Wo  Thus, we

have
4a+3 > 827Tm4a_2m/W0.

12



Taking logarithms, it follows that for large enough m

4m

Wy < =0 1
0= logm + 2loge + log 7 — 6 (m/logm),

as required. O

5 Higher dimensions

The definition of a separable family can be naturally extended to higher dimensions d > 2. We
say that m pairwise disjoint sets in d-space are separable, if we can cut the space by a hyperplane
into two parts, and successively cut each part into smaller pieces until we obtain m pieces, each
containing precisely one of our m sets.

In general, it is not true even in 3-space that every infinite family of pairwise disjoint convex sets
has three separable members. Indeed, as noted in [T79], given a family of infinitely many disjoint
straight lines in 3-space, no three of which are parallel to the same plane, any plane separating two
members of the family must cross the remaining lines. To obtain a family of compact convex sets
with this property, one can clip each member in a finite subfamily of the above construction by a
ball around the origin, whose radius is sufficiently large.

However, for fat sets and axis-parallel boxes, it is not hard to establish some positive results.

Theorem 5.1 Any family of n pairwise disjoint compact convez e-fat sets in d-space has a separable
subfamily of at least cn/(logn)? members, where ¢ = c(e,d) > 0 is a constant depending only on €
and d.

The proof is based on the following

Lemma 5.2 Let F be a family of n pairwise disjoint compact convex e-fat sets in d-space such that
each of them intersects all the d coordinate hyperplanes.

Then F has a separable subfamily of at least ¢'n members, where ¢ = c'(e,d) > 0 is a constant
depending only on € and d.

Proof: First, note that, if a set F' in d-space intersects all coordinate hyperplanes and it has a
point at distance r from the origin O, then the diameter of F is at least r/v/d. Next, notice that, if
F is an e-fat convex set of diameter d > s, and z is a point of F', then F' N B(z, s), the intersection
of F' with the ball of radius s centered at z, contains a ball of radius es/2. Indeed, we obtain such
a ball by shrinking the inscribed ball of F' from z to a fraction s/d of its original size.

Hence, any member of F, which has a point at distance r from the origin, contains a ball of
radius er/(2V/d), lying entirely within B(O,2r). As the sets F' € F are pairwise disjoint, no more
than (4v/d)¢ of these balls fit into B(O,2r). Consequently, F has at most (4v/d)? members that

13



have at least one point at distance r from the origin. This immediately implies the existence of a
subfamily F' = {F\, ..., Fy,} C F with m > n/(4v/d)%, such that every point of F; is closer to the
origin than any point of F; 41 (1 =1,...,m—1). To see that F' is separable, it is enough to observe
that, if the largest ball B; around the origin that does not overlap F; touches F; at a point p;, then
the tangent hyperplane to B; at the point p; separates F; from every Fj, j <4. O

Proof of Theorem 5.1: We establish the stronger claim that, for any ¢ > 0 and for any d >
i > 0, there is a constant ¢’ = ¢’(e,d, %) > 0 such that every family of n pairwise disjoint compact
convex e-fat sets in the plane, all of whose members intersect the first ¢ coordinate hyperplanes,
has a separable subfamily with at least ¢"n/(logn)?~* members.

The proof is by induction on d — i. The base case, 1 = d, was settled in Lemma 5.2. The case
1 = 0 gives the theorem.

Let f(n,e€,d, 1) be the minimum size of the largest separable subfamily in a family of n pairwise
disjoint compact convex e-fat sets in d-space, all of which meet the first ¢ coordinate hyperplanes.
Assume we have already verified the claim for some 7 (d > i > 0), and next we wish to prove it for
1 — 1. Let F be a family of n pairwise disjoint compact convex e-fat sets in d-space, all meeting the
first —1 coordinate hyperplanes, and assume that F ha only f(n,€,d,i—1) separable members. As
in Lemma 2.1, for every 1 < j < n/2, one can find a hyperplane z; = z such that either it intersects
at least n — 25 4+ 2 members of F, or both half-spaces bounded by it contain at least j members
of F. In the former case, we can translate this hyperplane to the ith coordinate hyperplane (not
affecting the number of separable members) and obtain that f(n,e,d,i —1) > f(n—2j +2,¢,d,1).
In the latter case, first cutting along the hyperplane z; = z and then dealing separately with the
families on either side of it, we obtain f(n,e€,d,i — 1) > 2f(j,€,d,7 — 1). Thus, we have

f(n,e,d,z' - 1) > mln(f(”_2j +2765dai)72f(j’67d’i - 1)) .
To finish the proof of the claim, set j = [n/2 — n/logn| and use the induction hypothesis on
Fln—2j+2,6.d,i). O

Theorem 5.3 Any family of n pairwise disjoint axis-parallel bozes in d-space has a separable
subfamily with at least ¢"'n/(logn)4 members, where ¢" = c"(e,d) > 0 is a constant depending
only on € and d.

Proof: The proof can be carried out along the lines of the last argument. Alternatively, one can
also prove Theorem 5.3 by induction on d, as separating a family of d-dimensional boxes intersecting
a coordinate hyperplane reduces to a similar d — 1-dimensional problem. O

6 Remarks

6.1 It is a natural first approach to our problem to try to find a line cutting through relatively few
members of the family F and separating the others into two large subfamilies. Then, recursively,
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we could repeat this procedure for the subfamilies, and find many separable members in each of
them.

It may happen that already at the first non-trivial cut we are forced to destroy (i.e. cut
through) a large fraction of the members of F. Consider the following family. Let p1,p2,...,pon
be the vertices of a regular 2n-gon of diameter 1 in the plane. For every i, 1 < i < n, let F; be
the segment of length K starting at po; and passing through po; 1. If K is sufficiently large, then
any straight line ¢ with the property that both half-planes bounded by £ fully contain at least one
member of F = {F}, Fs,...,F,} must cut through roughly half of the Fj-s (see Figure 3). On
the other hand, having performed such a cut, the remaining members are separable. A similar
construction was described by R. Hope [H84] (see also [HK90]).

=\
NS

Figure 3.

There is a more serious difficulty with the above approach. It is not hard to modify the previous
construction so that there is no straight-line which has at least two members on both of its sides.
(See [T79], [PT00].)

6.2 In the proof of Theorem 4.1, it seems tempting to replace the application of Theorem 1.5 by an
iterative argument. The difficulty is that after the first round of cuts we can no longer guarantee
that the ratio between the sizes of the sets is bounded from above in terms of the number of sets
in the family. In case we could use the techniques of this proof without having such a bound, we
could iterate our procedure and obtain a larger separable set.

6.3 We say that a family of pairwise disjoint sets in the plane is strongly separable, if any two
members can be separated from each other by a straight line which does not cut through any of
the remaining sets. It is not true that every large family of pairwise disjoint compact convex sets
in the plane has many strongly separable members. Indeed, it is not hard to construct a family of
infinitely many pairwise disjoint straight-line segments in the plane, no three of which are strongly
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separable. For some positive results, consult [PT00].

6.4 As mentioned in the Introduction, we conjecture that the worst possible constructions for
separability (i.e. those which have the smallest number of separable members) can be realized by
segments.

Another optimization problem for plane convex bodies whose solution is probably also realizable
by straight-line segments was studied in [G94],[CP98]. It is a common feature of these problems
that all non-trivial results known for them were obtained by introducing certain partial orders on
the family of convex bodies and then applying some form of Dilworth’s theorem.
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