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Abstract

We show that for any 2—coloring of the (g) segments determined by n points in the plane, one of

the color classes contains non-crossing cycles of lengths 3,4, ..., [\/n/2|. This result is tight up to
a multiplicative constant. Under the same assumptions, we also prove that there is a non-crossing
path of length Q(n2/3), all of whose edges are of the same color. In the special case when the n
points are in convex position, we find longer monochromatic non-crossing paths, of length L"Qij
This bound cannot be improved. We also discuss some related problems and generalizations. In
particular, we give sharp estimates for the largest number of disjoint monochromatic triangles that
can always be selected from our segments.

1 Introduction

A geometric graphis a graph drawn in the plane so that every vertex corresponds to a point, and every
edge is a closed straight-line segment connecting two vertices but not passing through a third. The
(;) segments determined by n points in the plane, no three of which are collinear, form a complete
geometric graph with n vertices (see [PA95]). In classical Ramsey theory, we want to find large
monochromatic subgraphs in a complete graph whose edges are colored with several colors [B74],
[GRS90]. Most questions of this type can be formulated for complete geometric graphs, where the
monochromatic subgraphs are required to satisfy certain geometric conditions. The investigation of
these problems was initiated in [KPT96].

A subgraph of a geometric graph is said to be non-crossing, if no two of its edges have an interior

point in common. In the present paper, we show how to find large non-crossing monochromatic paths
and cycles in a geometric graph whose edges are colored with two colors.
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Theorem 1.1 For any 2—coloring of the edges of a complete geometric graph with n vertices, there
exist monochromatic non-crossing cycles of length 3,4, ..., |\/n/2], having the same color. The order
of magnitude of this bound cannot be improved.

Theorem 1.2 For any 2—coloring of the edges of a complete geometric graph with n vertices, there
exists a non-crossing path of length Q(n2/3), all of whose edges are of the same color.

The last result improves the bound Q(n'/2) established in [KPT96]. It is very likely that the Q(n?/3)
bound in Theorem 1.2 can be further improved to (nearly) linear. We can verify this conjecture for
conver geometric graphs, i.e., for geometric graphs whose n points form the vertex set of a convex

polygon.

Theorem 1.3 For any 2-coloring of the edges of a complete convex geometric graph with n > 3
vertices, there exists a non-crossing monochromatic path of length L“QJJ This bound cannot be
improved.

The proof of Theorem 1.3 uses the following unpublished result of Micha Perles, whose proof is
included.

Theorem 1.4 (Perles) If a convex geometric graph of n > k+1 vertices has more then |(k—1)n/2]
edges than it contains a non-crossing path of length k. This bound cannot be improved.

A graph is called a caterpillar, if it is a tree containing no three edge disjoint paths of length two
starting at the same vertex. In other words, a caterpillar is a path with some edges attached to it.
In fact, Perles proved that under the conditions of Theorem 1.4, one can always find a non-crossing
subgraph isomorphic to any given caterpillar of k£ 4 1 vertices.

The proofs of Theorems 1.1-1.4 can be turned into O(n?) time algorithms to find monochromatic
cycles resp. paths with the required properties.

The above results can be rephrased using the following notation. Let G be a class of (so-called
forbidden) geometric subgraphs. We want to determine the smallest number R = R (G) with the
property that every complete geometric graph with R vertices, whose edges are colored with 2 colors,
contains a monochromatic subgraph belonging to G. If we restrict our attention to convexr geometric
graphs, then the corresponding function is denoted by R, (G). Clearly, R.(G) < R (G).

For any positive integer k, let kG denote the class of all geometric graphs that can be obtained by
taking the union of k£ pairwise disjoint members of G.

Theorem 1.5 Let G be any class of geometric graphs, each of which has at least two vertices.
(1) If k is a power of 2 then
R(kG) < (R(G)+ 1)k — 1.
(ii) For any k>0

Ry < [MEOT V] [HO)+1]
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(iii) For any k >0
R.(kG) < (RA(G)+ 1)k - 1.



In particular, if G = T is the class of triangles, we have R(7) = 6. Thus, by Theorem 1.5 (i), we
obtain

R(ET) < Tk —1,

provided that k is a power of 2. The following theorem shows that this result cannot be improved.

Theorem 1.6 Let T denote the class of triangles and let k be a positive integer. Then

Ra(k):= R(ET) > (R(T)+ )k —1=Thk—1.

Using the approach of [KPTT97], one can design an O (n!°81°87+2)_time algorithm to find k pairwise
non-crossing triangles of the same color in any complete geometric graph of n = 7k — 1 vertices, whose
edges are colored with two colors, provided that & is a power of 2. (Note that in an abstract graph,
one can always find |n/5| pairwise vertez-disjoint triangles of the same color [BES75].)

The paper is organized as follows. Sections 2 and 3 contain the proofs of Theorems 1.1 and 1.2,
respectively. Theorems 1.3 and 1.4 are proved in Section 4, while Sections 5 and 6 contain the proofs
of Theorems 1.5 and 1.6, resp.

2 Cycles — Proof of Theorem 1.1
Theorem 1.1 is an immediate consequence of the following result.

Theorem 2.1 Let Cp be the class of all non-crossing cycles of length k, and let Dy be the class of all
non-crossing cycles of length k, triangulated from a vertex. Then

Q(k*) = R.(Cy) < R(Ck) < R(Dy) = O(KY).

Proof. First we prove that R.(Cg) > (k — 1)2.

Take (k — 1)? points on a circle and partition them into k& — 1 groups, each containing & — 1
consecutive points. Color with red all edges between points in different groups, and color with blue
all edges between points belonging to the same group.

Any red non-crossing cycle contains at most one point from each group, hence it can not have
more than k£ — 1 points. On the other hand, all vertices of a blue cycle are from the same group, so
there is no blue cycle with more than & — 1 points.

Next we show that R(Dy) < 2(k—1)(k—2) +2.

Let P denote the vertex set of a complete geometric graph G' of 2(k — 1)(k — 2) + 2 vertices,
whose edges are colored with red and blue. Let p be a vertex of the convex hull of P. Since there are
2(k —1)(k —2) + 1 edges incident to p, at least (k — 1)(k — 2) + 1 of them are of the same color, say,
red. Let p1,pa,...,pr—1)(k—2)+1 be vertices of G, listed in clockwise order of visibility from p, such
that each edge pp; is red. A path p;, p;, ...p;; is said to be monotone if i1 <iy <... <.

Define a partial ordering of the vertices p1,p2, ..., pr—1)(k—2)+1, as follows. Let p; < p; if 1 < j
and there is a monotone red path connecting p; to p;. By Dilworth’s theorem [D50], there are either
k — 1 elements that form a totally ordered subset, or & elements that are pairwise incomparable. In the



first case, there is a monotone red path g1, ¢, ..., qx—1 and we can complete it to a non-crossing red
cycle p,q1,q2, . . ., qz—1 of size k, together with the corresponding diagonals from p. In the second case,
there is a complete blue subgraph of &k vertices ¢, g2, . . ., gr because any two incomparable elements
are connected by a blue edge. By a result of Gritzmann et al. [GMPP91; PA95, Lemma 14.7], this
contains a non-crossing cycle of length k, triangulated from a vertex. O

3 Paths — Proof of Theorem 1.2

Let G be a complete geometric graph whose edges are colored red and blue. Suppose that G contains
no monochromatic non-crossing path of length m. To establish Theorem 1.2, it is enough to prove
that G has at most O(m®/?) vertices.

Suppose without loss of generality that no two vertices lie on a vertical line. For each vertex v of
G, let b(v) (resp. r(v)) denote the length of the longest z-monotone blue path (resp. red) in G whose
rightmost vertex is v.

Since every monotone path is non-crossing, b(v) and r(v) are integers between 0 and m—1. Observe
that (b(v),r(v)) # (b(v), r(v")) for v # v'. Indeed, if v # v’ are two vertices of GG such that v’ lies to
the right of v, then b(v') > b(v) (if vv’ is colored blue) or r(v') > r(v) (if vv’ is colored red). As a
consequence, (G has at most m? vertices. The following more careful analysis gives a better bound.

Define U as the set of pairs (b, r) with (b,r) = (b(u),r(u)) for some vertex u of G'. For 0 < by <
by < m and 0 < 1y < ry < m, define a subset Rect(by, ba, 71, 7r2) of U by

ReCt(bl,bQ,’f‘l,’f‘g) = {(b,?“) eu | bl < b < bg,Tl <r< 7‘2}.
Every pair (b,r),0 < b < m, 0 <r < m, defines a partition of ¢ into the following four subsets:

QTt(b,r) = Rect(b,m,r,m), QT (b,r) = Rect(b,m,0,r),
Q *(b,r) =Rect(0,b,r,m), Q" ~(b,r) = Rect(0,5,0,r).

The key observation is the following.

Lemma 3.1 For anyt € {1,2,...,2m — 1}, there are two integers b(t),r(t) € {0,1,..., m} such that
b(t)+r(t) =t and
QF(b(t), r(1)) UQ™T(b(t),r(t))] < 3m.

Before giving the proof of Lemma 3.1, we finish the proof of Theorem 1.2. Obviously, it suffices
to show that |U/| = O(m?3/?).

Suppose for simplicity that s = v/2m is an integer. Somewhat inaccurately, we shorten the nota-
tion QT T (b(¢),r(t)) to QTT(¢). We also shorten Q1= (b(t), r(¢)), Q=T (b(t), 7(t)), and Q= (b(¢),r(t))

analogously. We have

u=|J @ muetemyu U @TTmnQ+s),

t=5,25,...,52 —5 t=0,5,2s,...,52—5



because each pair (b,r) € U with ks < b+ r < (k+ 1)s lies in the first union (in a term with ¢ = ks
or with ¢ = (k+ 1)s) or in the term Q** (ks) N Q™ (ks + s) of the second union. Consequently,

U< > lRTTOUTTOI+ > RTTHNQTT(+9)].

t=s,25,...,52 —5 t=0,s,2s,...,52—s

By Lemma 3.1, each term in the first sum is at most 3m, and it is easy to check that each term in
the second sum is at most (s/2)% = m/2. It follows that

U] < (s—1) -3m+s% =0(m*?. O
It remains to prove Lemma 3.1.

Proof of Lemma 3.1. Suppose e.g. that £ < m (the case ¢ > m can be treated similarly). For each
b=0,1,...,t, denote

Ab) = Q7T (bt —b)| — QT (b, t — b)|.
It follows from

A(0) <0< A(m)

and from
|A(b+ 1) — A(b)| = |Rect(b,b+ 1,0, m)|+ |Rect(0,m,t —b—1,t —b)| < m+m =2m

that there is a by € {0, ..., m} with
[A(bo)| < m.

We now show that the lemma holds with b(t) = by and r(t) = ¢ — by. Suppose this is not true, i.e.,
QT O +1Q7F ()] = 3m +1.

Then |[A(b(t))| < m gives
QT >m+1, |Q~t@)|>m+1.

Consequently, there is a vertical line £ such that a set V; of at least mTH vertices to the left of £
corresponds to a subset of @+~ (¢) or Q~F(¢), and a set V; of at least ZF1 vertices to the right of
¢ corresponds to a subset of @1 (¢) or QT (), respectively. All edges of the complete bipartite
geometric graph (V4 U Vi, Vi x V3) are colored by the same color: red, if V; corresponds to elements
of @T~(t), and blue, otherwise. It is well-known (e.g., see [AGHN97]) that if V;, |Vi| > mT‘H, is
separated by a line from V,, |V3| > mTH, then the graph (Vi U V2, Vi X V3) contains a non-crossing
path of length m, — a contradiction. O

In Theorem 1.2, the edges of a complete geometric graph G are colored by two colors. If they are
colored by r > 2 colors, we obtain the following.

Theorem 3.2 FEvery complete geometric graph of n vertices whose edges are colored by r > 2 colors,
contains a non-crossing path of length Q(nZ/(ZT_l)), all of whose edges are of the same color.



Proof. Let the edges of G be colored by 1,2,...,r. Suppose that G contains no non-crossing path
of length m. For each color ¢, define a function f; on the vertex set of G such that f;(v) is the length
of the longest z-monotone monochromatic path of color i, whose rightmost point is v. Thus, for any
vertex v, we have an r-tuple f(v) = (fi(v),..., fr(v)) of integers between 0 and m — 1. Of course,
f(v) # f(v') for v # v/, since f(v) and f(v’) differ in the i-th coordinate, where 7 is the color of the
edge vv'. We now show by induction on r that the number of vertices of G is at most O(m"~'/2). For
r = 2, this was shown in the proof of Theorem 1.2. Suppose now that r > 2 and that the statement
holds for r — 1. Define U as the set of all r-tuples f(v), where v is a vertex of G. The set U is a disjoint
union of m sets U;,j = 0,1,...,m — 1, where U; consists of the r-tuples of &/ whose last coordinate
is j. For each j, all edges between the vertices corresponding to elements of f; are colored by colors
1,2,...,7 — 1. By the inductive assumption, the size of I; is at most O(mT_S/Q). Consequently, the
size of U is at most O(m”~/2), and the result follows. O

4 Paths in convex geometric graphs — Proof of Theorems 1.3 and 1.4

The proof of Theorem 1.3 is based on an unpublished result of Perles (Theorem 1.4), whose proof is
as follows.

Proof of Theorem 1.4. Let G be a convex geometric graph with vertices uy, ug, ..., u, in clockwise
order and with |E(G)| =m > [(k — 1)n/2]. For convenience, let ug = u,, and u,4; = u;.

Fix Fy = 0, and define Fy, Ey, ..., F,, inductively, as follows. Pick an edge ¢; € E;_; = F(G) \
F;_1 such that one of the closed halfplanes determined by e; does not fully contain any element of
E(G)\ (Ei—1 U {e;}). (Such an edge will be called an extreme edge with respect to F;_1.) Let
FE,=FE,_1U {62}

We also define some nonnegative integers ¢;(u;) and d;(u;). For any vertex u;, let I = I(u;) be the
smallest integer such that F; contains all edges of GG incident to u;. Suppose first that # < I. Then,
starting at u; and visiting the vertices of the GG in clockwise order, let u, and u, be the first and the last
vertex such that u;u,, uju, € F;. Let ¢;(u;) (resp. d;(u;)) denote the length of the longest non-crossing
path in F; starting at u;, all of whose vertices are in {u;, uj41,..., up—1} (resp. {ugt1, Ugt2, ..., u;}).
Next, if ¢ = I, then e; = uju, for some vertex u,. Since e; is an extremal edge with respect to F;_1,
we may suppose, by symmetry, that F; has no element on the vertex set {u;, uj41,...,up_1,up}. If
this is the case, then let ¢;(u;) (resp. d;(u;)) denote the length of the longest non-crossing path in F;
starting at u;, all of whose vertices lie in {u;, u;41,...,u,} (resp. {upy1, Upto2,...,u;}). (Otherwise
we change the orientation.) Finally, if ¢ > I then put ¢;(u;) = ¢r(u;) and d;(u;) = dr(u;).

Claim 4.1 For every 0 < i < m,

n n

cilug) + Y diluy) > 2|B.

1 7=1

J

The claim is clearly true for i = 0. Let 0 < ¢ < m, and assume that the assertion has already
been proved for i — 1. Suppose that the endpoints of e; are u; and u;. Since ¢;(u) > ¢;_1(u) and
d;(u) > d;i_1(u) for every fixed vertex u, it is enough to prove that

ci(uj) + di(u;) + i (ur) + di(ur) > i1 (uj) + dimi (uj) + e (ur) + di—1 (w) + 2.



However, we either have ¢;(u;) > d;—1 (u;) and d;(u;) > ¢;—1(u;), or we have ¢;(w;) > d;_1(u;) and
di(u;) > ¢;—1(w;), depending on which side of e; = w;u; contains no edge of FE;, and the statement
follows.

Now it is easy to complete the proof of the first part of Theorem 1.4. Since |E,,| > [(k — 1)n/2],
there is 1 < j < n for with ¢, (u;) + dp, (u;) > k. By the definition of ¢,, and d,,, this means that
there is a non-crossing path of length £, passing through u;.

The following construction shows that the bound in Theorem 1.4 is tight.

Construction. Let 0,1,...,n— 1 (mod n) denote the vertices of a regular n-gon.

(i) f n =4k (mod 2), then connect each vertex to the k — 1 vertices furthest from it.

(i) If n # k& (mod 2), then connect each vertex 7 to the & — 2 vertices furthest from 4, and for
0<i<|[2]-1,alsotoi+ 2=kl

0 0 0 0
5 1 5 1 6 1 6 1
4 2 4 2 ° S
3 3 4 3 4 3
n==6, k= n==06, k=3 n="7 k= n="7 k=4
Fig. 1.
In case (i), every edge has at least ”Q;k vertices on both sides. In particular, this holds for the

first and last edges of any non-crossing path. This implies that any such path misses at least n — k
vertices, so it is of length at most k& — 1.

In case (ii), suppose that £ + 3 < n. Consider any non-crossing path P. Call an edge of P
extremal if the whole path P lies in one of the closed halfspaces determined by P. If P has at least
three extremal edges, then it has at most n — 3(”_2&) < k vertices, showing that its length is at
most k — 1. However, if PP has only two extremal edges, then P is a “zigzag”, in particular, for each
i3l >3> % it has at most two edges of the form (7,7 + j). If at most one edge of P is of the
form (4,7 + ”_2&), then P contains at most k£ — 1 edges. Otherwise, the first and the last edges of P
are of the form (4,7 + 2=2%L) and (j, 7 + 2=5EL) with 0 <4 < i+ 2=EEL < j < | 2] — 1. In this case,
the length of P is at most

i (e ) <[] A <o
as required.
The case n = k 4+ 1 can be treated similarly. O

We prove the following equivalent form of Theorem 1.3.



Theorem 4.2 Let Py be the class of all non-crossing paths of length k. Then R.(Pi) = 2k — 1 unless
k=1.

Proof. First, we show that R.(Px) > 2k — 2. Let G be a convex geometric graph on 2k — 2 vertices,
and let p, vy, v9,...,V5_2,q, U1, Ug,...,us_o be its vertices listed in clockwise order. For all 7, 7, color
all edges (v;,v;), (p,v;), and (g, v;) blue; (ui, u;), (p,u;), and (¢, w;) red; (v;,u;) red if i 4 j is odd
and blue if ¢ + j is even. The edge (p, ¢) can have any color. It is not difficult to check that this graph
contains no non-crossing monochromatic path of length £.

For the upper bound, first let & be even and take a convex complete geometric graph on 2k — 1
vertices, all of whose edges are colored red or blue. This graph has (2k —1)(k — 1) edges, so one of the
color classes (say, red) contains at least [(2k — 1)(k —1)/2] > [(2k — 1)(k — 1)/2] edges. Therefore,
by Theorem 1.4, there is a non-crossing red path of length k.

If k£ is odd, then we have to be more careful. Suppose there is a 2-coloring of the edges of a
complete geometric graph G on 2k — 1 vertices without a non-crossing path of length k. It follows
from Theorem 1.4 that (2k — 1)(k — 1)/2 edges are red and the same number of edges are blue. Let
Gy denote the subgraph of GG obtained from GG by removing all red edges. Analyzing the proof of
Theorem 1.4 for (G4, we obtain that (in the notation of the proof of Theorem 1.4)

Ci(u]‘)+2di(u]‘) :2|E¢|, 1=1,2,...,m.

1 71=1

n n
J=

Consequently,
ci(uj) + di(u;) + ci(w) + di(wr) = ¢i—1(u;) + dimq (wj) + cim1 (w) + dizq (wg) + 2.

(Otherwise, we would have ¢, (u;) + d,,,(u;) > k for some j, and we could find a non-crossing path
of length k£.) This means, for example, that if e; = u;u; and F; has no element on the vertex set
{u]‘, Ujhdy e ey W1, ul}, then ci(u]') = di_l(ul) + 1, dz(ul) = ci_l(u]') + 1.

Looking at all possible ways how we may arrange the edges of Gy in the sequence ey, es, ..., €,
we obtain the following proposition.

Proposition 4.3 Let v,w € {1,2,...2k — 1}.

(a) If uyuy, is blue, then at least one of the longest blue non-crossing paths starting at u,, all of
whose vertices lie in {wy, wyy1, ..., Uy}, contains the edge w,u,,.

(b) If wyu,, is blue, then at least one of the longest blue non-crossing paths starting at w,, all of
whose vertices lie in {wy, Uyy1, ..., Uy}, contains the edge w,uy,.

(c) If uyuy, is red, then at least one of the longest blue non-crossing paths starting at u,, all of whose
vertices lie in {ty, Uys1, ..., Uy}, does not contain u,,.

(d) If uyuy, is red, then at least one of the longest blue non-crossing paths starting at w,, all of
whose vertices lie in {uy, wyy1, ..., Uy}, does not contain u,,.



Exchanging the roles of the colors, one can formulate a similar statement about red paths in the
graph G obtained from GG by deleting all blue edges.

Consider the 2k — 1 edges u;u;4+1. At least k of them are colored by the same color (blue, say). Let
Uplpt1 - . . Uy be the longest non-crossing blue path using some of the edges u;u;4; (certainly, its length
is at least 2). First, observe that Proposition 4.3 (c) yields that all edges within {u,, upt1,...,u,} are
blue. Indeed, if usus, p < s < t < ¢, was a red edge such that all other edges uguy,s < s <t' <t
were blue, then Proposition 4.3 (c) would be false with « = s and w = ¢. This implies that the blue
path u,up4q ... u, cannot visit all or all but one of the vertices of G. By the maximality of this path,
the edges u,_ju, and w,u,4; are red. It follows from the the dual of Proposition 4.3 (a) and (c) with
v=p—1and w=gq+ 1 that u,u,4 is blue. Analogously, u,_ u, is also blue.

Suppose now that some of the edges u,_1u,,r = p+1,p+2,...,¢—1, are red. Take one of them for
which r is maximum. Then Proposition 4.3 (b) would be violated for v = p— 1 and w = r + 1. Thus,
all edges u,_ju,,r =p+1,p+2,...,q, are blue. Analogously, all edges u,4 u,,r =p,p+1,...,q-1,
are also blue.

The edge u,_su,_1 cannot be red. Otherwise, starting with the longest non-crossing red path
UpUp—1 ... and using a similar argument as above, we would conclude that u,_ju,41 must be red, but
we already know that it is blue. Thus, u,_su,_1 is blue, and we get a contradiction with Proposition 4.3
(a) or (¢c) forv=p—2and w=p+1. O

5 General estimates — Proof of Theorem 1.5

For any set of n points P in the plane, an ¢-element subset of P is called an i-set if it can be obtained
by intersecting P with an open half-plane. It is easy to see that all i-sets can be generated by the
following procedure [ELSS73]: Take an oriented line £ passing through precisely one point p € P
and having ¢ elements of P on its left side. Rotate £ around p in the clockwise direction until it hits
another point ¢ € P, and then continue the rotation around ¢, etc. Whenever £ passes through only
one element of P, the points lying on its left side form an ?-set.

Any geometric subgraph Kpg(g) induced by an R(G)-element subset of P contains a subgraph of
the class G, all of whose edges are of the same color. If these edges are red (blue), we say that the
type of the corresponding subset is red (blue). Note that a set may have both types.

Lemma 5.1 Let G be any class of geometric graphs. Then R(2G) < 2R(G) + 1.

Proof. Let N = 2R(G) + 1 and let P be the vertex set of a complete geometric graph Ky whose
edges are colored by red and blue.

If all R(G)-sets of P have the same type, then take two disjoint R(G)-sets. Both contain a monochro-
matic geometric subgraph belonging to G, so their union is a monochromatic member of 2G.

On the other hand, if there are two R(G)-sets of different types, then we can also find two R(G)-
sets, A and B, of different types such that [AUB| = R(G)+1 and that P\ (AU B) is also an R(G)-set.
The type of P\ (AU B) will coincide with the type of A or B. O



Proof of Theorem 1.5. Part (i) is an immediate corollary of Lemma 5.1.

Let G be a (fixed) class of geometric graphs. Let r = r(k,[) be the the smallest number with the
property that every complete geometric graph with r vertices, whose edges are colored by red and
blue, contains either a subgraph belonging to £G, all of whose edges are red, or a subgraph belonging
to [G, all of whose edges are blue. So, R = R(G) =r(1,1), R(kG) = r(k, k).

Lemma 5.2 Fork>1>1

1] 2],

T(k,l) = T(l,k) < (R+ 1)k+ [T

Proof. By symmetry, clearly r(k,!) = r(l, k). We proceed by induction on k£ and [. First we show
that r(k,1) < kR. Let G be a complete geometric graph with kR vertices, whose edges are colored
by red and blue. Suppose that no two vertices determine a vertical line. Then we can choose k — 1
vertical lines that divide the vertex set of G into k equal parts. Since each part contains R of the
vertices, the subgraph spanned by every part contains a monochromatic copy of a geometric graph
from the class G. Either all of them are red or one of them is blue. Therefore, the lemma holds for
any pair (k,[), where either k =1 or [ = 1.

Let £ > | be fixed, and suppose that we already know that the Lemma is true for every pair
(k" 1") # (k,1), where k' > k,I" > 1.

Consider a complete geometric graph G with vertex set V', whose edges are colored by red and

blue and

|V|:(R+1)k+[R;ﬂz— [R“W.

2

By Theorem 1.5 (i), for any n > 1, if f(n) = 2"(R+ 1) — 1 < |V, then any geometric subgraph
induced by an f(n)-set contains a monochromatic subgraph from the class 2"G. Its color will be the
type of the corresponding f(n)-set.

If there are two f(n)-sets of different types, we can cut off an (f(n) + 1)-set which contains an
f(n)-set of both types. Since

(R+ Dk + [%} [~ (R+1)> (R+ 1)(k—2") + [?} (1= 27,

we can apply the induction hypothesis for the subgraph induced by the rest of the vertices, with
K =k-2"1=1-2"

So we can assume that for all n, all f(n)-sets are of the same type, provided f(n) =2"(R+1)—1 <
|V|. Suppose that for ny < ng, the f(ny) and f(nz)-sets are of different types. Then, there exists an
n1 < n < ng such that the f(n) and f(n + 1)-sets are also of different types. Cut off an f(n + 1)-set.
Since it contains an f(n)-set, the subgraph induced by the f(n + 1)-set contains a blue (resp. red)
subgraph from the class 2"*1G and a red (resp. blue) subgraph from the class 2"G.

If the f(n + 1)-sets are of type blue, then either [ < 2"*! and we are done, or we can apply the
induction hypothesis for the graph induced by the remaining vertices with &’ = k—2" and I’ = [ — 27t}
since it is easy to check that

R+1 R+1

(R+ )k + [T} =2 (R4 1) > (R4 1)(k—2") + [T} (1 —27H1),
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On the other hand, if the f(n + 1)-sets are of type red then we can assume that & > 27*! and
[ > 2™ and we can apply the induction hypothesis with &' = k — 2"+ and I’ = [ — 2" since

R+1" R+1"

(R+1)k+[ l—2”+1(R+1)2(R+1)(k—2”+1)+[ (1 -2

and

(R+ )k + [%} = R4 1) > (R+1)(1—27) + [%} (k — 27+,

Therefore, in the sequel we assume that for all n, all f(n)-sets are of the same type. For simplicity
we assume that they are of type red. The case where these sets are of type blue can be settled very
similarly. Write k£ in base 2, that is, k = 2™ +2"2 4+ ... 4+ 2" ny < Ny < ... < ng. Let Vj = V.
By the assumption, every f(n1)- and f(ng)-set of Vj are of type red. Let Sy be an f(n;)-set and let
Vi =Vp\ S1. If every f(ng)- and f(ns)-set of V; are of type red, then let Sy be such an f(nz)-set and
let Vo = V1 \ S. In general, if V; has already been defined by this procedure and every f(n;4+1)- and
f(niy2)-set of V; are of type red, then let S;11 be any f(n;41)-set and let Vi41 = V;\ S;41. Otherwise,
if not all f(n;4+1)-sets or not all f(n;42)-sets of V; are of type red, or i = @ — 1, then stop and let j = .

If j =a—1, then V,_; still has an f(n,)-set, S, of type red, and S; U S, U...U S, contains a red
subgraph from the class kG and we are done. Suppose j < a — 1. We distinguish two cases.

a. There is an f(nj41)-set of V; of type blue. Since all f(n;41)-sets of V;_y were of type red, at least
one of the f(n;41)-sets of V; is of type red. Therefore, we can find an (f(n;4+1) + 1)-set, S;4+1, which
contains an f(n;41)-set of both types. [S;US; U...US;41| < (2™ +2" + ...+ 2%+1)(R+ 1) and
S1 U Sz U...US;4; contains a red subgraph from the class (2™ + 272 + ... 4 2™+1)G and a blue
subgraph from the class 27%+1G. If either £ < 271 4272 4 ... 4 2+ or [ < 2™+! then we are done.
Otherwise, easy calculation shows that we can apply the induction hypothesis for for the graph induced
by the remaining vertices with &' = k — (2"t + 272 4+ ... 4 2%+1) and I’ = [ — 27+1,

b. Every f(njt1)-set of V; are of type red, but there is an f(n;y2)-set of V; of type blue. In this
case, there exists an nj41 < n < nj49 such that every f(n)-set of V; are of type red, but there is an
f(n+1)-set of V; of type blue. Then let S;41 be an f(n+1)-set of V; of type blue. Clearly, it contains
an f(n)-set of V;, which is of type red. [S;USaU...USj41| < (2™ +2™2 ...+ 2% + 27T (R+ 1)
and S; U Sy U...U Sj41 contains a red subgraph from the class (2" +2"2 4 ...+ 2" +2")G and a
blue subgraph from the class 2"*t!G. Again, easy calculation shows that we can proceed as in case a.
O

Return to the proof of Theorem 1.5. Part (ii) is an immediate corollary of Lemma 5.2. In part
(iii), if all R.(G)-sets have the same type then, using the convexity of the geometric graph, we can take
k disjoint R.(G)-sets and we get a monochromatic geometric graph from kG.

If there are two R(G)-sets of different types, we can proceed by induction as in part (ii). O

6 Triangles — Proof of Theorem 1.6

The proof is quite technical, therefore we sketch here only the main ideas.

It is sufficient to show that Ra(k) > 7k — 7 for every k. Indeed, assume that this is true, but
Ra (ko) < Tko—2 for some integer k. Then, applying Theorem 1.5 (i) with G = ko7, we would obtain

Ra(8ko) = R(8koT) < (R(koT) +1)8 — 1 = (Ra (ko) + 1)8 — 1 < (Tho — 1)8 — 1 = 7(8ko) — 9,
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a contradiction.

Construction. Let &k be a positive integer, n = 7k — 7. Let 0,1,...,7k — 8 denote the vertices of a
regular n-gon, in clockwise order. If two vertices are separated by m — 1 others, then we say that the
length of the edge connecting them is m (m < [n/2]). A vertex is colored red if = 0, 1, 3, or 5 (mod
7), and blue otherwise.

We color the edges ij (0 < i # j < n—1) according to the following rules. Let A denote the length
of 77.

(a) f A=1,4, or 6 (mod 7), let ij be blue.

(b) f A=2o0r3 (mod 7),let 75 be red.

(c) fA=5 (mod 7), let ij be colored with the color of its starting point in the clockwise direction.
)

(d) f A=0 (mod 7), let i5 be colored with the color other than the color of ¢ + 1 (mod 7).

10
9 11

Red edges Blue edges
Fig. 2

To see that this graph does not contain k pairwise non-crossing blue triangles, we need the following
lemma that can be proved by induction. By an arc we mean a set of consecutive vertices.

Lemma 6.1 Suppose that an arc I of m < n/2 vertices contains the vertices of h pairwise non-
crossing blue triangles. Then m > 7Th — 1. Moreover, if m = Th — 1, then the starting point of I is
blue.

Consider a maximal set of pairwise non-crossing blue triangles. Suppose first that the points can
be partitioned into three arcs, Iy, I3, I3, with m; = |I;| < n/2 such that the vertices of each of these
triangles belong to the same arc. Let k; denote the number of triangles whose vertices belong to I;.
By Lemma 6.1, we have

7n—7:m1+m2+m32(7k1—1)+(7k2—1)—|—(7k3—1)>7(k1+k2+k3)—7,

and we can conclude that &y + k3 + k3 < n.
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Otherwise, there is a blue triangle so that the convex hull of its vertex set contains the center of
our regular n-gon. Its vertices, p, g, r, partition the remaining set of points into three arcs of lengths
my, Mg, m3 containing ky, ko, k3 triangles, respectively. From Lemma 6.1 we obtain

7n—727711+7712+7713+32(7]61—1)—|—(7l€2—1)+(7k3—1)+3I7(]€1+k2+k3),

implying n > k = k1 + ko + ks + 1. Suppose that n = k. Then we have equality in the previous
inequalities, therefore, the length of each side of triangle pqr is divisible by 7. On the other hand, by
Lemma 6.1, all of the points p+ 1,¢+ 1,7 + 1 are blue, so pgr is a monochromatic red triangle, a
contradiction.

The existence of n non-crossing red triangles can be excluded by a similar argument.
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