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Abstract

For any 2-coloring of the (}) segments determined by n points in

general position in the plane, at least one of the color classes contains
a non-selfintersecting spanning tree. Under the same assumptions, we
also prove that there exist | 24 | pairwise disjoint segments of the same
color, and this bound is tight. The above theorems were conjectured
by Bialostocki and Dierker. Furthermore, improving an earlier result
of Larman et al., we construct a family of m segments in the plane,
which has no more than m'°84/19627 members that are either pairwise
disjoint or pairwise crossing. Finally, we discuss some related problems
and generalizations.

1 Introduction

A geometric graph is a graph drawn in the plane so that every vertex corre-
sponds to a point, and every edge is a closed straight-line segment connecting
two vertices but not passing through a third. The () segments determined
by n points in the plane, no three of which are collinear, form a complete
geometric graph with n vertices (see [PA95]). In classical Ramsey—theory,
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we want to find large monochromatic subgraphs in a complete graph whose
edges are colored with several colors [B74], [GRS90]. Most questions of this
type can be generalized to complete geometric graphs, where the monochro-
matic subgraphs are required to satisfy certain geometric conditions.

Our first two theorems settle two problems raised by A. Bialostocki and
P. Dierker [BD94].

Theorem 1.1 If the edges of a finite complete geometric graph are colored
by two colors, there exists a nmon-selfintersecting spanning tree, all of whose
edges are of the same color.

Theorem 1.2 If the edges of a complete geometric graph with 3n—1 vertices
are colored by two colors, there exist n pairwise disjoint edges of the same
color.

The analogues of Theorems 1.1 and 1.2 for abstract graphs, i. e., when
the geometric constraints are ignored, were noticed by Erdés—Rado (see
[EGP91]) and Gerencsér-Gyarfis [GG67], respectively. In fact, Gerencsér
and Gyarfas proved the stronger result that for any 2-coloring of the edges of
a complete graph with 3n — 1 vertices, there exists a monochromatic path of
length 2n — 1. This statement, as well as Theorem 1.2, is best possible, as is
shown by the following example. Take the disjoint union of a complete graph
of n — 1 vertices and a complete graph of 2n — 1 vertices, all of whose edges
are red and blue, respectively, and color all edges between the two parts
red. For many interesting generalizations of these results, consult [EG95],
[EGP91], [G89], [G83], [HKS87], [R78].

Theorem 1.2 also has an “asymmetric” version.

Theorem 1.3 Let k and [ be positive integers, n = k + [ + max{k,l} — 1.
If the edges of a complete geometric graph with n vertices are colored by red
and blue, one can find either k disjoint red edges or | disjoint blue edges.
This result cannot be improved.

Our Theorem 4.1 (see below) gives a non-trivial upper bound for the
smallest positive number R = R(n) such that every complete geometric
graph of R vertices whose edges are colored by two colors contains a non-
selfintersecting monochromatic path of length n. We have been unable to
determine the exact order of magnitude of R(n).

Two segments are said to cross each other if they have an interior point
in common. It appears to be difficult to obtain any exact results analogous



to Theorems 1.2 and 1.3 for pairwise crossing edges. It follows from [AEG94]
that if we color the edges of a complete geometric graph of 12n? vertices by
two colors, one can always find n pairwise crossing edges of the same color,
but the assertion is probably true for much smaller graphs.

In [LMPY94], the following question was discussed. What is the small-
est positive number r = r(n) such that any family of r closed segments in
general position in the plane has n members that are either pairwise dis-
joint or pairwise crossing? This theorem improves the lower bound r(n) >
nlo85/1082 ~ 12:322 ohtained in [LMP94].

Theorem 1.4 For infinitely many n, there exists a family of n1°827/1084
n237" segments in general position in the plane, which has at most n mem-
bers that are pairwise disjoint and at most n members that are pairwise
CTrossing.

2 Proofs of Theorems 1.1-1.3

Proof of Theorem 1.1: Let P = {p1,...,p,} denote the vertex set of a
complete geometric graph K, whose edges are colored with red and blue.
Suppose without loss of generality that no two vertices have the same z-
coordinate and that the vertices are listed in increasing order of their z-
coordinates. The assertion is trivial for n < 2. Thus, we can assume that
n > 3 and the theorem has already been proved for all complete geometric
graphs having fewer than n vertices.

We can also assume that all edges along the boundary of the convex hull
of P are of the same color (say, red). Indeed, if two consecutive edges of the
convex hull have different colors, then remove their common endpoint from
K,,. By the induction hypothesis, the remaining graph has a monochromatic
non-selfintersecting spanning tree. Depending on its color, this spanning tree
can be completed to a monochromatic non-selfintersecting spanning tree of
K,,, by putting back one of the two previously deleted edges of the convex
hull of P.

For every i, 1 < i < n, let Kzl and K denote the subgraphs of K, in-
duced by the points {p1,...,p;} and {p;, ..., pn}, respectively. By the induc-
tion hypothesis, both Kzl and K| have a monochromatic non-selfintersecting
spanning tree, Til resp. T;. We can assume that these two trees have differ-
ent colors, otherwise their union will meet the requirements of the theorem.
We can also assume that 7% is red and T3 is blue. Otherwise, T§ would be
red, and it could be completed to a non-selfintersecting red spanning tree



of K, by the addition of any edge of the convex hull of P incident to p;.
Similarly, we can suppose that T._; is blue and T_, is red. Hence, there
exists an 4, 1 <4 < n — 1 such that
(a) T! is red and T} is blue,
(b) T}, is blue and T7, , is red.

Connecting 7} and T!,, by any edge of the convex hull of P which inter-
sects a vertical line separating p; and p;y1, we obtain a non-selfintersecting

red spanning tree of K, as required. O

Proof of Theorem 1.2: Let P denote the vertex set of a complete geo-
metric graph Kj3,_1, whose edges are colored with red and blue. Suppose
for contradiction that K3, 1 does not contain n pairwise disjoint edges of
the same color. Since the theorem is trivial for n = 1, we can assume that
n > 2 and that the statement has already been proved for every complete
geometric graph with 3k — 1 vertices, where 1 < k < n.

An i-element subset of P is called an i-set if it can be obtained by
intersecting P with an open half-plane. It is easy to see that all ¢-sets can
be generated by the following procedure [ELS73]: Take an oriented line £
passing through precisely one point p € P and having ¢ elements of P on its
left side. Rotate £ around p in the clockwise direction until it hits another
point ¢ € P, and then continue the rotation around ¢, etc. Whenever ¢
passes through only one element of P, the points lying on its left side form
an ¢-set.

By the induction hypothesis, the subgraph of Kj3,_;1 induced by any
(3k — 1)-set contains k disjoint edges of the same color (1 < k < n). If these
edges are red (blue), we say that the type of the corresponding (3k — 1)-set
is red (blue). Note that a set may have both types. Just like in the previous
proof, we can suppose that all edges along the boundary of the convex hull
of P are of the same color (say, red). In other words, for k = 1, the type of
every (3k — 1)-set is supposed to be red.

Lemma 2.1 (i) For any given k < n, all (3k—1)-sets are of the same type.
(ii) For any k,l > 1 for which k+1 = n, the (3k—1)-sets and the (3l—1)-sets
have opposite types.

(iii) For any k,1 > 1 for which k+1 =n — 1, either all (3k — 1)-sets or all
(31 — 1)-sets are of blue type.

To establish (i) and (ii), consider an oriented line £ passing through
precisely one point p € P and dividing P —{p} into a (3k —1)-set P~ (¢) and
a (31—1)-set P*(£), where k+1 = n. If P~(¢) and P*(£) had the same type,



then P would contain k 4+ [ = n edges of the same color, contradicting our
assumption. Now rotate £ around p in the clockwise direction until it hits
another point g € P, and let £’ denote a line obtained by slightly continuing
the rotation around q. Notice that either P~ () = P~ (¢') or P*({) =
P*(#). Since P~ (¢') and P*(¢') have opposite types, we can conclude that
P~(£) and P~ (¢') are of the same type. Thus, (i) follows from the fact that
any (3k — 1)-set can be reached from P~ (£) by repeating the above step a
finite number of times.

Fig. 1.

To show (iii), fix a vertex p of the convex hull of P, and let p' € P
be the next vertex of the convex hull immediately after p in the clockwise
order. Let p; and py denote those elements of P, for which there are exactly
3k — 1 points to the left of the oriented line pp; and exactly 3] — 1 points
to the right of ppy, where k +1 = n — 1. That is, we have |P~ (pp1)| =
3k —1,|P*(pp2)| = 3l — 1, and there is just one point p3 € P in the angular
region p1ppo; see Figure 1. Assume now, for contradiction, that all (3k —1)-
sets and all (3] — 1)-sets are of red type. In particular, the type of P~ (pp1)
is red, which implies that the type of PT(pp2) U {p,p2,ps} must be blue;
otherwise we could find k 4+ (I + 1) = n disjoint red edges. This, in turn,
yields that P~ (pp1)U{p1}—{p'} is a (3k—1)-element set that cannot contain
k disjoint blue edges. Thus, P~ (pp1) U {p1} — {p'} has k disjoint red edges,
P*(pp2) has [ disjoint red edges, and by our assumption that every edge of
the convex hull of P is red (including pp'), we would obtain k+1+1 =n
pairwise disjoint red edges. This contradiction proves the lemma.

Now we are in a position to complete the proof of Theorem 1.2. We
distinguish between two cases.

Case 1: n is even. Consider a line £ passing through precisely one point of P
and dividing the remaining points into two equal classes. Applying Lemma,
2.1 (i) with & = n/2, we obtain that these classes are of the same type (say,



red). Thus, there are n/2 pairwise disjoint red edges on both sides of £,
contradicting our assumption that there are no n disjoint edges of the same
color in K3, 1.

Case 2: n is odd. Applying part (iii) of Lemma 2.1 with k = (n — 1)/2,
we obtain that all 3(n — 1)/2 — 1-sets are of blue type. By part (ii), this
implies that the type of all 3(n + 1)/2 + 1-sets is red. Applying (iii) again,
we find that all 3(n — 3)/2 — 1-sets are of blue type. Proceeding like this,
we conclude that the type of every 2-set is blue. In other words, every edge
of the convex hull of P is blue, contradicting our assumption. O

Proof of Theorem 1.3: Let R(k,l) denote smallest number R with the
property that in any complete geometric graph of R vertices, whose edges
are colored with red and blue, one can find either £ disjoint red edges or
[ disjoint blue edges. It is enough to show that R(k,l) = 2k + 1 — 1, for
every [,1 <[ < k. This is trivial for [ = 1, and, according to Theorem
1.2, it also holds for [ = k. To complete the proof, it is sufficient to verify
that R(k,l) < R(k,l + 1), for every | < k. Indeed, adding a new point p to
any complete geometric graph which contains neither k disjoint red edges
nor [ disjoint blue edges, and connecting p to every other point by a blue
edge, does not change the maximum number of disjoint red edges, and the
maximum number of disjoint blue edges can only increase by one. O

3 A construction

The aim of this section is to prove Theorem 1.4 by a construction. A family
of segments is in general position if no three of their endpoints are collinear.
Let 81 denote the family of 27 segments depicted in Figure 2. Clearly, S is
in general position, and it can be checked by an easy case analysis that S;
has no 5 pairwise crossing and no 5 pairwise disjoint members.

Let § = {s1,...,5n} be a family of segments in general position in the
plane. We say that S can be flattened if for every € > 0 there are two discs
of radius ¢ at unit distance from each other, and there is another family
of segments S’ = {s7,...,s,} in general position such that s; and s} are
disjoint if and only if s; and s; are disjoint, and every s; connects two points
belonging to different discs.

Lemma 3.1 Any system S of segments in general position, whose endpoints
form the vertex set of a convex polygon, can be flattened.



Proof: Let p1, ..., pon denote the endpoints of the segments in counterclock-
wise order. Notice that moving the endpoints to any convex curve does not
effect the crossing pattern of S, provided that the order of the endpoints re-
mains unchanged. Let p} = (¢/4°71,1//2°71),1 < < 2n. Since all of these
points are on the parabola y = 1/z, connecting the corresponding pairs by
segments, we obtain a family S’, which has the same crossing pattern as S.

It can be shown by easy calculation that if we have two disjoint segments
P}, pipy € S’ for some i < k <1 < j,, then the slope of pp/; is smaller than
the slope of p)p]. Thus, extending all segments of S’ to the right until they
hit the line x = 1 + ¢, does not change the crossing pattern of the family.
The lemma, follows by applying an affine transformation (z,y) — (z, dy) for
some ¢ > 0, and moving the points into general position. O

Consider now the family S; depicted in Figure 2, and let € denote the
minimum distance between the endpoints. Replace every segment s € S by
a suitably flattened copy of S, consisting of 27 segments whose endpoints
are closer to the endpoints of s than €/2. Replacing every member of the
resulting family Sy by a (very) flattened copy of S, we obtain Ss, etc. In
this manner, for every k, we construct a family Sy, of 27% segments in general
position, which has at most 4% pairwise disjoint members and at most 4%
pairwise crossing members. This completes the proof of Theorem 1.4.



Fig. 2: The family of segments S;

4 Related Problems and Generalizations

Geometric Ramsey Numbers. Let Gy, ..., G be not necessarily different
classes of geometric graphs. Let R (G, ..., Gi) denote the smallest positive
number R with the property that any complete geometric graph of R vertices
whose edges are colored with k& colors (1,...,k, say) contains, for some i, an
i-colored subgraph belonging to G;. If G1 = ... = G, = G, we write R(G; k)

instead of R (G1,...,Gk). If k = 2, for the sake of simplicity, let R (G) stand
for R(G;2).

In Theorems 1.1 and 1.2, we determined R (G) in the special case when
G is the class of all non-selfintersecting trees of n vertices and the class of all
geometric graphs having n disjoint edges, respectively. Theorem 1.3 gives the
exact value of R (G1,G2), when G; and G2 denote the classes of all geometric
graphs consisting of k& disjoint edges and [ disjoint edges, respectively.

The proof of Theorem 1.2 can be easily generalized to give an upper
bound for R (), when H is e.g. the class of all geometric graphs consisting
of n pairwise disjoint triangles [KPT96]. More generally, for any class of



geometric graphs G and for any positive positive integer n, let nG denote
the class of all geometric graphs that can be obtained by taking the union
of n pairwise disjoint members of G, any two of which can be separated by
a straight line.

Theorem 4.1 Let G be any class of geometric graphs, and let n be a power
of 2. Then
R(nG) < (R(G)+1)n —1.

In particular, if G is the class of triangles, we have R(G) = 6. Moreover,
in this case Theorem 4.1 cannot be improved. We will return to these
questions in a forthcoming paper.

Non-Selfintersecting Paths. The length of a path is the number of its
edges. Let P, denote the class of all non-selfintersecting paths of length n.

To give a non-trivial upper bound on R (Pg, P;), we recall the following
wellknown (and very easy) lemma of Dilworth [D50].

Lemma 4.2 Any partially ordered set of size kl + 1 either has a totally
ordered subset of size k+1 or contains [+ 1 pairwise incomparable elements.

Theorem 4.3 If the edges of a complete geometric graph of kl + 1 vertices
are colored by red and blue, one can find either a non-selfintersecting red
path of length k or a non-selfintersecting blue path of length [.

Proof: Let p;(0 < i < kl) denote the vertices of a complete geometric graph.
Suppose that they are listed in increasing order of their z-coordinates, which
are all distinct. Define a partial ordering of the vertices, as follows. Let
p;i < pj if i < j and there is an z-monotone red path connecting p; to p;. By
Lemma 4.2, one can find either k£ 4+ 1 elements that form a totally ordered
subset Q C P, or [ 4+ 1 elements that are pairwise incomparable. In the first
case, there is an z-monotone red path visiting every vertex of (). In the
second case, there is an z-monotone blue path of length [, because any two
incomparable elements are connected by a blue edge. Since an z-monotone
path cannot intersect itself, the proof is complete. O

Using the notation introduced above, Theorem 4.3 implies that R (P,,) =
O(n?), but the best lower bound we are aware of is linear in n.

Constructive Vertex and Edge Ramsey Numbers. Given a class of
geometric graphs G, let R, (G) denote the smallest number R such that there
exists a (complete) geometric graph of R vertices with the property that for



any 2-coloring of its edges, it has a monochromatic subgraph belonging to
G. Similarly, let R, (G) denote the minimum number of edges of a geometric
graph with this property. R, (G) and R, (G) are called the vertex and edge
Ramsey number of G, respectively. Clearly, we have

R, (G) < R(9),

R.(G) < (R;g)).

(For abstract graphs, a similar notion is dicussed in [EFR78] and [B83].)

It follows from the previous subsection that for P,, the class of non-
selfintersecting paths of length n, R, (P,) = O(n?) and R, (P,) = O(n*). It
is not difficult to improve the latter bound, as follows.

Proposition 4.4 R, (P,) = O(n?).

Proof: Construct a geometric graph G on the vertex set P = {(3,7)|0 <
i,j7 < n} by connecting every (i,j) to the points (i + 1,7), (4,5 + 1), and
(1+1,7+1) (provided that they belong to P). For any coloring of the edges
of G with red and blue, color every closed triangular face of G red (blue) if
at least two of its sides are red (blue). Notice that any two vertices of a red
(blue) triangle can be joined in G by a red (blue) path of length at most
two. Thus, any two vertices belonging to the same connected component of
the union of the red (blue) triangles can be joined by a red (blue) path in
G. The result now follows from the fact that one can always find a pair of
vertices lying on opposite sides of the square {(z,y) € R?|0 < z,y < n},
which belong to the same connected component of the union of the red
triangles or the union of the blue triangles. (See e. g. p. 85 in [B73] or the
section about the game “Hex” in [BCG82].) O

Covering with Non-Selfintersecting Monochromatic Paths. Is it
true that for every k there exists an integer C'(k) such that the vertex set
of every complete geometric graph whose edges are colored by k colors can
be covered by C(k) non-selfintersecting monochromatic paths? We cannot
even decide the following weaker question for £ = 2: Does there exist a
positive € such that every complete geometric graph G whose edges are

colored by k colors contains a non-selfintersecting monochromatic path of
length €|V (G)|?
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