A note on the clique chromatic number of geometric graphs

Jacob Fox* Stanford University Stanford, CA, 94305 jacobfox@stanford.edu János Pach[†] EPFL, Lausanne and Rényi Institute, Budapest H-1364 Budapest, Pf. 127 pach@renyi.hu

Andrew Suk[‡] University of California at San Diego Department of Mathematics La Jolla, CA, 92093 asuk@ucsd.edu

Abstract

Given a finite point set *V* in \mathbb{R}^d and a parameter r > 0, the corresponding *geometric graph G* in \mathbb{R}^d is the graph whose vertex set is $V \subset \mathbb{R}^d$, and vertices $u, v \in V$ are adjacent in *G* if and only if $||u - v|| \leq r$. In this note, we study the *clique chromatic number* of geometric graphs, that is, the minimum number of colors required to color the vertices of a graph such that every maximal clique of size at least two is not monochromatic. Improving the results of McDiarmid, Mitsche, and Pralat, we show that if *G* is a geometric graph in \mathbb{R}^d then $\chi_c(G) \leq 2^{O(d)}$. From the other direction, we show that there are geometric graphs *G* in \mathbb{R}^d such that $\chi_c(G) > \Omega(d^{1/2}(\log d)^{-1/2})$.

^{*}Supported by a Packard Fellowship and by NSF CAREER award DMS-1352121.

[†]Supported by Swiss National Science Foundation grants 200020-162884 and 200021-165977.

[‡]Supported by NSF grant DMS-1800736, an NSF CAREER award, and an Alfred Sloan Fellowship.

1 Introduction

Given a simple graph G = (V, E), a *proper coloring* of *G* is a coloring of the vertices such that no two adjacent vertices have the same color. The *chromatic number* of *G*, denoted by $\chi(G)$, is the minimum number of colors required to properly color *G*. A *clique coloring* of *G* is a coloring of the vertices such that no maximal clique of size at least two is monochromatic. The *clique chromatic number* of *G*, denoted by $\chi_c(G)$, is the minimum number of colors required to clique color *G*. Clearly we have $\chi_c(G) \leq \chi(G)$ for every graph *G*, and if *G* is triangle-free, then we have $\chi(G) = \chi_c(G)$. The clique chromatic number has been studied in many papers, and we refer the interested reader to [2, 3, 6, 5].

McDiarmid, Mitsche, and Pralat [5] initiated the study of the clique chromatic number of geometric graphs in \mathbb{R}^d . Given a finite point set V in \mathbb{R}^d and a parameter r > 0, the corresponding *geometric graph* G in \mathbb{R}^d is the graph whose vertex set is $V \subset \mathbb{R}^d$, and vertices $u, v \in V$ are adjacent in G if and only if $||u - v|| \leq r$, where ||u - v|| denotes the Euclidean distance between u and v. McDiarmid et al. [5] showed that if G is a geometric graph in \mathbb{R}^d , then $\chi_c(G) \leq 2(\sqrt{d}+1)^d$. In the other direction, they showed for each $d \geq 1$, there are geometric graphs G in \mathbb{R}^d such that $\chi_c(G) > \Omega(d^{1/4}(\log d)^{-1/2})$. In what follows, we improve both of these bounds.

Theorem 1.1. The clique chromatic number of any geometric graph G in \mathbb{R}^d satisfies

$$\chi_c(G) \leq 2^{O(d)}.$$

Theorem 1.2. For every integer $d \ge 1$, there exists a geometric graph G_d in \mathbb{R}^d whose clique chromatic number satisfies

$$\chi_c(G_d) \ge \Omega(d^{1/2}(\log d)^{-1/2}).$$

2 A new upper bound

Proof of Theorem 1.1. Let G = (V, E) be a geometric graph in \mathbb{R}^d with parameter r > 0, where $V \subset \mathbb{R}^d$. Let B_0 be a sufficiently large ball with radius R such that $V \subset B_0$, and let $\mathscr{C} = \{B_1, \ldots, B_m\}$ be a maximum packing of B_0 , where B_i is a ball centered at $v_i \in \mathbb{R}^d$ and with radius r/4. Note that \mathscr{C} is finite by volume considerations, and in fact, $m = |\mathscr{C}| \leq (R/(r/4))^d$. For each i, let B'_i and B''_i be balls centered at v_i with radius r/2 and r respectively. Set $\mathscr{C}' = \{B'_1, \ldots, B'_m\}$ and $\mathscr{C}'' = \{B''_1, \ldots, B''_m\}$. Notice that for any point $x \in B_0$, there is a ball $B_i \in \mathscr{C}$ such that $||x - B_i|| < r/4$, which implies that $x \in B'_i$. In other words, $B_0 \subset \bigcup_{i=1}^m B'_i$.

Let G'' be the intersection graph of the balls in \mathscr{C}'' , that is, $V(G'') = \mathscr{C}''$, and two elements $B''_i, B''_j \in \mathscr{C}''$ are adjacent in G'' if and only if $B''_i \cap B''_j \neq \emptyset$. Notice

that G'' has maximum degree at most 12^d . Indeed, for fixed *i*, the number of balls from \mathcal{C}'' that intersect B''_i is equal to the number of balls from \mathcal{C}'' that lie within $B(v_i, 3r)$, where $B(v_i, 3r)$ is the ball centered at v_i with radius 3r. This is at most the number of balls from \mathcal{C} that can be packed in $B(v_i, 3r)$. Using that \mathcal{C} is a packing of balls of radius r/4, the number of balls in \mathcal{C} that lie entirely within $B(v_i, 3r)$ is at most

$$Vol(B(v_i, 3r))/Vol(B_i) = 12^d$$

As the graph G'' has maximum degree at most 12^d , it has chromatic number $k \leq 12^d + 1$. So there is a mapping $c : [m] \to [k]$ such that if B''_i and B''_i have a nonempty intersection, then $c(i) \neq c(j)$. Now we color the points in V with 2kcolors of the form (j,t) with $1 \le j \le k$ and $t \in \{1,2\}$, as follows. For $v \in V$, let i(v) be the minimum index *i* such that $v \in B'_i$. Let S_i be the set of vertices $v \in V$ for which i(v) = i. Thus, S_1, \ldots, S_m form a partition of V. If $|S_i| = 1$, then color the vertex in S_i with color (c(i), 1). If $|S_i| > 1$, then color one vertex (chosen arbitrarily) in S_i with color (c(i), 1), and color the rest of the vertices in S_i with color (c(i), 2). Since any two points in V that are adjacent in G have distance at most r, they either belong to the same part S_i , or belong to two different parts S_i and S_j such that $B''_i \cap B''_i \neq \emptyset$. Let K be a maximal clique in V. If K contains two vertices u, v that belong to different parts S_i and S_j , then by the coloring c, vertices u and v also get different colors by considering the first coordinate, so K is not monochromatic. Otherwise, there is an i such that i(v) = i for all vertices v in K. So, all vertices of K are in the ball B'_i , which has diameter r. By maximality of K, all vertices of V in B'_i and, in particular, all vertices of S_i are in K. Since there are two vertices in S_i that receive different colors, K is not monochromatic. We have thus shown that no maximal clique of G with at least two vertices is monochromatic, so

$$\boldsymbol{\chi}_c(G) \leq 2k \leq 2(12^d + 1).$$

This completes the proof.

3 A new lower bound

For the proof of Theorem 1.2, we will need the following lemma.

Lemma 3.1 (Alon, Ben-Shimon, Krivelevich [1]). *There is a positive constant C* so that for every natural number *d* there exists a regular triangle-free graph *G* on *d* vertices with independence number $\alpha(G) < C\sqrt{d \log d}$. Moreover, *G* is Δ -regular where $\Delta = \Theta(\sqrt{d \log d})$.

Proof of Theorem 1.2. Let $d \ge 1$ and let *G* be a Δ -regular graph on the vertex set $V(G) = \{1, \ldots, d\}$ meeting the requirements of Lemma 3.1. Since *G* is triangle-free, we have

$$\chi_c(G) = \chi(G) \ge \frac{d}{\alpha(G)} \ge \Omega(\sqrt{d/\log d}).$$

Set $r = \sqrt{2\Delta - 1}$. We can assume that *d* is sufficiently large so that $\sqrt{2\Delta - 2} > 0$, since otherwise the statement easily follows. We now use an argument due to Frankl and Maehara [4] to construct a *d*-element point set $V = \{v_1, \dots, v_d\}$ in \mathbb{R}^d such that $||v_i - v_j|| \le r$ if and only if $(i, j) \in E(G)$.

Let $A = (a_{i,j})$ be the adjacency matrix of G, that is, A is a $d \times d$ symmetric matrix where $a_{i,j} = 1$ if $(i, j) \in E(G)$ and $a_{i,j} = 0$ if $(i, j) \notin E(G)$. Since G is Δ -regular and not bipartite, we know that the minimum eigenvalue of A satisfies $\lambda_{min} > -\Delta$. Hence, the matrix $A + \Delta I$ is positive semidefinite. Therefore

$$A + \Delta I = BB^T, \tag{1}$$

for some $d \times d$ matrix *B*. Let v_i be the *i*th row of the matrix *B* and set $V = \{v_1, \ldots, v_d\} \subset \mathbb{R}^d$. Reading off the entries of the matrix (1), we obtain

$$||v_i - v_j||^2 = (v_i - v_j) \cdot (v_i - v_j) = v_i \cdot v_i - 2v_i \cdot v_j + v_j \cdot v_j = 2\Delta - 2a_{i,j},$$

for $i \neq j$. In other words, $||v_i - v_j|| = \sqrt{2\Delta - 2a_{i,j}} \leq r = \sqrt{2\Delta - 1}$ if and only if $(i, j) \in E(G)$.

References

- [1] N. Alon, S. Ben-Shimon, and M. Krivelevich, A note on regular Ramsey graphs, *J. Graph Theory* **64** (2010), 244–249.
- [2] T. Andreae, M. Schughart, and Az. Tuza, Clique-transversal sets of line graphs and complements of line graphs, *Discrete Math.* 88 (1991), 11–20.
- [3] G. Baesó, S. Gravier, A. Gyárfás, M. Preissmann, and A. Sebő, Coloring the maximal cliques of graphs, SIAM J. Discrete Math. 17 (2004), 361–376.
- [4] P. Frankl and H. Maehara, The Johnson-Lindenstrauss lemma and the spherecity of some graphs, *J. Combin. Theory Ser. B* 44 (1988), 355–362.
- [5] C. McDiarmid, D. Mitsche, and P. Pralat, Clique colourings of geometric graphs, arxiv:1701.02693
- [6] E. Shan, Z. Lian, and L. Kang, Clique-transversal sets and clique-coloring in planar graphs, *European J. Combin.* 36 (2014), 367–376.