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Abstract

Given a finite point set V in Rd and a parameter r > 0, the correspond-
ing geometric graph G in Rd is the graph whose vertex set is V ⊂Rd , and
vertices u,v ∈ V are adjacent in G if and only if ||u− v|| ≤ r. In this
note, we study the clique chromatic number of geometric graphs, that is,
the minimum number of colors required to color the vertices of a graph
such that every maximal clique of size at least two is not monochromatic.
Improving the results of McDiarmid, Mitsche, and Pralat, we show that
if G is a geometric graph in Rd then χc(G) ≤ 2O(d). From the other
direction, we show that there are geometric graphs G in Rd such that
χc(G)> Ω(d1/2(logd)−1/2).
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1 Introduction

Given a simple graph G = (V,E), a proper coloring of G is a coloring of the
vertices such that no two adjacent vertices have the same color. The chromatic
number of G, denoted by χ(G), is the minimum number of colors required to
properly color G. A clique coloring of G is a coloring of the vertices such that
no maximal clique of size at least two is monochromatic. The clique chromatic
number of G, denoted by χc(G), is the minimum number of colors required to
clique color G. Clearly we have χc(G) ≤ χ(G) for every graph G, and if G is
triangle-free, then we have χ(G) = χc(G). The clique chromatic number has
been studied in many papers, and we refer the interested reader to [2, 3, 6, 5].

McDiarmid, Mitsche, and Pralat [5] initiated the study of the clique chro-
matic number of geometric graphs in Rd . Given a finite point set V in Rd and
a parameter r > 0, the corresponding geometric graph G in Rd is the graph
whose vertex set is V ⊂ Rd , and vertices u,v ∈ V are adjacent in G if and only
if ||u− v|| ≤ r, where ||u− v|| denotes the Euclidean distance between u and
v. McDiarmid et al. [5] showed that if G is a geometric graph in Rd , then
χc(G) ≤ 2(

√
d +1)d . In the other direction, they showed for each d ≥ 1, there

are geometric graphs G in Rd such that χc(G) > Ω(d1/4(logd)−1/2). In what
follows, we improve both of these bounds.

Theorem 1.1. The clique chromatic number of any geometric graph G in Rd

satisfies
χc(G)≤ 2O(d).

Theorem 1.2. For every integer d ≥ 1, there exists a geometric graph Gd in Rd

whose clique chromatic number satisfies

χc(Gd)≥Ω(d1/2(logd)−1/2).

2 A new upper bound

Proof of Theorem 1.1. Let G = (V,E) be a geometric graph in Rd with param-
eter r > 0, where V ⊂ Rd . Let B0 be a sufficiently large ball with radius R such
that V ⊂ B0, and let C = {B1, . . . ,Bm} be a maximum packing of B0, where Bi

is a ball centered at vi ∈Rd and with radius r/4. Note that C is finite by volume
considerations, and in fact, m = |C | ≤ (R/(r/4))d . For each i, let B′i and B

′′
i be

balls centered at vi with radius r/2 and r respectively. Set C ′= {B′1, . . . ,B′m} and
C
′′
= {B′′1, . . . ,B

′′
m}. Notice that for any point x ∈ B0, there is a ball Bi ∈ C such

that ||x−Bi||< r/4, which implies that x ∈ B′i. In other words, B0 ⊂
⋃m

i=1 B′i.
Let G

′′
be the intersection graph of the balls in C

′′
, that is, V (G

′′
) = C

′′
, and

two elements B
′′
i ,B

′′
j ∈ C

′′
are adjacent in G

′′
if and only if B

′′
i ∩B

′′
j 6= /0. Notice
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that G
′′

has maximum degree at most 12d . Indeed, for fixed i, the number of
balls from C

′′
that intersect B

′′
i is equal to the number of balls from C

′′
that lie

within B(vi,3r), where B(vi,3r) is the ball centered at vi with radius 3r. This is
at most the number of balls from C that can be packed in B(vi,3r). Using that
C is a packing of balls of radius r/4, the number of balls in C that lie entirely
within B(vi,3r) is at most

Vol(B(vi,3r))/Vol(Bi) = 12d .

As the graph G
′′

has maximum degree at most 12d , it has chromatic number
k ≤ 12d + 1. So there is a mapping c : [m]→ [k] such that if B

′′
i and B

′′
j have a

nonempty intersection, then c(i) 6= c( j). Now we color the points in V with 2k
colors of the form ( j, t) with 1≤ j ≤ k and t ∈ {1,2}, as follows. For v ∈V , let
i(v) be the minimum index i such that v ∈ B′i. Let Si be the set of vertices v ∈V
for which i(v) = i. Thus, S1, . . . ,Sm form a partition of V . If |Si|= 1, then color
the vertex in Si with color (c(i),1). If |Si| > 1, then color one vertex (chosen
arbitrarily) in Si with color (c(i),1), and color the rest of the vertices in Si with
color (c(i),2). Since any two points in V that are adjacent in G have distance at
most r, they either belong to the same part Si, or belong to two different parts
Si and S j such that B′′i ∩B′′j 6= /0. Let K be a maximal clique in V . If K contains
two vertices u,v that belong to different parts Si and S j, then by the coloring
c, vertices u and v also get different colors by considering the first coordinate,
so K is not monochromatic. Otherwise, there is an i such that i(v) = i for all
vertices v in K. So, all vertices of K are in the ball B

′
i, which has diameter r.

By maximality of K, all vertices of V in B
′
i and, in particular, all vertices of Si

are in K. Since there are two vertices in Si that receive different colors, K is not
monochromatic. We have thus shown that no maximal clique of G with at least
two vertices is monochromatic, so

χc(G)≤ 2k ≤ 2(12d +1).

This completes the proof.

3 A new lower bound

For the proof of Theorem 1.2, we will need the following lemma.

Lemma 3.1 (Alon, Ben-Shimon, Krivelevich [1]). There is a positive constant
C so that for every natural number d there exists a regular triangle-free graph
G on d vertices with independence number α(G)<C

√
d logd. Moreover, G is

∆-regular where ∆ = Θ(
√

d logd).
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Proof of Theorem 1.2. Let d ≥ 1 and let G be a ∆-regular graph on the vertex set
V (G) = {1, . . . ,d}meeting the requirements of Lemma 3.1. Since G is triangle-
free, we have

χc(G) = χ(G)≥ d
α(G)

≥Ω(
√

d/ logd).

Set r =
√

2∆−1. We can assume that d is sufficiently large so that
√

2∆−2> 0,
since otherwise the statement easily follows. We now use an argument due to
Frankl and Maehara [4] to construct a d-element point set V = {v1, . . . ,vd} in
Rd such that ||vi− v j|| ≤ r if and only if (i, j) ∈ E(G).

Let A = (ai, j) be the adjacency matrix of G, that is, A is a d×d symmetric
matrix where ai, j = 1 if (i, j) ∈ E(G) and ai, j = 0 if (i, j) 6∈ E(G). Since G is
∆-regular and not bipartite, we know that the minimum eigenvalue of A satisfies
λmin >−∆. Hence, the matrix A+∆I is positive semidefinite. Therefore

A+∆I = BBT , (1)

for some d× d matrix B. Let vi be the ith row of the matrix B and set V =
{v1, . . . ,vd} ⊂ Rd . Reading off the entries of the matrix (1), we obtain

||vi− v j||2 = (vi− v j) · (vi− v j) = vi · vi−2vi · v j + v j · v j = 2∆−2ai, j,

for i 6= j. In other words, ||vi−v j||=
√

2∆−2ai, j ≤ r =
√

2∆−1 if and only if
(i, j) ∈ E(G).
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