Comment on Fox News

János Pach^{*} and Géza Tóth[†] Rényi Institute, Hungarian Academy of Sciences

Abstract

Does there exist a constant c > 0 such that any family of n continuous arcs in the plane, any pair of which intersect at most once, has two disjoint subfamilies A and B with $|A|, |B| \ge cn$ with the property that either every element of A intersects all elements of B or no element of A intersects any element of B? Based on a recent result of Fox, we show that the answer is no if we drop the condition that two arcs can cross at most once.

1 Introduction

It was shown in [4] that any family of n segments in the plane has two disjoint subfamilies A and B, each of size at least constant times n, such that either every element of A intersects all elements of Bor no element of A intersects any element of B. In [1], this result was extended to families of algebraic curves with bounded degree at most D, where the corresponding constant depends on D.

More generally, let G be the intersection graph of n d-dimensional semialgebraic sets of degree at most D. Then there exist two disjoint subsets $A, B \subset V(G)$ such that $|A|, |B| \geq c(d, D)n$ and one of the following two conditions is satisfied:

1. $ab \in E(G)$ for all $a \in A, b \in B$,

^{*}Supported by NSF grant CCR-0514079 and grants from NSA, PSC-CUNY, Hungarian Research Foundation, and BSF.

[†]Supported by OTKA-T-038397 and OTKA-T-046246.

2. $ab \notin E(G)$ for all $a \in A, b \in B$.

Here c(d, D) is a positive constant depending only on d and D.

It is not completely clear whether the assumption that the sets are semialgebraic can be weakened. For example, a similar result may hold for intersection graphs of plane convex sets. Clearly, the same theorem is false for intersection graphs of three-dimensional convex bodies, because any finite graph can be represented in such a way, and a random graph G with n vertices almost surely does not have $A, B \subset V(G)$ satisfying conditions 1 or 2 with $|A|, |B| \ge c \log n$, if c is large enough.

It would be interesting to analyze intersection graphs of continuous arcs in the plane. (These are often called "string graphs" in the literature [2].) We have been unable to answer the following question even for k = 1, that is, for pseudo-segments.

Problem 1.1. Is it true that any family of n continuous arcs in the plane, any pair of which intersect at most k times, has two disjoint subfamilies A and B with $|A|, |B| \ge c_k n$ such that either every element of A intersects all elements of B or no element of A intersects any element of B? (Here $c_k > 0$ is a suitable constant.)

It follows from a beautiful recent result of Jacob Fox [3] (see Theorem 2.2 below) that the answer to the above question is negative if we drop the condition on pairwise intersections.

Proposition 1.2. Fix $\varepsilon \in (0, 1)$. For every *n*, there is a family of *n* continuous real functions defined on [0, 1] such that their intersection graph *G* has no complete bipartite subgraph with at least $c(\varepsilon)\frac{n}{\log n}$ vertices in each of its vertex classes, and every vertex of *G* is connected to all but at most n^{ε} other vertices.

Obviously, the last condition implies that G has no two disjoint nonempty sets of vertices A and B with $|A \cup B| > n^{\varepsilon}$ such that no vertex in A is connected to any element of B by an edge.

2 Proof of Proposition 1.2

We need a simple representation lemma.

Lemma 2.1. The elements of every finite partially ordered set $(\{p_1, p_2, \ldots\}, <)$ can be represented by continuous real functions f_1, f_2, \ldots defined on the interval [0, 1] such that $f_i(x) < f_j(x)$ for every x if and only if $p_i < p_j$ $(i \neq j)$.

Moreover, we can assume that the graphs of any pair of functions f_i and f_j are either disjoint or have finitely many points in common, at which they properly cross.

Proof. Let $P = \{p_1, p_2, \dots, p_\ell\}$. We describe a recursive construction with the additional property that for any extension of (P, <) to a total order $p_{k(1)} < p_{k(2)} < \dots < p_{k(\ell)}$, there exists $x \in [0, 1]$ such that $f_{k(1)}(x) < f_{k(2)}(x) < \dots < f_{k(\ell)}(x)$.

The proof is by induction on the number of elements of P. For $\ell = 1$, there is nothing to prove. For $\ell = 2$, there are two possibilities. If $p_1 < p_2$, then the functions $f_1 \equiv 1$, $f_2 \equiv 2$ meet the requirements. If p_1 and p_2 are incomparable, then let $f_1(x) = x$, $f_2(x) = 1 - x$. Now (P, <) can be extended to a total order in two different ways. Accordingly, $f_1(x) < f_2(x)$ at x = 0 and $f_2(x) < f_1(x)$ at x = 1.

Let $\ell \geq 3$, and suppose without loss of generality that p_{ℓ} is a minimal element of P. Assume recursively that we have already constructed continuous real functions $f_1, f_2, \ldots, f_{\ell-1}$ with the required properties representing the elements of the partially ordered set $(P \setminus \{p_\ell\}, <)$. Consider now an extension of (P, <) to a total order $p_{k(1)} < p_{k(2)} < \ldots < p_{k(\ell)}$. Clearly, p_ℓ appears in this sequence, i.e., $\ell = k(m)$ for some $1 \leq m \leq \ell$. By our assumption, there exists $x \in [0, 1]$ such that

$$f_{k(1)}(x) < \ldots < f_{k(m-1)}(x) < f_{k(m+1)}(x) < \ldots < f_{k(\ell)}.$$

In fact, there exists a whole interval $I \subset [0, 1]$ such that the above inequalities hold for all $x \in I$. Now pick a point $x^* \in I$ and a number y^* such that $f_{k(m-1)}(x^*) < y^* < f_{k(m+1)}(x^*)$, and define

$$f_\ell(x^*) := y^*.$$

Repeating this procedure for every permutation $(k(1), k(2), \ldots, k(\ell))$ for which $p_{k(1)} < p_{k(2)} < \ldots < p_{k(\ell)}$ is an extension of (P, <) to a total order, we define the function f_{ℓ} at finitely many points. (To avoid inconsistencies, we can make sure that we pick a different point x^* for each permutation.) It remains to verify that this partially defined function can be extended to a continuous function $f_{\ell} : [0, 1] \to \mathbf{R}$ meeting the requirements. The following two conditions must be satisfied:

- 1. if $p_{\ell} < p_j$ in (P, <) for some $j \neq \ell$, then $f_{\ell}(x) < f_j(x)$ for all $x \in [0, 1];$
- 2. if p_{ℓ} and p_j are incomparable in (P, <) for some $j \neq \ell$, then the graphs of f_{ℓ} and f_j cross each other.

Notice that each point (x^*, y^*) constructed during the above procedure lies below the lower envelope (pointwise minimum) of the functions $f_j(x)$ over all j for which $p_j > p_\ell$ in (P, <). Pick a point $x_0 \in [0, 1]$ distinct from all previously selected points $x^* \in [0, 1]$, and let $f_\ell(x_0) := y_0$ for some

$$y_0 < \min_{1 \le j < \ell} f_j(x_0).$$

Extend f_{ℓ} to a continuous function on [0, 1] whose graph lies strictly below

 $\min\{f_j(x) : \text{ for all } j \text{ such that } p_j > p_\ell\}.$

Obviously, f_{ℓ} satisfies condition 1. To see that condition 2 is also satisfied, fix an index j such that p_{ℓ} and p_j are incomparable in (P, <). Consider an extension of (P, <) to a total order in which $p_j < p_{\ell}$. It follows from our construction that there exists a point $x \in [0, 1]$ at which the values $f_i(x)$ are in the same total order as the elements p_i $(1 \le i \le \ell)$. In particular, we have $f_j(x) < f_{\ell}(x)$. On the other hand, by definition, $f_{\ell}(x_0) = y_0 < f_j(x_0)$. Therefore, the graphs of f_{ℓ} and f_j must cross each other, completing the proof. \Box **Theorem 2.2. (Fox)** Fix $\varepsilon \in (0, 1)$. For every n, there is a partially ordered set (P, <) of size n with the following two properties. (i) There are no two disjoint subsets $A, B \subset P$ such that $|A|, |B| \ge$ $c(\varepsilon) \frac{n}{\log n}$ and no element of A is comparable to any element of B. (ii) Every element of P is comparable to at most n^{ε} other elements. \Box

To deduce Proposition 1.2, apply Lemma 2.1 to the partially ordered set whose existence is guaranteed by Theorem 2.2. To see that the intersection graph G of the resulting functions meets the requirements, it is enough to notice that two vertices of G are connected by an edge if and only if the corresponding elements of P are incomparable.

References

- N. Alon, J. Pach, R. Pinchasi, R. Radoičić, and M. Sharir: Crossing patterns of semi-algebraic sets, *Journal of Combina*torial Theory Ser. A, accepted.
- [2] P. Brass, W. Moser, and J. Pach: Research Problems in Discrete Geometry, Springer-Verlag, New York, 200.
- [3] J. Fox: A bipartite analogue of Dilworth's theorem, manuscript, 2005.
- [4] J. Pach and J. Solymosi: Crossing patterns of segments, Journal of Combinatorial Theory Ser. A 96 (2001), 316-325.