Folding and turning along geodesics in a convex surface

János Pach*

Courant Institute, New York University, 251 Mercer Street New York, NY 10012

Let γ be a shortest path connecting two points, p and p', on the surface of a three-dimensional convex polytope P. Then γ is a polygonal path $p_0p_1p_2...p_m$, where $p_0=p,p_m=p'$ and each internal vertex p_i (0 < i < m) belongs to an edge of P denoted by e_i . For every i (0 < i < m), let $\pi - \varphi_i$ denote the dihedral angle between the faces of P meeting at e_i , and let $\pi - \tau_i$ stand for $\angle p_{i-1}p_ip_{i+1}$. φ_i and τ_i are called the folding angle and the turning angle of γ at p_i , respectively. Accordingly, define the total folding angle of γ and the total turning angle of γ as

$$\varphi(\gamma) = \sum_{0 < i < m} \varphi_i, \quad \tau(\gamma) = \sum_{0 < i < m} \tau_i.$$

For every i, we have

$$0 < \tau_i \le \varphi_i < \pi$$
.

Thus, the total turning angle of γ cannot exceed the total folding angle of γ . (See Figure 1.)

Recently, Sariel Har-Peled and Micha Sharir have raised the following interesting problem.

Problem. [AHSV96] Does there exist an absolute constant K such that the total turning angle of every shortest path γ on the surface of any three-dimensional convex polytope P is at most K?

^{*}Supported by NSF grant CR-94-24398, PSC-CUNY Research Award 663472, and OTKA-T-020914.

Fig. 1.

The stronger question, whether there is a finite upper bound on the total *folding* angle of every shortest path on every convex polyhedral surface, was asked in A. V. Pogorelov's famous book [P69].

We show that the answer to this latter question is in the negative.

Theorem. For every K, there exist a three-dimensional convex polytope P and a shortest path on the surface of P, whose total folding angle is at least K.

Proof. Fix an integer n > 2K. Let e_1, e_2, e_3 be three points (vectors) forming an equilateral triangle in the (x, y)-plane:

$$e_1 = (1,0), e_2 = (-1/2, \sqrt{3}/2), e_3 = (-1/2, -\sqrt{3}/2).$$

For every $0 \le i \le n$ and for every $1 \le j \le 3$, let

$$v_{ij} = (-1/3)^i e_j,$$

and let q_{ij} denote the projection of v_{ij} onto the convex surface

$$z = \varepsilon \left((x^2 + y^2)^{3/2} - 1/2 \right),$$

parallel to the z-axis. Explicitly,

$$\begin{array}{rcl} q_{i1} & = & \left((-1/3)^i, 0, \varepsilon((1/3)^{3i} - 1/2) \right), \\ q_{i2} & = & \left(-(-1/3)^i/2, (-1/3)^i\sqrt{3}/2, \varepsilon((1/3)^{3i} - 1/2) \right), \\ q_{i3} & = & \left(-(-1/3)^i/2, -(-1/3)^i\sqrt{3}/2, \varepsilon((1/3)^{3i} - 1/2) \right), \end{array}$$

where ε is a small positive constant to be specified later.

Let Q be the convex hull of all points q_{ij} , $0 \le i \le n, 1 \le j \le 3$. Clearly, every q_{ij} is a vertex of the polytope Q, and Q contains the origin (0,0,0) in its interior. It is easy to verify that two distinct vertices, q_{ij} and q_{kl} , are connected by an edge of Q if and only if

- (1) i = k, or
- (2) |i-k|=1 and $j\neq l$.

Fig. 2.

The orthogonal projection of the skeleton (edge structure) of Q onto the (x, y)-plane is depicted on Figure 2. In fact, if ε is very small, then Q hardly differs from its projection.

Let Q^* denote the *polar* polytope of Q, i.e., let

$$Q^* = \{ p \in \Re^3 \mid \langle p, q \rangle \le 1 \text{ for every } q \in Q \}.$$

It is well known [G67], [MS71] that there is a one-to-one correspondence between the vertices of Q and the faces of Q^* such that

- (i) two vertices of Q are joined by an edge if and only if the corresponding two faces of Q^* are adjacent;
- (ii) the vector representing any vertex of Q is perpendicular to the corresponding face of Q^* .

Thus, the angle between any two vectors representing adjacent vertices of Q is equal to the folding angle (i.e., π minus the dihedral angle) between the corresponding two faces of Q^* . It follows from the definition of Q that this angle can be bounded from below by any number smaller than $\pi/3$, provided that ε is sufficiently small. In particular, we can fix $\varepsilon > 0$ so that every edge of Q can be seen from the origin at an angle larger than $\pi/4$. Consequently, the folding angle between any two adjacent faces of Q^* is larger than $\pi/4$.

Let p and p' be internal points of the faces of Q^* corresponding to q_{01} and q_{n1} , respectively. Observe that any path connecting q_{01} and q_{n1} in the skeleton of Q consists of at least n edges. Therefore, any (shortest) path γ connecting p and p' on the surface of Q^* crosses at least n edges of Q^* . Thus, the total folding angle of any such path is larger than $n\pi/4 > 2K\pi/4 > K$, showing that $P = Q^*$ meets the requirements of the Theorem. \square

The problem of Har-Peled and Sharir, mentioned earlier, is still open.

References

[AHSV96] P. K. Agarwal, S. Har-Peled, M. Sharir, and K. Varadarajan, Approximating Shortest Paths on a Convex

- Polytope in Three Dimensions, Tech. Rept. CS-1996-12, Dept. Computer Science, Duke University, 1996.
- [G67] B. Grünbaum, Convex Polytopes, John Wiley and Sons, London, 1967.
- [MS71] P. McMullen and G. C. Shephard, Convex Polytopes and the Upper Bound Conjecture, London Mathematical Society Lecture Note Series 3, Cambridge University Press, 1971.
- [P69] A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Nauka Publishing House, Moscow, 1969, p. 745 (in Russian).