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Let v be a shortest path connecting two points, p and p', on
the surface of a three-dimensional convex polytope P. Then 7 is
a polygonal path popips...pm, where py = p,p,, = p' and each
internal vertex p; (0 < ¢ < m) belongs to an edge of P denoted
by e;. For every i (0 < i < m), let m — ¢; denote the dihedral
angle between the faces of P meeting at e;, and let m — 7; stand for
/pi—1pipiv1- @i and 7; are called the folding angle and the turning
angle of v at p;, respectively. Accordingly, define the total folding
angle of v and the total turning angle of v as

eM= > i, V=Y 7

0<i<m 0<i<m

For every i, we have
0<n < <.

Thus, the total turning angle of v cannot exceed the total folding
angle of 7. (See Figure 1.)

Recently, Sariel Har-Peled and Micha Sharir have raised the
following interesting problem.

Problem. [AHSV96] Does there exist an absolute constant K such
that the total turning angle of every shortest path v on the surface
of any three-dimensional convex polytope P is at most K7
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Fig. 1.

The stronger question, whether there is a finite upper bound
on the total folding angle of every shortest path on every convex
polyhedral surface, was asked in A. V. Pogorelov’s famous book
[P69].

We show that the answer to this latter question is in the nega-
tive.

Theorem. For every K, there exist a three-dimensional convex
polytope P and a shortest path on the surface of P, whose total
folding angle is at least K.

Proof. Fix an integer n > 2K. Let e, e, e3 be three points
(vectors) forming an equilateral triangle in the (x, y)—plane:

er = (1,0), ex=(—=1/2,v3/2), es=(-1/2,—V3/2).
For every 0 <7 <n and for every 1 < j < 3, let
vij = (=1/3)'e;,
and let ¢;; denote the projection of v;; onto the convex surface

z=¢€ ((a:2 + %)% — 1/2) :
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parallel to the z—axis. Explicitly,

g1 = ((_1/3)i’ 0, 6((1/3)3i - 1/2)) )
g2 = (—(=1/3)'/2,(~1/3)"V3/2,e((1/3)* — 1/2)),
gis = (—(=1/3)"/2,—(=1/3)'v/3/2,£((1/3)* - 1/2)),

where ¢ is a small positive constant to be specified later.

Let () be the convex hull of all points ¢;;,0 <7 <n,1 < j <3.
Clearly, every g;; is a vertex of the polytope @, and ) contains the
origin (0,0,0) in its interior. It is easy to verify that two distinct
vertices, g;; and g, are connected by an edge of @) if and only if

(1) i=k, or

(2) |i—k|=1and j #1.
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The orthogonal projection of the skeleton (edge structure) of @
onto the (z,y)-plane is depicted on Figure 2. In fact, if ¢ is very
small, then ) hardly differs from its projection.

Let @Q* denote the polar polytope of @, i.e., let

Q ={peR®| (p,q) <1 forevery q € Q}.

It is well known [G67], [MST71] that there is a one-to-one correspon-
dence between the vertices of () and the faces of @* such that

(i) two vertices of @) are joined by an edge if and only if the
corresponding two faces of QQ* are adjacent;

(ii) the vector representing any vertex of @) is perpendicular to
the corresponding face of Q*.
Thus, the angle between any two vectors representing adjacent ver-
tices of @ is equal to the folding angle (i.e., 7 minus the dihedral
angle) between the corresponding two faces of Q*. It follows from
the definition of () that this angle can be bounded from below by
any number smaller than 7/3, provided that ¢ is sufficiently small.
In particular, we can fix £ > 0 so that every edge of () can be seen
from the origin at an angle larger than n/4. Consequently, the
folding angle between any two adjacent faces of Q* is larger than
/4.

Let p and p’ be internal points of the faces of Q* corresponding
to qo1 and ¢,1, respectively. Observe that any path connecting g
and ¢, in the skeleton of () consists of at least n edges. Therefore,
any (shortest) path  connecting p and p’ on the surface of Q*
crosses at least n edges of *. Thus, the total folding angle of any
such path is larger than n7/4 > 2K7 /4 > K, showing that P = Q*
meets the requirements of the Theorem. O

The problem of Har-Peled and Sharir, mentioned earlier, is still
open.
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