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Abstract

Let H = (V, E) be an r-uniform hypergraph of size n such that each
edge of H meets at most d others. A finite map f : X — FE induces
a bipartite graph Gy, = (Vyf, Ey) with vertex set Vy = X UY where
Y = UE, and with edge set Ey = {{z,y}:z € X,y € f(z)}. We study
matchings in the bipartite graph induced by a random f. The study was
suggested by consideration of the call sequence acceptance behavior of a
load sharing system for cellular telephone networks, invented by Matula
and Yang.

KEYWORDS cellular telephone, matching, 0-1 law, limit probability distri-
bution, hypergeometric function
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1 Introduction

Matula and Yang [4] designed a load sharing algorithm which enables a cellu-
lar telephone network to dynamically reconnect a sequence of telephone calls to
neighboring transceivers to free a transceiver for a new call entering the network.
They described some possible implementations of their system, in which a num-
ber of cellular telephone transceivers are deployed in triangular and hexagonal
planar arrangements with multiple cellular transceiver sites per cell.

In subsection 1.1, we describe a hypergraph model of Matula and Yang’s
system. In Section 2, we summarize our results. Subsection 2.1 contains some
simple probabilistic statements on the asymptotic number of failed attempts in
a random sequence of calls in the hypergraph model. In Subsection 2.2 we give
exact enumeration formulae in the one-dimensional case, some of which were
obtained with the help of a computer. The proofs are presented in Section 3.



1.1 Hypergraph model

Let # = (V, E) be a hypergraph with vertex set V' and edge set E. If every edge
of ‘H consists of precisely r vertices, then H is called an r-uniform hypergraph.

The hypergraph model of the system of Matula and Yang is a connected r-
uniform hypergraph H = (V, E) with |E| = n (hyper)edges such that every edge
intersects at most d others. Each vertex of H represents a cellular telephone
transceiver tower capable of receiving a single call. Each edge of H represents a
collection of towers that service a region. In the sequel, we will often refer to a
hypergraph edge as a cell to distinguish it from a graph edge and to emphasize
the analogy with the polygonal model.

Let m be a positive integer, and let [m] = {1,... ,m}. A sequence of calls
to various cells of the system is represented by a finite function f : F — E,
where F' C [m] for some positive integer m. The elements of [m] are thought of
as calls. Each call j € F is assigned to the cell f(j) = e. The number of calls
assigned to e € E is the number of times that f takes the value e. Given H
and f, a bipartite graph I'y = (V}, Ey¢) can be associated with f in a natural
way, as follows. Define the vertex set of I'y by Vy = F UV, and its edge set by
Ef ={{j,v}:j € Fand v € f(j) CV}. A function f: F — E is admissible
iff there exists a matching from F' to V in I'y. It follows immediately from the
Konig-Hall Lemma (Marriage Theorem) that f is admissible iff for every subset
Aof F,|A| < |T'¢(A)|, where T's(A) denotes the set of vertices in V' adjacent in
I’y to some vertex of A. Given a finite map f : F — E, we define the admissible
domain Ay of f to be the lexicographically smallest subset A of F' of maximum
cardinality such that the restriction f|A of f to A is admissible. A function
f:F — E rejects t iff t € F — Ay, The number of rejections of f is defined to
be |F| —|Af|.

Let f: F — E be amap, F C [m]. Given any 1 < j < m, e € E, we say
that f saturates e at j iff j € Ay and for any map g : G — E with g|Ay = f|Ay,
where G is the union of A; with a non-empty finite set of positive integers
strictly greater than the maximum element of A¢, and for any k € G such that
k > j, g(k) = e implies that g rejects k.

Matula and Yang’s patent [4] illustrates a possible implementation of their
call switching invention in a cellular telephone system with hexagonal cells.
Each hexagonal cell contains seven transceiver sites, one centrally located, and
one at each vertex. The collection of cells and transceiver sites in this example
form a 7-regular hypergraph in which each edge meets at most 6 other edges.

Suppose that H is a hypergraph as above. We wish to compute the proba-
bility that a random uniformly distributed sequence of m calls arranged in the
n edges of H will be admissible. We also wish to compute a limit probability
distribution of the admissible functions when m and n are large.



2 Results

2.1 Probabilistic approach

Using the probabilistic method [1], we investigate the asymptotic behavior of the
expected number of rejected calls for a random uniformly distributed function
f 1 [m] = E, where E is the edge set of an r-uniform hypergraph, as m and
|E| = n tend to infinity. The theorems in this section pertain only to r—uniform
hypergraphs H = (V, E) satisfying the following condition.

Condition 1 For every non-empty subset A C E of edges of H, |A|+r—1<
|UA|.

According to the remark at the end of Subsection 1.1, most of the natural
instances of the polygonal model meet this requirement.

We use the notation f < g, f > g, and f ~ g to signify that lim,_,, f(n)/g(n)
is 0, 0o, and 1, respectively, where f and g are real valued functions defined for
large real or integral arguments.

Theorem 2 Let H = (V, E) be an r—uniform hypergraph with |E| = n cells

such that every cell intersects at most d others, and assume that H satisfies

Condition 1. In the discrete probability space of all maps f : [m] = E with the

uniform distribution, let Ry, denote the event that the k-th call is rejected, let

X}, be the indicator random variable for Ry, and define X} = Ele X;. Letd

and r be fized, and let n and m = m(n) be positive integers tending to infinity.
Then

lim E[X,,] =

n— o0

0 ifm<Kni,
00 if m>nT.

Taking into account that X is a non-negative integer valued random vari-
able, we have that Pr[X,, > 0] < E[X ], i.e., we obtain the following

r

Corollary 3 X,, = 0 almost surely if m < n++1;

We have been unable to show that if m > n71, then X,, ~ E[X ], i.e.,
for every € > 0, we have

lim Pr|Xm/E[Xm] -1 > ¢ =0.

m—0o0

However, applying martingale techniques, we can show

Theorem 4 X, ~ E[X ] almost surely if m > nw+172 .



2.2 Algebraic approach

We consider the simplest cellular telephone system, modeled by a connected
2-uniform hypergraph H of maximum degree 2. There are two possibilities for
such hypergraphs: paths and cycles. We formulate our asymptotic result for
paths, but it also applies to cycles.

For a path of n edges, a sequence will fail to be admissible if it assigns some
edge three or more calls, or if it assigns each edge at most two calls, and there
is a connected sequence of at least two edges starting and ending with an edge
containing two calls, and such that every other edge in the sequence is assigned
precisely one call. An admissible sequence of m > 1 calls is an “almost injective”
function; that is, a function f : [m] — [n] for which there exist g : [m] — {0,1}
and h : [m] = [n + 1] with h injective such that f + g = h.

The main result of this section is a limit probability distribution for the ad-
missible functions. Given m,n positive, consider the discrete probability space
of maps f : [m] — [n], with the uniform probability distribution.

Theorem 5 Let A be a positive constant. Then

1 if m <« n?/3,
lim Pr(f : [m] — [n] is admissible | = { e~ A°/6  if m ~ An?/3,
n—oo

0 if m > n?/3,

To state the enumeration results used for the proof of Theorem 5, we need
some notation for hypergeometric functions. The shifted factorial, also called
the Pochhammer symbol, is denoted by (a)x, and defined for a € R by (a)g =1,
and by (a)y = ala+1)---(a+ k — 1) for £ > 1. The generalized hyperge-
ometric function with p numerator parameters as,... ,a,, and ¢ denominator
parameters by, ... , b, is denoted and defined by

ai,--.,ap | G (al)n"'(ap)nﬁ
I PORT ED I e o

Proposition 6 Let A(m,n) denote the number of admissible functions f :

[m] = [n], where 1 < m < n+1. Then A(m,n) = M(m,n —m) + N(m,n),
where

(%] 1 m—2k (s+k+2\[/m—-—s—k—1
!
M(m,z)=(z4+1)n +mzk12k (S p z)( b1 )
and where
1 m—1
N(m,n) = §Zk:1 Mm—-—k—1,n—m+1)(m —k)ps1-
By applying Petkovsek’s Mathematica implementation of Gosper’s algorithm

[5, 6] for summing hypergeometric series, we arrive at the following hypergeo-
metric identity for the number of admissible functions.



Proposition 7 Let 1 <m <n+ 1. Then,
e n—m+1,-m/2,-(m-1)/2 1
Alm,n) = (n=m +)m 3F2[ (n—m+1)/2,(n—m+2)/2 2

mz”“( n—k )3F2 [ n—m+2(k—m+1)/2,(k—m+2)/2 .1]

T n—m+1 (n—m+2)/2,(n —m +3)/2 2

k=1
Richard Stanley [7] has shown that the number A(m,n) of admissible func-
tions f : [m] — [n] for 1 < m < m + 1 satisfies

i A(man) m, n __ 1—$y+(x2y)/2 (1)
m! vo= 1—y—2zy + zy? + (2292)/2

Herbert Wilf [9] pointed out that Stanley’s rational generating function (1)
implies that A(m,n) satisfies the recurrence

A(m.n) = A(m,n —1) +2mA(m — 1,n — 1)
m

—mA(m —1,n—2) — (2

)A(m—Z,n—Z)

for m,n >3 .

3 Proofs

3.1 Proof of Theorem 2

Let H = (V, E) be a connected r-uniform hypergraph of n cells (hyperedges)
such that every cell intersects at most d others, and H satisfies Condition 1 in
Subsection 2.1.

Form the discrete probability space of all maps f : [m] — E, with each map
equally likely. Define the random variable Y; to be the number of previously
not saturated cells that become saturated precisely at the j-th call. Also, let
Yi = Ele Y;. Note if the j-th call is rejected, then Y; = 0. We write f = ©(g)
provided f = O(g) and g = O(f).

A connected set U of u cells of E will be called a u—cluster. A pair (U, e)
consisting of a u—cluster U together with a choice of an edge e € U is called a
pointed u—cluster. The distinguished edge e is called the point of (U, e).

Lemma 8 For any 1 < u < n, the number of u—clusters in H is bounded above
by

(3d)"

n,o__W4
u (d—1Du+1"



Proof. Fix a cell e € E. The number of pointed u—clusters whose point is e
is bounded above by the number of rooted d—ary trees with u nodes, which is

known [3] to be
du 1 3du\ 1
< (=)
u)(d=—1Nu+1"\ u d-—1Du+1

Note that for 1 < j <7, Y; =0, since no cell can be saturated by fewer than
r calls.

Lemma 9 Letr and d be fixed. Forr < j<m < n,
E[Y;]=0((/n)" ).

Proof. Let U C E and let (U, e) be a pointed u-cluster. Let S; ) be the
set of all maps f : [m] - E whose j-th call is in e, meaning that f(j) = e, and
such that f saturates each of the u = |U| cells of U at j and no other cells of
E. Define

Siv = Siw.e-
ecU

S;,u is the set of maps f : [m] — E that saturate the u-cluster U at j. By
definition,

ElY;] = Z uPr[S;u] = Z uZPr[S-,(U,e)]

1<u<j 1<u<j e€U
[U|=u |U|=u

where the first sum is over all u-clusters U for u from 1 to j.

Let (U, e) be a pointed u-cluster. We overestimate the number of sequences
f of length m that saturate U when the j-th call of f arrives. Let v(U) be
the number of vertices of U. There will be v(U) calls connected to the v(U)
vertices of U when the j-th call of f arrives. Order the v(U) vertices of U so
that the last vertex is one of the r vertices of e. There are (v(U) — 1)!r such
orderings. Each of the initial v(U) — 1 calls must appear in one of the at most
d cells containing the vertex to which it is assigned. The remaining calls prior
to j are assigned to cells in £ — U, and the m — j calls after the j—th can be
assigned to any of the n cells of E.

Consequently,

|S',(U,e)| <AU) - Dr} (U(JU;i 1) ) —1,i—v(U) ,m—j (2)

Recalling that d and r are fixed and that 1 < j < m < n, we make the following



estimates, noting that we can always take n > dj.

S, v(U)—1 SN
- T ey B Y oS TI(0) ghom ©

1<u<j |Ul=u 1<u<j |U\—ue€U

u? dj u—1 dj v(U)—u
oz (@) Z(3)
1<u<j |U|=u

S|s,

(@72 EO ) e

j r—1 oo 3d2] u ] r—1
() S ) () ®
where (3) follows from (2); (4) follows from Condition 1, which in the current
notation is 7 —1 < |UU|—|U| = v(U) —wu for a u—cluster U; and (5) follows from
the preceding lemma. (6) follows by choosing § with 0 < § < 1 and n so large
that 3d?j/n < 6. Then the geometric series in (6) converges and approaches 1
as § — 0.

To obtain a lower bound for E[Y}], we underestimate the probability that a
function f : [m] — E saturates some 1l-cluster at the j-th call. Let j <m < n,
and let S;. be the set of maps which saturate the 1-cluster consisting of the
cell e at j. If f € Sj ., then necessarily r < j, and there must be a subset S
of [j — 1] of size r — 1 such that f sends S to the at most d cells adjacent to
f(j) = e. We underestimate S;. by counting maps f : [m] — E that send all
of the calls of SU {j} to e, and which send the remaining calls to cells disjoint
from e. This is possible because there are at least n — j — 1 cells disjoint from
e. Since H has n cells,

n(n—d—1)J—" (j -1

nJ r—1

) < Pr(S;1) < E[Y;]-
By Stirling’s formula, for some constant C' > 0,

% (”‘Td‘l) (n”_;dil) < E[Y;). )

For j < n, ((n —d —1)/n)?~! converges to 1 as n — oo. Multiply and divide
the left hand side of (7) by (j/n)"!. Since r < j < n and 1 —1/j is increasing,



we have

c (”‘Td‘l) (1- 1) (1 +o(1)) (%) < B).

It follows immediately that for r < j <m < n, (j/n)" ' = O (E[Y;]). =

We complete the proof of Theorem 2 using the following identity.

— m m j — m 1 k—1
E[X,] = Zk:m E[X;] = Zk:m EE[Y,H] = Zk:m ) DN E[Y;).

The second equality holds since the probability of a rejection is equal to the
expected number of saturated cells, divided by the number n of cells. The
index k starts at r + 1 since all calls up to r are accepted. The index j starts
at r since at least r < j calls are needed for the j-th to saturate a cluster.

By Lemma 9,

- L 0 () e ()

Consequently,

9)

n—oo

. — ., _ [0 ifm<gnr,
fim B[Xm] = { oo if m > n.

This concludes the proof of Theorem 2.
Theorem 2 holds for more general r-uniform hypergraphs than those which
satisfy Condition 1, because the inequality

r—1<|UA|- |4 (10)

was used in our calculations only for sets A of hyperedges with 1 < |A| < m. For
example, although cycle graphs violate Condition 1, the statement of Theorem
2 holds for large cycle graphs. In general, the statement holds for hypergraphs
of large girth; i.e., for a connected r-uniform hypergraph H = (V, E) with n
hyperedges each of which meets at most d others, and such that (10) holds for
each non-empty set A of hyperedges with |A| < m = m(n).

3.2 Proof of Theorem 4

We spell out for our situation the martingale machinery we need from Alon
and Spencer [1], page 89. Let Q = E[™ be the probability space of maps
g : [m] — E with the measure Pr[g(b) = a] = 1/n, with the values of g mutually
independent. We use the gradation

(Z):B()CB1C"'CBm=[m]

where we take B;=[i].



Let L : E™ — R be the random variable X ,, i.e., the number of rejected
calls. As in [1], we define a martingale Zo, Z1, ... , Zp by

Z;(h) = E[L(g)|g(b) = h(b) for all b € B;]

Zo(h) = E[X,,] and Z,,(h) is the number of rejections of h. L satisfies the
Lipschitz condition relative to the gradation if for all 0 < i < m,

h, ' differ only on B;y1 — B; = |L(h') — L(h)| < 1,

which is the case for the number of rejections, since changing the value of a map
h: [m] — E at one argument changes its number of rejections by at most one.

With this setup, Azuma’s inequality (Theorem 4.2 in [1]) states that for all
A>0,

Pr| X, — E[X ]| > AWm] < 26272,

Let € > 0 and put A = €E[X,,]/+/m. Azuma’s inequality becomes

Pr H X_m — 1‘ > e] < 26_62E[Y*”]2/2m.
E[X ]

Taking m > n7¥172 | the estimate (8) in the proof of Theorem 2 implies that
E[Xm]/y/m — oo as n — oo, which with Azuma’s inequality implies that

Xm ~ E[X,,] almost surely.

3.3 Proof of Proposition 6

Let A = {0,1,2}. A word of A is a finite sequence of elements of 4. The
empty word, denoted by e, is considered a word of A. A regular expression r is
a pattern for a set of words of A which are said to match r. Regular expressions
are built up from words of A using concatenation, union, the Kleene %-operation,
and difference. If the regular expression r is a word, then r matches only r. If
A and B are regular expressions that match words u and v, respectively, then
AB matches uv, (A U B) matches either u or v, (A)* matches zero or more
occurrences of u, and A — B matches u but not v.

A sequence of calls to a path will fail to be admissible if it assigns three or
more calls to some edge of the graph, or if it assigns a sequence of calls to edges
that matches 21*2.

Recall that A(m,n) denotes the number of admissible functions f : [m] —
[n],where m,n > 1. Denote by w; the word of length n whose k-th symbol is
the number of times that f takes the value k, where 0 < k < n. In particular,
the word wy of an admissible function f is a word in the alphabet A = {0,1,2}.
Let £ = {wys : f : [m] — [n] is admissible, where m,n > 1}. We use regular
expressions [2] to describe subsets of £ that we will need.

We write A(m,n) = ]/\I\(m,n) + N(m,n), where J/\/[\(m,n) is the number of
admissible functions f : [m] — [n] whose word w; does not end in 21* and



where N(m,n) is the number of admissible functions f whose word wy ends in
21*.

It will be convenient to define M(m,z) = M(m,m + z), where z > 0.
We write a formal sum of words of £ that represents the admissible functions
counted by M (m, z) as follows

m+z lm/2] m—2k s+k+=z
( z )1m+ )IEDDED DS ( z )1%ah1ﬁ.”a%1@

k=1 s=0 7€Ds,k ?’EE‘,’)@
(11)

where Ds,k = {(dOJ' - 7dk) : di > 072?:0 d] = 8}7 Es,k = {(617" - 7€k) 1€
2, Z?Zl e; =m — s}, and where a; denotes the word 219720, where i > 2.

It is clear that £ =(0*1*(21*0)*)* (e U 21*). Every word z € (0*1*(21*0)*)*
comes from a unique word y of the form

v

1d0a611d1 ...aek]_dk (12)

by inserting z = |z| — |y| 0’s into y. We call the word y the associated word of
z (and of f). Note that the z 0’s are never inserted into any a.

If there is no a occurring in z, then y = 1™. There are (™}*) ways of
inserting the z zeros into y to obtain z. Otherwise, at least one a occurs in
. Let k be the number of a’s that occur, and let s denote the number of 1’s
that occur. There are (s+’:+z) ways of inserting the z zeros into y to obtain z.
This shows that formal sum of words (11) represents the functions counted by
M(m, z).

It remains to compute the number of functions f : [m] — [m + z] that have
an associated word of the form (12).

Let f : [m] — [n] be a finite function with word wy, let #w; denote the
number of functions g : [m] — [n] with wy = wy. For j with 1 < j < n let
|f~1(j)| denote the cardinality of the pre-image of j. Then

m
s = (Ifl(l)l,--- ,|fl<n)|>‘ (13)

Furthermore, if f : [j] — [r] and g : [k] — [s] are finite functions with words
u = wy and v = w, respectively, then

#(uv) = fu - (C(“)C(*u)c(”)) — - o (j . ’“) (14)

where C(w) is the sum of the digits occurring in w.
Now we can evaluate (11). The first term of M (m, z) equals

(12 o= (- o

z 2!

10



The second term is

lm/2] m—2k

YL T 3 (T )sereat et

=1 s=0 FeD,, €Lk
lm/2] m—2k
+h+
SD 3 DD D Dl (R ITICVICN IS (R

k=1 s=0 F¢p,, @bk

m/2] m—2k

Z Z Z Z (S+k+2’)d0!61!"'dk!( m )
k=1 5=0 Fep,, P bk 2 do,e1, - ,dy
la/2] | q—2k

o s+k+2z\/fm—-s—k—-1

=m > u 3 ()T

We next compute N (m,n).

Proposition 10

1 m—1
N(m,n) = -

5 2 pe Mm-k—-1n—m+1)(m—k)ks1- (15)

Proof. Suppose that f : [m] — [n] has word w; ending in 21¥~! where
1 <k <m — 1. Then wy = wv, where u does not end with 21*. Furthermore
|u| =n—k, and C(u) = m—k—1. The number of functions g : [m—k—1] — [n—k]
with word w, = w is by definition M(m —k—1, n—m+1). By (13), the number
of functions h : [k + 1] — [k] with wp, = v is @ By (14), the number of
functions f is

m—1

M(m—k—l,n—m+1)(k+1)!< m )

2
k=1

3.4 Proof of Proposition 7
Proof. Applying Gosper’s algorithm [5, 6] to the inner sum

Zm*% s+k+2z\/fm—-—s5s—k-1
5=0 s, k, 2z k—1

of M(m, z) one obtains

csc(km — mm)T(—=2k — 2)T'(1 + k + 2) sin(kn)
Tl —2k+m)T'(—m — 2) '
Apply the reflection formula

™

LT - 2) = sin(mz)

11



to the preceding and remove singularities to obtain

[m/2]
1 (k+2\/m+=z
- ! il
M(m,z) = (z+ 1)y, +m! E 2’“( ; )(m—2k>'

k=1

Taking z = n — m and applying Gosper’s Algorithm yields the following.

M(m,n—m)=(Mn—m+ 1)y, -3F [ n—m+1,-m/2,—(m—1)/2 _1]'

(n—m+1)/2,(n—m+2)/2 ’2
(16)

By applying Gosper’s algorithm to the expression (15) for N(m,n), one obtains
the identity for the number of admissible functions f : [m] — [n]. =

3.5 Proof of Theorem 5

Our proof of the limit probability distribution depends on the following asymp-
totic formula.

Lemma 11 Let m = m(n) < n. Then

log (Pr[f : [m] — [n] is admissible]) ~ —ni ((m/ n?t (17)
k=1

— 2k) 2k + 1)

Proof. The theorem follows easily from this lemma. Let s(m,n) denote
the right hand side of formula (17). Taking m = An?/®> where A > 0, we
have s(An?/3,n) = —A3/6 + O(n=2/3). If m <« n*/3 then for each A > 0,
there exists an integer N4 so that for all n > N4, m < An?/3, and hence
s(An?/3,n) < s(m,n) < 0. Consequently, e=4°/6 < liminf,_,o (™™ < 1.
Since A is arbitrary, let A tend to 0. Conversely, if m > n?/3, then for any
A>0,0<limsup,_, e’ ™ < e 4°/6 This time let A tend to co. m

Recall that

A(m,n) = M(m,n —m) + N(m,n) (18)

We will show that for m < n, n=™N(m,n) — 0, so that the probability of
admissibility is n =™ M (m,n—m). The proof of the lemma will use an asymptotic
equivalence that reduces the 3F5 term occurring in the hypergeometric identity
(16) for M (m,n — m) to a more manageable 5 F; term.

Claim Define ¢,y by

p(m,n) = 2F} [ _Tnﬂ_’ ;(T;)/l;/z 51] (19)
— n_m+1a_m/27_(m_1)/2.1
¢(m’")—3F2[ (n—m+1)/2, (n —m +2)/2 ’5]' (20

12



mLn,

aly

Then, for m < n,

n~"n—m+1)pem,n) ~n""(n—m+ 1), (m,n).

Define
ax(m,n) = (n=m+ 1) (=m/2)k(=(m —1)/2) 1
R e = m+ 1) /2k(n—m +2)/2),  2FkV
by (m, ) — (=m/2)g(=(m =1)/2); 1

(n—m+2/2)s k-
Then ) {m, a) (=, 2) and ¢{m, by (m, 2)>° Note that for

my(mon) Nt 1 i (-LEMm=D o (m)?)

2 Y T —mtigo; — OXP
b[\/ﬁj (m,n) Jl;[() 1+ 7+nl+2] n

Write ay, = ag(m,n), by = bi(m,n). Let € > 0. Choose n so large that m/n < e.
Then for each k with 0 < k < |/m],

ajym)(m,n)
blym(m,n) ~ by

ag

1-€e< <1

since ag(m,n)/br(m,n) is decreasing with k. Consequently,

Lvm] [vm] ar [vm] [vm]
0<(—a 3 be< D pib=3 ar< ) b
k=0 k=0 k=0 k=0
It follows immediately that > ,E‘:/(T)»"J ag(m,n) ~ ,E‘:/?J br(m,n).

Let ¢(m,n) =n"™(n —m + 1),,. Define g(m,n) = ¢(m,n) E,E\:/Om by, (m,n)
and z/b\(m,n) = ¢(m,n) ,E‘:/Om ar(m,n). g(m,n) and 1//;(m, n) are asymptotically
equivalent. Furthermore, they converge to values in [0, 1] for m < n, because
they are non-negative and bounded by ¢(m, n)y(m,n) and c¢(m,n)p(m,n) re-
spectively, each of which are probabilities. The formula of 7 counts the number
of admissible maps, so ¢(m, n)y(m,n) is between 0 and 1, and a computation
following will show the same for ¢(m,n)yp(m,n). Since c¢(m,n)p(m,n)—p(m,n)
is the tail of a convergent series of positive terms, we have c(m,n)p(m,n) ~

@(m,n). Similarly, e¢(m, n)yp(m,n) ~ @(m,n).
Suppose that m < n. The preceding claim, along with the following identity
of Gauss,

a,b | _T(T(c—a—-0b).
2F1|: c ,1:|—mlf%(c—a_b)>0,

applied to n=™M (m,n — m) yields

n""(n—m+1)pY(m,n) ~n""(n—-—m+1),
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Let C = m/n. Apply the identity I'(k + ) = /7272k(2k)!/k!, valid for k
with 2k € Z to (21). We obtain

o nl (1= C)/2)! VRO (14 0)/(n(1 +C)/2)!
(n(1 = C)! vVr2-"nl/(n/2)! (n/2)!

n

~~

22)

(23)

where the asymptotic equivalence follows from Sterling’s approximation. Taking
logarithms and expanding log(1 £+ C) in a power series centered at 0, we obtain
the desired infinite series (17).

In view of (18), we account for N(m,n).

Lemma 12 If m = m(n) < n, then lim,_,. n~™N(m,n) = 0.

Proof.

m—1 m— 1

_ZM(m—k—l,n—m—}—l)(m k‘k+1 Z (m — k)k1
1 =1

opm—Fk—1 S| TR

(24)
since n~ (™= F+D A (m —k —1,n —m +1) < 1. By Gosper’s algorithm[5], (24) =
e"m(m — 1)n="T(m — 1,n), where T'(a,2) = [ °t*~'e~!dt is the incomplete

Gamma function. Let 0 < € < 1, and choose n so large that m/n < e. Using
the asymptotic expansion

(2 — m)k

nk

_ ~ pMm—2,—1 o0 _1\k
T(m—1,n) ~n™ e Zk:o( 1)
valid for m < n [8], it follows that
m( m—1 —2—j P
(24) ( Zk 1 H ) Zk 0 -
|
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