POPULAR DISTANCES IN 3-SPACE
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ABsTRACT. Let m(n) denote the smallest integer m with the property that any set
of n points in Euclidean 3-space has an element such that at most m other elements
are equidistant from it. We have that

en*/3loglogn < m(n) < n3/°8(n),

where ¢ > 0 is a constant and S8(n) is an extremely slowly growing function, related
to the inverse of the Ackermann function.

1. INTRODUCTION

One of Erdés’s favorite problems, raised more than half a century ago [4],[9] was
the following. What is the maximum number, fg(n), of times that the unit distance
can occur among n points in Euclidean d-space? In [1], we asked a more general
question. Given a set P = {p, ..., p,} of n points in R? and positive real numbers
a1, ..., Qn, let m; denote the number of points in P whose distance from p; is «;.
Determine

Fy(n) = maxz ™M,
i=1

where the maximum is taken over all n-element point sets and all possible choices of
the numbers «;. In an extremal configuration, «; must be one of the most “popular”
distances from p;, i.e., a distance which occurs the largest number of times. Clearly,
F4(n) > 2f4(n) for every d and n.

In the planar case, it seems to be hard to determine the asymptotic behavior of
the function Fy(n). It is conjectured that right order of magnitude of both Fy(n)
and fa(n) is O (n1+c/ log log”) , for a suitable constant ¢ > 0. However, for d > 2,
we have asymptotically tight estimates [1], [5], [6]:

F3(n) = n? (% + 0(1)) ,

Fy(n) = n? (1 - ﬁ + 0(1)>

for every d > 4. In case d > 4, the bound for Fy(n) is realized by a well-known
construction of H. Lenz: take |d/2] pairwise orthogonal circles of radius 1/v/2
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through the origin, and place n points on them as evenly distributed as possible.
Setting a; = 1 for 2 = 1, ..., n, we obtain that

mi:n<1—ﬁ+o(1))

for every ¢. That is, from each point the most popular distance is the unit distance,
and it occurs roughly the same number of times.

The construction showing that the bound for F3(n) can be achieved is less sym-
metric. Take [n/2] points, p1, ..., Prn /27, on a line [, and place the remaining |n/2]
points, pry, /2141 ---» Pn, ON a circle C around a point of /, so that the plane of C' is
orthogonal to I. For every ¢ < [n/2], let a; be the distance between p; and C. For
i > [n/2], a; can be arbitrary. Then m; = n (3 4+ o(1)) for every i < [n/2], and
m; < 4 otherwise. In this case, the sum of the number of occurrences of the most
popular distances over all points is as large as possible, but for about half of the
points even the most popular distances occur at most 4 times.

This leads to the following question. What is the largest number m = m(n),
for which there exist points p1, ..., p, in R® and positive reals asq, ..., oy, such that
m; > m for every 7 Equivalently, we can ask:

Problem. What is the smallest integer m = m(n) with the property that any set of
n points in R® has an element such that fewer than m other elements are equidistant
from it?

At first glance, it is not even clear that m(n) = o(n) holds. In a properly scaled
cubic lattice of n points, from each point there are at least cn'/?loglogn other
points at unit distance [5]. Thus, m(n) > cn!/3loglogn for some positive constant
c.

Here we show

Theorem 1. For every ¢ > 0, we have m(n) = o(n3/5+¢).

We present two simple arguments. The first one uses an easy but perhaps inter-
esting generalization of an old theorem of Kévari, Sés, and Turdn [7] to directed
graphs. It gives the somewhat weaker bound m(n) = O(n?/3) (see section 2). For
more extremal problems and results for directed graphs, consult [2].

Our second approach is based on a result of Clarkson et al. [3] on the number
of incidences between points and spheres (section 3).

2. A TURAN-TYPE RESULT FOR DIRECTED GRAPHS

Let G be a directed graph with vertex set V(G) and edge set E(G) C V(G) x
V(G). We would like to establish an upper bound on the number of edges of G,
under the assumption that G does not contain certain so-called forbidden subgraphs.

For any disjoint sets V7, ..., Vi, construct a directed graph R(V1, ..., Vi) = R with
vertex set V(R) = UE_,V; and edge set

k—1
E(R)= | Vi x Vi1,

=1
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Theorem 2. Let G be a directed graph on n vertices, and let s,t be positive integers.
If G contains no (1, s,t)-road as a subgraph, then it has a verter of outdegree at
most cs7tn1_1/s, where cs ¢ > 0 is a constant.

Proof. For s = 1 the statement is true, so we can assume that s > 2. Let v be a
vertex of G with minimum outdegree m, and let M denote the set of endpoints of
the edges of G emanating from v (|[M| = m). Let G, be the subgraph of G with
vertex set V(G,) = V(QG), consisting of all edges of G whose starting points belong
to M.

Let K denote the number of (s,1)-roads in G,,. We clearly have

M K= Y <d+§U)>7

ueV(G)

(2) Y. dF(u) = |E(Gy)| 2 [M|m =m?,
u€V (G)

where d* (u) is the indegree of u in G,. Using the assumption that G' contains no
(1,s,t)-road, we obtain that every s-tuple of M is the set of starting points of at
most ¢t — 1 (s, 1)-roads and possibly one other (s, 1)-road ending at v. Therefore,

(3) K < t(m) < tm®.

Let V, denote set of those vertices u, for which d¥(u) > s. We can assume that
Vo is not empty, otherwise (2) implies that m < (sn)/2, and we are done. Thus,
using (1), (2), and Jensen’s inequality, we obtain

k> Y (") e S arwy = cmled/m,

ueVp ueVy

where Cs > 0 is a constant. A comparison with (3) gives
tm* > Cs| Vol (m*/|Val)*,

so that
m S (t/Cs)l/sH/O|1—1/s S (t/Cs)l/Snl_l/s,

completing the proof.

Return now to the problem described in the Introduction. Let P = {p1,...,pn}
be a set of n points in R3, and let aq, ..., a, be positive reals. Assume that for
every ¢, there are at least m elements of P at distance «; from p;. Construct a
directed graph G on the vertex set V(G) = P by drawing an edge from p; to p; if
their distance is a; (1 <i,5 < n).

It is easy to verify that G' cannot contain a (1, 3, 3)-road R(V, Va, V3), otherwise
all three elements of V3 would have to lie on the intersection of three spheres
centered at the points of V5, which is impossible, because these points are not
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2. INCIDENCES BETWEEN POINTS AND SPHERES

We say that a set of spheres is in general position, if no three of them pass
through the same circle. Combining the Kévari-Sés-Turdn theorem (a weaker form
of Theorem 2) with a clever probabilistic argument, Clarkson et al. [3] established
the following result.

Theorem [3]. The number of incidences between m spheres in general position and
n points in R® cannot exceed

C (m3/4n3/4,6’(m3/n) +m+ n) ,

where C' > 0 is a constant and (3 is an extremely slowly increasing function, related
to the inverse of the Ackermann function.

Proof of Theorem 1. Let P = {p1,...,p,} be a set of n points in R, and let S;
denote a sphere of radius a; around p; (1 < i < n). Suppose that each S; passes
through at least m elements of P. Assume without loss of generality that S,, passes
through p1, ..., pp,- Since no three points of a sphere are collinear, no three spheres
Si,Sj, Sk (1 <4< j<k<m)have a circle in common. In other words, Si, ..., Sm
are in general position.

Hence, we can apply the last Theorem to spheres S, ..., S, and points p1, ..., Pp,
to conclude that the number of incidences between them is at most

C (m3/4n3/4ﬁ(m3/n) +m+ n) .

On the other hand, by our assumption, this number is at least m?, because each
Si; (1 <i < m) is incident to at least m points. Comparing these two bounds, we
obtain m < 10Cn?/53(n), which completes the proof.

The above argument shows that finding more than m non-collinear elements in
P would lead to a better upper bound on m(n).
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