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Abstract
In a seminal paper published in 1946, Erdős initiated the

investigation of the distribution of distances generated by
point sets in metric spaces. In spite of some spectacular par-
tial successes and persistent attacks by generations of mathe-
maticians, most problems raised in Erdős’ paper are still un-
solved. Given a set of n points in Rd, let d1 > d2 > d3 > · · ·
denote the sequence of all distances between pairs of points
in P , listed in decreasing order. We raise some simple ques-
tions related to a famous conjecture of Schur. For instance,
is it true that any two regular (d− 1)-dimensional simplices
of side length d1 induced by P share at least one vertex? We
prove that if P is the vertex set of a convex polygon in R2,
then the maximum number of equilateral triangles of side
length dk induced by P is Θ(k).

1 Introduction

Many of Erdős’ jokes were about “old age and stupidity.” As a young
man, he was already afraid of Alzheimer’s disease and the decline of
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mental capacities. He was less than thirty when he started referring
to himself as an “old man”. To mark the various stages of the pro-
cess, he put more and more letters after his name: P.G.O.M. for Poor
Great Old Man, and then L.D. for Living Dead, A.D. for Archeo-
logical Discovery, another L.D. for Legally Dead when he turned
seventy, and C.D. for Counts Dead, five years later. (The last title
refers to the former rule that the Hungarian Academy of Sciences
could not have more than two hundred members, but people over
seventy five did not count.) Erdős loved to argue that he was two
and a half billion years old, because in his youth the age of the Earth
was known to be two billion years and by the end of his life it was
four and a half billion.

In this sense, the subject of this note is also two and a half bil-
lion years old. It started in 1934, in the year of the ”Night of Long
Knives,” when Hitler was elected President of Germany. Hungary’s
prime minister at that time was Gyula Gömbös, the first head of a
foreign country who paid an official visit to the Nazi leader. In the
same year, Heinz Hopf and his student, Erika Pannwitz, at Friedrich
Wilhelms University (today Humboldt University) in Berlin, posed
the following problem in the problem section of Jahresbericht der
Deutschen Mathematiker-Vereinigung [6]: Take a set P of n points
in the plane and connect two of them by an edge if their distance
is equal to the diameter, i.e., the largest distance determined by
the point set. Prove that the resulting so called diameter graph
D(P ) does not contain any cycle of even length. Correct solutions
were submitted by W. Fenchel, R. Frucht, B. Neumann, L. Rédei,
L. A. Santaló, and some other mathematicians, who became lead-
ing researchers after the war. Paul Erdős may have come across
the September 1934 issue of the Jahresbericht, in which the above
problem appeared. However, 1934 was a particularly busy year for
him. He defended his thesis at Péter Pázmány University (today
Loránd Eötvös University), Budapest. Because of the increasingly
anti-semitic atmosphere in Hungary, in the same year, he accepted a
fellowship arranged by Louis J. Mordell, and moved to Manchester.

Erdős was not only aware of the Hopf–Pannwitz problem, but
he also made an important further observation: The solution easily
implies that the maximum number of edges that the diameter graph
of n points in the plane can have is n. In his classic 1946 paper [3]
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published in the American Mathematical Monthly he generously at-
tributed this statement to Hopf and Pannwitz. Erdős’ paper, along-
side with another important note by him [1] that appeared one year
earlier, were clearly inspired by the Hopf–Pannwitz problem. He
extended the question to the investigation of other graphs defined
on sets of points P in metric spaces (mostly Euclidean spaces), in
which two points of P are connected by an edge if and only if their
distance belongs to a fixed set ∆ of special distances. (In the Hopf-
Pannwitz problem, ∆ is a one-element set consisting of the diameter
of the point set.) The resulting new questions led to many excit-
ing open problems in extremal graph theory, combinatorics, algebra,
additive number theory, and other areas of mathematics. Although
most problems of this type raised by Erdős are still open, there is
little doubt that they have richly contributed to the development of
these subjects.

2 Two generalizations of the

Hopf–Pannwitz–Erdős result

Suppose that, instead of planar point sets, we consider n-element
point sets P in higher-dimensional spaces. As Erdős reported in [3],
Vázsonyi conjectured that if P ⊂ R3, |P | = n > 3, the diameter
graph D(P ) of P has at most 2n − 2 edges. This was proved inde-
pendently by Grünbaum [7], Heppes [8], and Straszewicz [14]. The
bound 2n − 2 is best possible; see Figure 1. In dimensions larger
than 3, the analogous problem turned out to have a different flavor:
Lenz found some simple constructions with a quadratic number of
diameters.

Schur suggested another possible extension of the Hopf–Pannwitz–
Erdős result to higher dimensions (see [13]). Instead of estimating
the number of edges, consider the number of cliques. A k-clique,
that is, a complete subgraph of k vertices in the graph of diameters
D(P ) generated by a set P ⊂ Rd, corresponds to a regular (k − 1)-
dimensional simplex (or, in short, (k − 1)-simplex) of side length
diam(P ). Schur formulated the following conjecture.
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Figure 1: A construction with n points and 2n− 2 diameters in R3.

Conjecture 1 (Schur). Let P be a set of n points in Rd, where
n > d > 1. The number of d-cliques in the graph of diameters of P
is at most n.

This conjecture, if true, is best possible. This can be shown
by a straightforward generalization of Vázsonyi’s example depicted
in Figure 1. Schur, Perles, Martini, and Kupitz [13] proved that
Conjecture 1 is true in 3 dimensions. In other words, any set of
n > 3 points in R3 can generate at most n equilateral triangles of
side length diam(P ).

In [10], we proved Schur’s conjecture in any dimension, under the
extra condition that any two d-cliques of the diameter graph D(P )
share at least d − 2 vertices. We could not exclude the possibility
that this condition is satisfied for every point set P . It follows from a
theorem of Dolnikov [2] that this is the case when d = 3. Moreover,
Dolnikov showed that a graph of diameters in R3 contains no two
vertex disjoint odd cycles. To settle Conjecture 1 for d ≥ 4, we need
to answer the following simple question.

Question 2. Let d > 3, and let S and S ′ be two regular (d − 1)-
simplices of side length 1 in Rd, with the property that the diameter
of S ∪ S ′ is 1. Is it true that S and S ′ must share at least d − 2
vertices?
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In fact, we cannot even decide whether two such simplices must
have at least one vertex in common.

Let us summarize what we know about diameter graphs D(P ) of
finite point sets P ⊂ R3.

1. For any P ′ ⊆ P with |P ′| = n′ ≥ 3, the number of edges of the
subgraph of D(P ) induced by P ′ is at most 2n′−2 (Vázsonyi).

2. Any two odd cycles of D(P ) must share a vertex (Dolnikov).

3. D(P ) contains no K3,3 as a subgraph (Erdős [4]).

4. D(P ) contains at most one copy of K4 (Schur et al. [13]).

It would be interesting to come up with an example of a graph that
satisfies all these properties, but is not a graph of diameters. In
particular, the following question can be asked.

Question 3. Are all bipartite planar graphs diameter graphs in R3?

3 Near-diameters

Instead of estimating the number of times the diameter occurs in a
set of points, we may consider the number of occurrences of other
large distances. Given a set P of n points in Rd, let d1 > d2 > d3 >
· · · denote the sequence of all distances between pairs of points in P ,
listed in decreasing order. According to the Hopf–Pannwitz–Erdős
result, the distance d1 can occur at most n times. In 1987, Veszter-
gombi [16] showed that the second-largest distance, d2, can occur at
most 3

2
n times. In another paper [17], she considered the version

of the problem when the points of P are in convex position, and
she proved that in this case the number of second-largest distances
cannot exceed 4

3
n. Both of these bounds are tight up to additive con-

stants. Some further bounds on the number of large distances (third
and fourth largest distances) in convex polygons were obtained in
[11]. In general, it is known that the number of k-th largest dis-
tances in the plane is at most 2kn [16]. A slightly better bound, kn,
is known for point sets in convex position [17]. It is not clear how
tight these bounds are for large k.
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Less is known about graphs of large distances in 3 dimensions.
We proved in [9] that, for a fixed k, the number of k-th largest
distances among n points in R3 is still linear in n, i.e., at most ckn
for a constant ck.

In the spirit of Schur’s generalization of the Hopf–Pannwitz–
Erdős theorem, we may estimate the number of simplices with the
property that all of their sides are “large.” Schur et al. [13] proved
that the graph of diameters contains at most one such full-dimension-
al simplex, for any finite set of points in Rd (cp. property 4 diameter
graphs at the end of Section 2). We generalized this result to graphs
in which two points are connected by an edge if and only if their
distance is equal to dk, the k-th largest distance determined by the
point set.

Theorem 4 ([9]). For any k ≥ 1 and d ≥ 2, there exists a constant
c(d, k) satisfying the following condition. Any finite set P of points
in Rd can generate at most c(d, k) regular d-simplices of edge length
dk.

The bound on c(d, k) given by our proof is an exponential tower
in k, which is most likely very far from being best possible. The best
known lower bound is only linear in k. For d = 2 and 3, we obtained
much better bounds, polynomial in k.

Theorem 5. 1. Any finite set P of points in R2 can generate at
most O(k8/3) equilateral triangles of edge length dk.

2. Any finite set P of points in R3 can generate at most O(k17/3)
regular tetrahedra of edge length dk.

If the points are in convex position in the plane, we can determine
the correct order of magnitude of the maximum number of large
equilateral triangles.

Theorem 6. The maximum number of equilateral triangles of side
length dk generated by a finite set of points in convex position in the
plane is Θ(k).

It would be interesting to determine the exact value of this max-
imum. In the present note, we establish only Theorem 6.
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4 Proof of Theorem 6

The proof uses two lemmas. The first one is due to Erdős, Lovász,
and Vesztergombi [5].

Lemma 7. If a, b, c, d are four distinct vertices of a convex polygon
listed in clockwise order such that |bc| = |ad| = dk for some k, then
either between a and b or between c and d there are at most 2k − 3
other vertices of the polygon.

leftmost right
rightmost left

Figure 2: Leftmost right and rightmost left edges with respect to a
vertex.

It was proved by Pach and Pinchasi [12] that vertices of a convex
n-gon determine at most b2(n−1)/3c congruent equilateral triangles.
Here we give a slightly generalized version of this result, which can
be obtained by the same proof technique.

Lemma 8. Given a convex n-gon with m marked vertices, the num-
ber of unit equilateral triangles with at least two marked vertices is
at most 2m.

Proof. If xyz is a clockwise-oriented unit triangle spanned by the
polygon, then xy is said to be a left edge with respect to x and a
right edge with respect to y. It is called the rightmost left edge with
respect to x if there is no left edge of a unit triangle that can be
obtained from xy by a clockwise rotation around x through an angle
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smaller than π. The leftmost right edges are defined analogously
(Figure 2).

It is shown in [12] that each edge xy of a unit triangle, which
is left with respect to x and right with respect to y in the given
triangle, is either the rightmost left edge with respect to x or the
leftmost right edge with respect to y.

For each marked vertex, we put a star both on its rightmost left
and on its leftmost right edge. Some edges might be eligible for
getting stars with respect to their both endpoints: in that case, they
will be assigned two stars. In total, we added at most 2m stars. On
the other hand, at least one edge from every unit triangle that has at
least two marked vertices must have a star, namely the edge whose
both endpoints are marked. Any edge can be shared by at most
two triangles. Note that the edges that are shared by two triangles
are both left and right for both of their endpoints. Therefore, they
received two stars, and we can conclude that the number of triangles
is at most the number of stars, that is, at most 2m.

ap

aqar

Figure 3: Illustration for the proof of Theorem 6.

Proof of Theorem 6. Let us start with the upper bound. Denote the
given points by a1, . . . , an, according to the order in which they ap-
pear on the boundary of the convex hull. Let apaqar be an equilateral
triangle of side length dk. Let the vertices ap−2k+2, . . . , ap, . . . , ap+2k−2,
aq−2k+2, . . . , aq, . . . , aq+2k−2, ar−2k+2, . . . , ar, . . . , ar+2k−2 be marked
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(Figure 3). We have at most 12k − 6 marked vertices and, by
Lemma 7, any equilateral triangle of side length dk has at most
one non-marked vertex. Hence, by Lemma 8, we can conclude that
the total number of triangles is at most 24k − 12.

An easy linear lower bound with k triangles is given by the follow-
ing construction: take a unit equilateral triangle abc and consider
k − 1 copies of it, obtained by rotations about a through angles
ε, 2ε, . . . , (k − 1)ε, for a small ε > 0.
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sets, Beiträge zur Algebra und Geometrie 54 (2013), 45–57.
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Acad. Pol. Sci., Cl. III 5 (1957), 39–40.

[15] K. J. Swanepoel: Unit distances and diameters in Euclidean
spaces, Discrete Comput. Geom. 41 (2009), 1–27.

[16] K. Vesztergombi: On large distances in planar sets, Discrete
Math. 67 (1987), 191–198.

[17] K. Vesztergombi: On the distribution of distances in finite sets
in the plane, Discrete Math. 57 (1985), 129–145.

10


