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Abstract

Improving a result of Aichholzer et. al., we show that there exists a constant c > 0 satisfying
the following condition. Any two-colored set of n points in general position in the plane has at least
cn4/3 triples of the same color such that the triangles spanned by them contain no element of the
set in their interiors.

1 Introduction

Let P be a set of points in the plane in general position, that is, assume that if no three elements of P
are on a line. A subset of P is said to be in convex position if it is the vertex set of a convex polygon.
According to a classical result of Erdős and Szekeres [ErSz35], for every integer k > 3 there exists
an n(k) such that any set P of at least n(k) points in general position in the plane has a k-element
subset in convex position. For a long time it was conjectured that if P sufficiently large, then it
must also contain the vertex set of an empty convex k-gon, that is, one that has no element of P in
its interior. This statement can be easily verified for k ≤ 5. In 1983, Horton [Ho83] surprised the
combinatorics community by constructing arbitrarily large point sets with no empty convex heptagon.
It took another quarter of a century to verify the conjecture for hexagons [Ge08, Ni07].

Some colored variants of the Erdős-Szekeres problem were considered by Devillers, Hurtado,
Károlyi, and Seara [DeH03]. In particular, it is easy to see that any 2-colored point set of size
ten in general position in the plane has a monochromatic triple inducing an empty triangle. It follows,
for example, that any set of n points spans at least b(n − 1)/9c monochromatic empty triangles. It
is not easy to see that the number of such triangles must be superlinear in n. This has been proved
recently by Aichholzer, Fabila-Monroy, Flores-Penaloza, Hackl, Huemer, and Urrutia [AiF08], who
established a lower bound of cn5/4. Here we modify some of their ideas to obtain a somewhat better
bound.

Theorem. Any two-colored set of n points in general position in the plane spans at least cn4/3

monochromatic empty triangles, where c > 0 is an absolute constant.

A number of related questions for colored point sets are listed in [BrM05, KaKa03].
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2 Proof of Theorem

It is assumed throughout this note that the point set we consider is in general position. To make this
note self-contained, we include the short proofs of the following two lemmas taken from the paper of
Aichholzer et al. [AiF08].

Order Lemma ([AiF08]). Let P1P2P3 be a triangle containing the points Q1, Q2, . . . , Qm in its
interior. Then the set {P1, P2, P3, Q1, . . ., Qm} can be triangulated so that at least m + d

√
me + 2

triangles have P1, P2, or P3 as one of their vertices.

Proof. Define a partial order ≺ on points Q1, Q2, . . . Qm as follows. We say that Qi ≺ Qj if and only
if triangle QjP1P2 contains Qi. By Dilworth’s theorem, there exists (i) a chain or (ii) an antichain of
size m′ = d

√
me.

Suppose first that there is a chain of length m′. Assume without loss of generality that Q1 ≺ . . . ≺
Qm′ is such a chain. Add all edges QiQi+1, i = 1, . . .m′ − 1 and all edges QiP1, QiP2, i = 1, . . .m′.
Together with edge P1P2, now we have a triangulation of the set {P1, P2, Q1, . . . , Qm′}. Each of the
remaining points Qm′+1, . . . , Qm can be connected to P1 or to P2 by an edge not crossing any of
the previously selected edges. Connect those “visible” from P1 to P1, and the others to P2, and
include the edges P1P3, and P2P3. We have obtained a set of noncrossing edges (a planar graph) such
that the total degree of P1 and P2 is m + m′ + 4. Extend this graph to a triangulation of the set
{P1, P2, P3, Q1, . . . , Qm}. At least m + m′ + 2 triangles have P1 or P2 as one of their vertices, so in
this case we are done.

Suppose now that, for example, Q1, . . . , Qm′ is an antichain of size m′. Then none of the
(
m′

2

)
lines induced by these points intersects the segment P1P2. Thus, all of them must cross both P1P3

and P2P3. Consequently, for any 1 ≤ i < j ≤ m′, either P1P3Qi contains Qj or P1P3Qj contains
Qi. Now we can finish the argument as in the first case, except that the roles of P2 and P3 must be
interchanged. 2

Discrepancy Lemma ([AiF08]). Any set of n blue and n + k red points in general position in the
plane spans at least (n+ k)(k − 2)/3 monochromatic empty triangles.

Proof. Let P be one of the red points. Let P1, . . . , Pn+k−1 = P0 denote the other red points in the
order of visibility from P .

Each angle 〈PiPPi+1〉 is smaller than π, with at most one possible exception, 〈P0PP1〉, say. There-
fore, the interiors of the triangles P1PP1, P2PP3, . . ., Pn+k−2PPn+k−1 are pairwise disjoint. Since
at most n of them can contain a blue point, at least k − 2 of them must be empty. Repeating this
argument for each red point P , we obtain at least (n + k)(k − 2) empty red triangles, each of which
is counted at most three times. 2

Return now to the proof of the Theorem. Given any set S of r(S) red and b(S) blue points, define
the discrepancy of S as

d(S) := |r(S)− b(S)|.

Let S be a two-colored set of n points in general position, and suppose, for simplicity, that n ≥ 1000.
We call a point P ∈ S rich if there are at least 3

√
n empty monochromatic triangles adjacent to P .

The following algorithm proves the Theorem by finding at least n/5 rich points.
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Algorithm Find-Rich-Points(S)

Step 0. If d(S) ≥ 3
√
n/100, then, by the Discrepancy Lemma, we find Ω(n4/3) monochromatic

empty triangles. Assume that d(S) < 3
√
n/100. It follows that b = b(S) > n/2 − 3

√
n/200 and

r = r(S) > n/2− 3
√
n/200. Set i = 1 and S1 = S.

Step i. It follows by induction on i that b(Si) = b(Si−1) − 1, for i > 1, so that we have b = b(Si) >
n/2 − 3

√
n/200 − i, for all i ≥ 1. Assuming that our algorithm stops before finding at least n/5 rich

points, we have i ≤ n/5.

Take the convex hull of Si. Remove all red points from its boundary and take the convex hull of
the remaining set. Remove again all red points from the boundary and continue until we obtain a set
S′ whose convex hull contains only blue points. So far we have not removed any blue point, so that we
have b(S′) = b(Si). If d(S′) ≥ 3

√
n/100, then Stop and observe that we are done by the Discrepancy

Lemma. So we may and will assume that d(S′) < 3
√
n/100. It follows that r = r(S′) ≥ b(S′)−d(S′) >

n/2−3 3
√
n/200− i > n/4. If the convex hull of S′ has at least 3

√
n/50 points, remove them, and denote

the resulting set by S′′. Since d(S′) ≤ 3
√
n/100 and all points that have been removed in the last step

were of the same color (blue), we have d(S′′) ≥ 3
√
n/100. Taking into account that |S′′| ≥ r(S′) > n/4,

we are done by the Discrepancy Lemma, so we can Stop. Therefore, we can assume that there are
m points on the boundary of the convex hull of S′, all of them blue, for some m ≤ 3

√
n/50. Let

P1, P2, . . . , Pm denote these points, in clockwise order. Triangulate the convex hull of S′ by adding
the diagonals P1Pj , for j = 2, . . .m− 2. Let Tj denote the triangle P1Pj+1Pj+2, and let bj and rj be
the number of blue and red points of S′ lying in the interior of Tj (j = 1, . . . ,m− 2).

Suppose that |bj − rj | > 3
√
n/50, for some j. At least one of the regions Tj , T1 ∪ T2 · · · ∪ Tj−1,

and Tj+1 ∪ · · · ∪ Tm−2 contains at least (r(S′) + b(S′) −m)/3 ≥ (2b(S′) + d(S′) −m)/3= (2b(Si) +
d(S′) − m)/3 ≥ n/6 points. If Tj is such a region, then we can apply the Discrepancy Lemma for
the points inside Tj and we are done. If T1 ∪ T2 · · · ∪ Tj−1 contains at least n/6 points, then either
S′ ∩ (T1 ∪ T2 · · · ∪ Tj−1), or S′ ∩ (T1 ∪ T2 · · · ∪ Tj−1 ∪ Tj) has discrepancy at least 3

√
n/100, and again

we are done and we Stop.

Therefore, we can assume that |bj − rj | ≤ 3
√
n/50, for every j = 1, . . . ,m − 2. Since

∑m−2
j=1 bj =

b(S′)−m= b(Si)−m ≥ n/4, there exists a j such that bj ≥ n/(4m) ≥ 50n2/3/4 and, by our assumption,
rj ≤ bj + 3

√
n/50. By the Order Lemma, we can triangulate the blue points in Tj , including the vertices

of Tj , such that at least bj +
√
bj > bj + 7 3

√
n/2 triangles are adjacent to one of the vertices of Tj . At

least 7 3
√
n/2 − 3

√
n/50 > 3 3

√
n of these triangles does not contain a red point, and at least one-third

of these empty triangles shares the same vertex of Tj , denoted by P . Thus, we have found at least
3
√
n empty triangles incident to the same vertex P , which is therefore a Rich Point. If i ≥ n/5, then

Stop. Otherwise, let Si+1 = Si \ {P}, and set i := i+ 1.

Summarizing: Algorithm Find-Rich-Points(S) either stopped at Step i for some i ≤ n/5,
or at Step dn/5e. In the first case, it stopped because we applied the Discrepancy Lemma to find
Ω(n4/3) empty monochromatic triangles. In the second case, we found at least n/5 rich points, and
hence at least n4/3/15 empty monochromatic triangles. This concludes the proof of the Theorem. 2

Note that it is perfectly possible that any two-colored set of n points in general position in the
plane spans at least a quadratic number of monochromatic empty triangles, that is, the lower bound
cn4/3 in the Theorem can be replaced by cn2, for a suitable constant c > 0. Of course, the order of
magnitude of this bound would be best possible.
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