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Abstract

Improving a result of Aichholzer et. al., we show that there exists a constant ¢ > 0 satisfying
the following condition. Any two-colored set of n points in general position in the plane has at least
en*/3 triples of the same color such that the triangles spanned by them contain no element of the
set in their interiors.

1 Introduction

Let P be a set of points in the plane in general position, that is, assume that if no three elements of P
are on a line. A subset of P is said to be in convex position if it is the vertex set of a convex polygon.
According to a classical result of Erdds and Szekeres [ErSz35], for every integer k > 3 there exists
an n(k) such that any set P of at least n(k) points in general position in the plane has a k-element
subset in convex position. For a long time it was conjectured that if P sufficiently large, then it
must also contain the vertex set of an empty convex k-gon, that is, one that has no element of P in
its interior. This statement can be easily verified for & < 5. In 1983, Horton [Ho83] surprised the
combinatorics community by constructing arbitrarily large point sets with no empty convex heptagon.
It took another quarter of a century to verify the conjecture for hezagons [Ge08, Ni07].

Some colored variants of the Erddés-Szekeres problem were considered by Devillers, Hurtado,
Karolyi, and Seara [DeH03]. In particular, it is easy to see that any 2-colored point set of size
ten in general position in the plane has a monochromatic triple inducing an empty triangle. It follows,
for example, that any set of n points spans at least |(n — 1)/9] monochromatic empty triangles. It
is not easy to see that the number of such triangles must be superlinear in n. This has been proved
recently by Aichholzer, Fabila-Monroy, Flores-Penaloza, Hackl, Huemer, and Urrutia [AiF08], who
established a lower bound of en®?. Here we modify some of their ideas to obtain a somewhat better
bound.

Theorem. Any two-colored set of n points in general position in the plane spans at least en?/3
momnochromatic empty triangles, where ¢ > 0 is an absolute constant.

A number of related questions for colored point sets are listed in [BrM05, KaKa03].
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2 Proof of Theorem

It is assumed throughout this note that the point set we consider is in general position. To make this
note self-contained, we include the short proofs of the following two lemmas taken from the paper of
Aichholzer et al. [AiF08].

Order Lemma ([AiF08]). Let PiP,Ps be a triangle containing the points Q1,Q2,...,Qm in its
interior. Then the set {Pi, P2, P3, Q1, ..., Qm} can be triangulated so that at least m + [\/m] + 2
triangles have Py, Pa, or P3 as one of their vertices.

Proof. Define a partial order < on points Q1,Q2, ... Q@ as follows. We say that ); < @); if and only
if triangle Q; Py P> contains @);. By Dilworth’s theorem, there exists (i) a chain or (ii) an antichain of
size m' = [\/m].

Suppose first that there is a chain of length m’. Assume without loss of generality that Q1 < ... <
Q. is such a chain. Add all edges Q;Q;11, ¢ = 1,...m' — 1 and all edges Q; Py, Q; P>, i =1,...m/.
Together with edge P; P, now we have a triangulation of the set {Py, P>, Q1,...,Qu}. Each of the
remaining points Qpy/41,...,Qm can be connected to P; or to P, by an edge not crossing any of
the previously selected edges. Connect those “visible” from P; to P;, and the others to P, and
include the edges Py Ps, and P, P5. We have obtained a set of noncrossing edges (a planar graph) such
that the total degree of P, and P, is m + m’ + 4. Extend this graph to a triangulation of the set
{P1, Py, P3,Q1,...,Qn}. At least m + m’ + 2 triangles have P; or P, as one of their vertices, so in
this case we are done.

Suppose now that, for example, Q1,...,Q,, is an antichain of size m’. Then none of the (";,)
lines induced by these points intersects the segment P P,. Thus, all of them must cross both P;Ps
and P,P3. Consequently, for any 1 < ¢ < j < m/, either P;P3Q); contains @Q); or Py P3Q; contains
Q;. Now we can finish the argument as in the first case, except that the roles of P, and P3 must be

interchanged. O

Discrepancy Lemma ([AiF08]). Any set of n blue and n + k red points in general position in the
plane spans at least (n + k)(k — 2)/3 monochromatic empty triangles.

Proof. Let P be one of the red points. Let Pi,..., P,yr—1 = Py denote the other red points in the
order of visibility from P.

Each angle (P;PP;y1) is smaller than 7, with at most one possible exception, (PyPP;), say. There-
fore, the interiors of the triangles P\PP;, PoPPs, ..., Pyir_oPP, ;1 are pairwise disjoint. Since
at most n of them can contain a blue point, at least k — 2 of them must be empty. Repeating this
argument for each red point P, we obtain at least (n + k)(k — 2) empty red triangles, each of which
is counted at most three times. O

Return now to the proof of the Theorem. Given any set S of r(S) red and b(S) blue points, define
the discrepancy of S as
d(S) = |r(S) = b(S)]-

Let S be a two-colored set of n points in general position, and suppose, for simplicity, that n > 1000.
We call a point P € S rich if there are at least /n empty monochromatic triangles adjacent to P.
The following algorithm proves the Theorem by finding at least n/5 rich points.



ALGORITHM FIND-RICH-POINTS(S)

Step 0. If d(S) > ¢n/100, then, by the Discrepancy Lemma, we find Q(n*/3) monochromatic
empty triangles. Assume that d(S) < /n/100. It follows that b = b(S) > n/2 — /n/200 and
r=r(S) >n/2— ¥n/200. Set i =1 and S; = S.

STEP i. It follows by induction on i that b(S;) = b(S;—1) — 1, for i > 1, so that we have b = b(S;) >
n/2 — n/200 — i, for all ¢ > 1. Assuming that our algorithm stops before finding at least n/5 rich
points, we have i < n/5.

Take the convex hull of S;. Remove all red points from its boundary and take the convex hull of
the remaining set. Remove again all red points from the boundary and continue until we obtain a set
S’ whose convex hull contains only blue points. So far we have not removed any blue point, so that we
have b(S") = b(S;). If d(S") > /n/100, then STOP and observe that we are done by the Discrepancy
Lemma. So we may and will assume that d(S’) < </n/100. It follows that r = r(S") > b(S") — d(S’) >
n/2—3yn/200—1i > n/4. If the convex hull of S has at least /n/50 points, remove them, and denote
the resulting set by S”. Since d(S’) < /n/100 and all points that have been removed in the last step
were of the same color (blue), we have d(S”) > ¢/n/100. Taking into account that |S”| > r(S") > n/4,
we are done by the Discrepancy Lemma, so we can STOP. Therefore, we can assume that there are
m points on the boundary of the convex hull of S/, all of them blue, for some m < ¢/n/50. Let
Py, Py, ..., P, denote these points, in clockwise order. Triangulate the convex hull of S’ by adding
the diagonals Py P}, for j = 2,...m — 2. Let T denote the triangle P, P;1P;j 2, and let b; and r; be
the number of blue and red points of S’ lying in the interior of T} (j = 1,...,m — 2).

Suppose that |b; — ;| > ¥/n/50, for some j. At least one of the regions T, Ty UTs--- U Tj_q,
and Tj1 U -+ UT,,_o contains at least (r(S’) + b(S") —m)/3 > (2b(S") + d(S") — m)/3= (2b(S;) +
d(S") —m)/3 > n/6 points. If T; is such a region, then we can apply the Discrepancy Lemma for
the points inside T; and we are done. If 77 UT5--- UTj_1 contains at least n/6 points, then either
S'N(TUTy---UTj—q),or S"N(T1UT5---UT;—1 UTj) has discrepancy at least {/n/100, and again
we are done and we STOP.

Therefore, we can assume that [b; — r;| < /n/50, for every j = 1,...,m — 2. Since Z;n:_12 bj =
b(S")—m= b(S;)—m > n/4, there exists a j such that b; > n/(4m) > 50n?/3 /4 and, by our assumption,
r; < bj+/n/50. By the Order Lemma, we can triangulate the blue points in T}, including the vertices
of T}, such that at least b; + \/E > b; + 7/n/2 triangles are adjacent to one of the vertices of Tj. At
least 7/n/2 — ¢/n/50 > 3¥n of these triangles does not contain a red point, and at least one-third
of these empty triangles shares the same vertex of 7}, denoted by P. Thus, we have found at least
&/n empty triangles incident to the same vertex P, which is therefore a RicH POINT. If i > n/5, then
Stop. Otherwise, let S;11 = S; \ {P}, and set i := i + 1.

Summarizing: ALGORITHM FIND-RICH-POINTS(S) either stopped at STEP i for some i < n/5,
or at STEP [n/5]. In the first case, it stopped because we applied the Discrepancy Lemma to find
Q(n4/ 3) empty monochromatic triangles. In the second case, we found at least n/5 rich points, and
hence at least n?/3 /15 empty monochromatic triangles. This concludes the proof of the Theorem. O

Note that it is perfectly possible that any two-colored set of n points in general position in the
plane spans at least a quadratic number of monochromatic empty triangles, that is, the lower bound
en/3 in the Theorem can be replaced by en2, for a suitable constant ¢ > 0. Of course, the order of
magnitude of this bound would be best possible.
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