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Abstract

Erdős conjectured in 1946 that every n-point set P in convex position in the plane has a point
that determines at least bn/2c distinct distances to the other points of P . In 2006 Dumitrescu
improved the best known lower bound for this problem, from n/3 to 13n/36−O(1). A crucial
step in his argument is showing that P must determine at most n2(1− 1/12) isosceles triangles.

In this paper we show that Dumitrescu’s bound can be further improved, though our im-
provement is quite small. We show that the number of isosceles triangles determined by P is at
most n2(1− 1/11.981), and we conclude that there exists a point of P that determines at least
( 13
36 + 1

22701 − o(1))n distinct distances.

1 Introduction

We say that a point set P determines a distance d if P has two elements such that their Euclidean
distance is d. Given a positive integer n, what is the maximum number g(n) such that every set of n
points in the plane determines at least g(n) distinct distances? According to a famous conjecture of
Erdős [E46], we have g(n) = Ω( n√

logn
). The number of distinct distances determined by a

√
n×
√
n

piece of the integer lattice is O( n√
logn

), which shows that his conjecture, if true, would be essentially
best possible.

In a recent breakthrough, Guth and Katz [GK11] have come very close to proving Erdős’s
conjecture. They showed that g(n) = Ω( n

logn). This is a substantial improvement on the previous
bound of g(n) ≥ n0.864... by Katz and Tardos [KaT04], which was the last step in a long series of
successive results [Mo52], [Ch84], [ChST92], [Sz93], [SoT01], [Ta03].

In the same paper, Erdős [E46] also made a much stronger conjecture. Let f(n) denote the
maximum number such that every set of n points in the plane has a point from which there are
at least f(n) distinct distances to the other n− 1 points of the set. Clearly, we have f(n) ≤ g(n).
Erdős conjectured that in fact f(n) = Ω( n√

logn
). This conjecture is still wide open, although all the
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above mentioned lower bounds, with the exception of the one due to Guth and Katz, also apply to
f(n). In particular, the best known lower bound of f(n) is still f(n) ≥ n0.864... by Katz and Tardos.

As Erdős suggested, the same question can be studied for point sets with special properties. We
say that n points in the plane are in convex position if they form the vertex set of a convex n-gon. A
set of n points is in general position if no 3 of its elements are collinear. Let fconv(n) (and fgen(n))
denote the largest number such that every set of n points in the plane in convex (resp., in general)
position in the plane has a point from which there are at least these many distinct distances to
the remaining n− 1 points. Since every set in convex position is also in general position, we have
fgen(n) ≤ fconv(n). The vertex set of a regular n-gon shows that

fgen(n) ≤ fconv(n) ≤
⌊n

2

⌋
.

Erdős conjectured that fconv(n) = bn2 c for all n ≥ 2. It is perfectly possible that the same
equality holds for fgen(n). The weaker statement that every set of n points in convex position
determines bn2 c distinct distances was proved by Altman [Al63], [Al72]. Leo Moser [Mo52] proved
that fconv(n) ≥ n

3 , while Szemerédi established essentially the same lower bound for point sets
in general position: By a very simple double-counting argument, he established the inequality
fconv(n) ≥ fgen(n) ≥ n−1

3 ; see [E75], [PaA95].

By combining and improving the arguments of Moser and Szemerédi, Dumitrescu [Du06] estab-
lished the bound

fconv(n) ≥
⌈

13n− 6
36

⌉
.

In the present note, we show that Dumitrescu’s bound can be further improved.

Theorem 1. The minimum number fconv(n) of distinct distances determined by n points in convex
position in the plane satisfies

fconv(n) ≥
(

13
36

+ ε− o(1)
)
n,

for a suitable positive constant ε.

Our argument as presented here yields a little over ε > 1/23000. It is quite possible that this
bound can be slightly improved through tweaks in different places, though we have abstained from
doing so in the interest of simplicity.

As we shall see later, the crucial point in the argument of Szemerédi is estimate in two different
ways the number Z(P ) of isosceles triangles determined by a set P of points. In case P is a set
of points in general position an upper bound of 2

(
n
2

)
for Z(P ) follows easily. The argument of

Dumitrescu in [Du06] established an upper bound of n2(1 − 1/12) for Z(P ), in the case where P
is a set of n points in convex position in the plane, thus enabling him to improve the lower bound
for fconv(n).

In this paper we further improve this upper bound of Dumitrescu for the number of isosceles
triangles determined by n points in convex position in the plane. Since this is an independently
interesting problem, we sate it explicitly:

Problem 2. What is the minimal number Iconv(n) (Igen(n)) such that any set of n points in convex
(general) position in the plane determines at most Iconv(n) (Igen(n)) isosceles triangles? (Here we
count every equilateral triangle three times.)
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To make our paper self-contained, in the next section we briefly sketch and later use the argu-
ments of Moser, Szemerédi, and Dumitrescu. In Section 3, we prove three auxiliary results on the
number of isosceles triangles induced by a point set in convex position. At a crucial point of the
proof, we need to answer a variant of the following question of independent interest, concerning
arithmetic progressions of length 3:

Problem 3. Let x1 < x2 < . . . < xn < y1 < y2 < . . . < yn be a sequence of reals. A pair (xi, yj) is
called “bad” if xi+yj

2 is equal to xk or yk for some k (1 ≤ k ≤ n). What is the maximum number
of bad pairs (xi, yj) over all sequences of length 2n?

In Section 4, we will give a partial answer to a generalization of this question and show how it
yields a modest improvement of Dumitrescu’s result. Section 5 contains some open problems and
concluding remarks.

2 The arguments of Szemerédi, Moser, and Dumitrescu

First, we sketch Szemerédi’s argument to prove the inequality fgen(n) ≥ n−1
3 . Let P be a set of n

points in general position in the plane, and assume that for every element of p ∈ P , the number of
distinct distances to the other n− 1 points is at most k. Let Z(P ) denote the number of isosceles
triangles induced by the elements of P , that is, the number of unordered pairs {(p, a), (p, b)} such
that p, a, b ∈ P and |pa| = |pb|. (Here |pa| stands for the length of segment pa.) Note that, according
to this convention, an equilateral triangle abc is counted three times as an isosceles triangle: When
the role of p is played by a, by b, or by c.

Clearly, we have Z(P ) ≤ 2
(
n
2

)
, because for each pair a, b there exist at most two points p ∈ P

with |pa| = |pb|. This follows from the fact that all such points p must lie on the perpendicular
bisector of ab, and P has no three collinear points. On the other hand, using the convexity of the
function

(
x
2

)
, for every point p ∈ P , the number of pairs {a, b} with |pa| = |pb| is minimized when

the n − 1 points of P \ {p} are distributed among the at most k concentric circles around p as
equally as possible. That is, the number of such pairs {a, b} is at least k

(n−1
k
2

)
. Comparing the two

bounds, we obtain

nk

(n−1
k

2

)
≤ Z(P ) ≤ 2

(
n

2

)
,

which yields that k ≥ n−1
3 . Hence, we have

fgen(n) ≥ n− 1
3

,

as stated.

It is obvious from the above argument that if we manage to improve the upper bound on Z(P ),
then we obtain a better lower bound on the largest number of distinct distances measured from a
point of P .

Lemma 4. Suppose that the number Z(P ) of isosceles triangles determined by an n-element point
set P in the plane satisfies Z(P ) ≤ αn2 + O(n) for some α ≤ 1. Then P has a point from which
there are at least 2−α

3 n−O(1) distinct distances.
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Figure 1: A cap.

Proof. Assume, as above, that for every point p ∈ P , the remaining n − 1 points lie on at most k
circles centered at p. By Szemerédi’s proof, we also know that 2 ≤ n−1

k ≤ 3. Otherwise, we have
k ≥ n/2, and we are done.

This means that for each point p ∈ P , the number of pairs {a, b} with |pa| = |pb| is minimized
when there are precisely k circles around p that pass through at least one element of P , and each of
these circles contains either 2 or 3 points. Since n−1 = (3k−n+1)2+(n−1−2k)3, we can assume
that in the worst case 3k−n+1 circles contain 2 points and n−1−2k circles contain 3 points. Thus,
the number of pairs {a, b} with |pa| = |pb| is at least (3k − n+ 1) + (n− 1− 2k)3 = 2(n− 1)− 3k.
Therefore, Z(P ) ≥ n(2(n−1)−3k). Combining this with the upper bound on Z(P ) ≤ αn2 +O(n),
the lemma follows.

Remark. Taking n − 1 points x1, . . . , xn−1 evenly distributed on say quarter of a circle together
with the center of the circle xn, we get an example of a set P of n points in convex position such
that Z(P ) = 3n2/4 + O(n). Hence the method described in Lemma 4 can yield at best a lower
bound of 5n/12 + O(1) for fconv(n), rather than the conjectured bound. This construction shows
also that Igen(n) ≥ Iconv(n) ≥ 3n2/4 +O(n) in Problem 2.

Dumitrescu [Du06] showed that if P is a set of n points in convex position, then Z(P ) ≤ 11
12n

2.
Plugging this bound into Lemma 4, we obtain that fconv(n) ≥ 13

36n−O(1).

In the present note, we slightly improve on Dumitrescu’s upper bound on Z(P ) for point sets in
convex position, and hence on his lower bound for fconv(n). For this, we first recall the terminology
of Moser [Mo52] and Dumitrescu [Du06].

Definition 5. A set of points Q in convex position is called a cap with endpoints a and b if the
elements of Q can be enumerated in cyclic order, as x1, x2, . . . , xt, such that x1 = a, xt = b and
there is a circle C passing through a and b such that all xi lie in the closed region bounded by ab
and the shorter arc of C delimited by a and b. (If the two arcs of C are of the same length, either
of them will do. See Figure 1.)

It is not hard to see that x1, x2, . . . , xt form a cap if and only if ]x1xixt ≥ π
2 for all 1 < i < t.

Using the convexity of the set of the point set, this is further equivalent to the condition that
]xixjxk ≥ π

2 for every 1 ≤ i < j < k ≤ t. This implies:

1. For every cap x1, x2, . . . , xt, we have

|x1x2| < |x1x3| < . . . < |x1xt|.

(Indeed, since ]x1xixi+1 is the largest angle in the triangle x1xixi+1, we have |x1xi+1| >
|x1xi|.)
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Figure 2: Left: A witness for an edge in a cap (note that the witness does not necessarily belong
to the cap). Right: Witnesses for two edges in a cap sharing a common vertex.

2. Every subsequence of a cap is also a cap.

Moser [Mo52] noticed that the smallest circumscribing circle around a set P in convex position
divides it into at most three caps that meet only at their endpoints. At least one of them has length
t ≥ dn3 e+ 1. Therefore, property 1 above yields that fconv(n) ≥ dn3 e.

Definition 6. Let P be a set of points in convex position. An unordered pair (edge) {a, b} ⊂ P is
called good if the perpendicular bisector of the segment ab passes through at most one point of P .
Otherwise, it is called bad. The pair (edge) {a, b} will be often identified with the segment ab = ba.

Definition 7. Let Q ⊂ P be a cap with endpoints a and b, and let c, d ∈ Q. A point x ∈ P is
called a witness for the edge cd if x lies on the perpendicular bisector of the segment cd, and the
line ab does not separate x from the points of Q.

Since P is in convex position, the witness x for an edge cd, if exists, is uniquely determined.
The witness x for cd must lie between the two points c and d, in the sense that the line cd must
separate x from the points a and b (see Figure 2, left).

The following lemma is a stronger version of a statement from [Du06].

Lemma 8. Let Q ⊂ P be a cap with endpoints a and b. Let c be a point of Q and assume that x
and y from P are witnesses for ac and ab, respectively. Then x lies between a and y, in the sense
that the line through a and y separates x from b. In particular, we have x 6= y. See Figure 2, right.

Proof. Assume without loss of generality that ab is horizontal, a is to the left of b, and Q lies above
the line ab. Assume to the contrary that y lies between a and x, or y = x. We know already that
x lies between a and c. We have |yc| ≥ |ya| = |yb|. Therefore, we have ]ycb < π/2. However, we
know that ]acb < ]ycb, contradicting the fact that ]acb ≥ π/2, as Q is a cap.

Janos says: It is somewhat strange that the cap in the above lemmas is denoted by Q, but in the ←−
next statements by P .

Gabriel says: The best thing is for P to always be the given point set and for Q to always be a ←−
cap. I changed it this way everywhere.

Corollary 9. Let Q be a cap that consists of t points. Then there are at most 1
4 t

2 edges in Q that
have a witness in Q.
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Proof. Denote the points of Q in cyclic order by x1, x2, . . . , xt. By Lemma 8, no two edges of
Q that share a common vertex can have the same witness. Therefore, xi can witness at most
min(i − 1, n − i) edges in Q. Hence, the number of edges in Q with a witness in Q is at most
2(1 + 2 + . . .+ d t2 − 1e) ≤ 1

4 t
2.

Corollary 10. [Du06] Let P be a set of n points in convex position in the plane. Then P has at
least n2

12 good edges.

Proof. The smallest enclosing circle C of P passes through (at most) 3 points a, b, c ∈ P (possibly
not all distinct) such that each of the arcs delimited by them is at most a semi-circle. Thus, a, b,
and c divide P into at most 3 caps.

If a, b, c are distinct, let r, s, and t denote the number of points in these caps, where r+ s+ t =
n + 3. By Corollary 9, the total number of good edges completely contained in one of the caps is
at least

1
4

(r2 + s2 + t2) ≥ 1
4

3
n2

9
=
n2

12
.

If b = c, say, we obtain an even better lower bound.

In order to complete Dumitrescu’s argument, notice that if xy is a good edge in one of the 3
caps, then there is at most one isosceles triangle with base xy. Thus, we have

Z(P ) ≤ 2
(
n

2

)
−#{good edges}.

According to Corollary 10, this implies Z(P ) < 11
12n

2. Plugging this bound into Lemma 4, we
obtain that P determines at least 13

36n − O(1) distinct distances, which is Dumitrescu’s theorem
[Du06].

3 Three lemmas on witnesses

To improve the lower bound fconv(n) ≥ 13
36n, we need a couple of auxiliary results. The first such

statement is a simple consequence of Lemma 8.

Lemma 11. Let Q be a cap of size t with endpoints a and b. Then the total number of edges
adjacent to a and b with no witness in Q is at least t− 1.

Proof. Let x be the witness in Q for the edge ab, if it exists; otherwise add such a point x keeping
Q ∪ {x} in convex position.

By Lemma 8, all witnesses to edges adjacent to b are between b and x, while all witnesses for
edges adjacent to a are between a and x. We know already that a point in Q can be a witness for
at most one edge adjacent to a and at most one edge adjacent to b. We conclude that every point
in Q \ {a, b} may be a witness for at most one edge adjacent to a or to b. As there are 2t− 3 edges
in total that are adjacent to a or to b, there must be at least 2t − 3 − (t − 2) = t − 1 edges in Q
with no witness in Q.

The following geometric lemma, which is of independent interest, will be a crucial element of
our proof.
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Figure 3: The three cases for Lemma 12.

Lemma 12. Let Q = {a, b, c, d, e} be a cap, with the points appearing in that order, such that c is
a witness for ae and d is a witness for be. Then |ab| > |cd|.

Proof. First, we can assume without loss of generality that b lies on the segment ac;1 for otherwise,
we can slide b counterclockwise along the circle centered at d passing through b, until b reaches ac,
and this only decreases |ab| (in fact, |ab| keeps decreasing until b reaches the segment ad).

Next, let o be the midpoint of ae, let C be the circle centered at o passing through a and e,
and let ` be the line passing through d perpendicular to be. Without loss of generality we can slide
d along ` either inwards or outwards, making sure Q is still a cap, so as to maximize |cd|. Then, d
falls in one of these three cases (see Figure 3):

1. d lies on ce.

2. d lies on the line through a and c.

3. d lies on C.

Suppose the first case. Let x = ` ∩ be, and let α = ]ace and β = ]bec. Then, by applying the
law of sines on the triangle bce and considering the right-angled triangle xde, we get |bc|/ sinβ =
|be|/ sinα = 2|de| cosβ/ sinα, so |bc| = |de| sin(2β)/ sinα = |de| sin(2β)/ sin(π − α). But π − α =
2]cea > 2β, which implies that |bc| < |de|, or equivalently |ab| > |cd|.

Now suppose the second case. Then |ab| > |cd| is equivalent to |ac| > |bd|. But |ac| = |ce| and
|bd| = |de|. Furthermore, |ce| > |de| since ]cde ≥ π/2 in the triangle cde, so we are done.

The third case is divided into two subcases, according to whether d lies higher or lower than c
(meaning, whether ]dco is obtuse or acute).

If d lies higher than c, then without loss of generality we can move c down towards o, and move
b counterclockwise along the circle centered at d, until both c and b reach the segment ad. This
only decreases |ab| and increases |cd|, and we fall back into case 2.

Finally, suppose that d lies on C but lower than c. Let b′ be the point along ad satisfying
|b′d| = |bd|; and let c′ be the intersection point of C and the ray −→oc. Note that |ab| ≥ |ab′| and
|cd| ≤ |c′d|. We show algebraically that |ab′| > |c′d|, which proves our claim:

Suppose without loss of generality that o is the origin and C has radius 1. Let d = (x,
√

1− x2)
for some 0 < x < 1. Then |ab′| = |ad| − |b′d| =

√
2 + 2x−

√
2− 2x, while |c′d| =

√
2− 2

√
1− x2,

and a routine algebraic calculation shows that |ab′| > |c′d| for all x > 0.
1Then Q is only “weakly” convex, but this does not present any problem.
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Lemma 13. Let Q = {x1, x2, . . . , x2n} be a cap with the points appearing in that order. Then the
number of edges between the sets {x1, x2, . . . , xn} and {xn+1, xn+2, . . . , x2n} that have a witness in
Q is at most 7

8n
2 +O(n).

Proof. Let G denote the “geometric graph” whose vertices are the points of Q and whose edges
are those edges whose number we wish to bound in the lemma. Consider the set of segments
{xixi+1 | i 6= n, 1 ≤ i ≤ 2n − 1}, and let s1, s2, . . . , s2n−2 denote these segments enumerated in
increasing order of their lengths (i.e., we have |s1| ≤ |s2| ≤ · · · ≤ |s2n−2|). For every 1 ≤ i ≤ 2n−2,
denote by ui and vi the endpoints of si so that ui = xj and vi = xj+1 for some j.

We claim that d(ui) +d(vi) ≤ n+ i for i = 1, 2, . . . , n, where d(v) is the degree of vertex v in G.

Indeed, fix 1 ≤ i ≤ n. Suppose without loss of generality that vi = xj for some j ≤ n. Let
xk be a vertex with k > n such that both uixk and vixk are in G. Let their witnesses be x` and
x`′ , respectively, with `′ > `. Then, by Lemma 12, we have |x`x`+1| ≤ |x`x`′ | < |si|. Therefore,
either ` = n or x`x`+1 = si′ for some i′ < i. Obviously, there are only i − 1 such segments si′ .
Furthermore, by Lemma 8, different edges uixk, uixk′ must have different witnesses. It follows that
there can be at most i vertices among xn+1, . . . , x2n that are connected to both ui and vi in G, so
that d(ui) + d(vi) ≤ n+ i, as claimed.

Adding up over all segments, we obtain

4|G| − 4n = 2
2n∑
i=1

d(xi)− 4n ≤
2n∑
i=1

d(xi)−
(
d(x1) + d(xn) + d(xn+1) + d(x2n)

)
=

2n−2∑
i=1

(d(ui) + d(vi))

≤ (n+ 1) + · · ·+ 2n+ · · ·+ 2n =
7
2
n2 − 7

2
n,

and the lemma follows.

We conjecture that the number of edges in G in Lemma 13 is in fact at most n2/2 + O(n). If
true, this would yield a small improvement in Theorem 1.

Problem 3, mentioned in the Introduction, is a special limit case of Lemma 13, and even for it
we do not have any bound better than 7

8n
2 +O(n).

4 Proof of the main result

Theorem 14. Let P be a set of n points in convex position. Then P has at least αn2 good edges,
where α = 1/11.981.

Proof. Let p1, . . . , pn be the points of P in circular order. In this proof, by the circular distance
between two points pi, pj ∈ P we mean the minimum of (j − i) mod n and (i− j) mod n.

Fix two constants 0 < a, d < 1 to be determined later. We will think of d as much smaller than
a. Perform the following dn steps: Let P1 = P . At step i choose the smallest enclosing circle of
Pi and let xi, yi, zi be the three points of Pi through which this circle passes. (If the circle passes
through only two points, let xi = yi.) Then let Pi+1 = Pi \ {xi, yi, zi}.
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We consider two cases:

Case 1. For some index i, 1 < i ≤ dn, some point among xi, yi, and zi is at circular distance
at least an from each of the three points x1, y1, and z1. Without loss of generality let xi be that
point.

Gabriel says: Rom, alert! I changed it around (switched the roles of 1 and i) becaue I think this ←−
is the correct way. Please check.

Note that Pi is partitioned into three caps in two different ways: The points x1, y1, z1 define
caps Q1, Q2, Q3, while the points xi, yi, zi define caps Q′1, Q′2, Q′3.

The intuition for this case is that, since xi is significantly far from x1, y1, z1, these two partitions
are, in a sense, significantly different.

Applying the argument of Corollary 10 to the caps Q′1, Q′2, Q′3, we find at least (n− 3i)2/12 ≥
(n − 3dn)2/12 edges that are good in Pi and connect points within the same cap. However, not
all these edges are necessarily good in P , since the points in P \ Pi might invalidate some of these
edges.

However, by Lemma 8, no point of P \Pi can invalidate two adjacent edges in the same cap, so
each point of P \ Pi invalidates at most n/2 of these edges. Thus, we are left with at least

(n− 3dn)2/12− 3dn2/2

edges that are good in P and are internal to Q′1, Q′2, or Q′3.

Rom says: In the next paragraph there was an error due to the change Gabriel did. I fixed it but ←−
it may cost us a little in the constant. one has to do the optimization again.

Shira says: I did the optimization again: the parameters have changed a bit but the result stays ←−
the same.

In addition, out of the 2an points of P at circular distance at most an from xi there are at least
2an − 3dn points of Pi. All those points are contained in the same cap Q1, Q2, or Q3. Applying
Lemma 13 to them, we find at least another (a−3d)2n2/8 good edges in P which were not counted
previously, since they straddle two different caps among Q′1, Q′2, Q′3.

Hence, in case 1 we find at least

(n− dn)2/12 +
1
8

(a− 3d)2n2 − 3dn2/2

good edges in P .

Case 2. For every index i between 1 and dn, each of xi, yi, zi is at circular distance at most an
from one of x1, y1, z1 in P .

Gabriel says: As a bonus, we avoid the complication that was here. ←−

In this case the analysis is somewhat different. It follows from Lemma 11 that at each step i
the points xi, yi, and zi together are adjacent to at least n− 3i good edges in Pi. As before, not all
these edges are necessarily good in P . However, by Lemma 8, each vertex in P \ Pi can invalidate
at most one such edge. Hence, we are left with at least n− 6i good edges in P .

Now consider Pdn, and consider its partition into three caps Q1, Q2, Q3 by the original three
points x1, y1, z1. By Corollary 10, there are at least (n− 3dn)2/12 edges that are good in Pdn and
connect two points within the same cap Q1, Q2, or Q3.
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As before, not all these edges are necessarily good in P , but we can bound the number of edges
invalidated by the points xi, yi, zi, i < dn of P \Pi: Each such point is within circular distance an
of x1, y1, or z1, so by Lemma 8, it can invalidate at most an of these edges.

Therefore, in case 2 we find at least

dn∑
i=1

(n− 6i) + (n− 3dn)2/12− 3dan2 = n2/12 + dn2/2− 9
4
d2n2 − 3dan2 −O(n)

good edges in P .

If we choose properly a and d we can guarantee that in all cases we have strictly more than
n2/12 good edges. The values a = 1/8.87 and d = 1/1204.5 are close to the optimal ones, and they
yield at least n2/11.981 good edges.

Plugging in α = 10.981/11.981 into Lemma 4, we finally get

fconv(n) ≥
(

13
36

+
1

22701
− o(1)

)
n,

proving Theorem 1.

5 Concluding remarks

Gabriel says: The special circles business? ←−
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[E87] P. Erdős: Some combinatorial and metric problems in geometry, in: Intuitive Geometry,
Colloq. Math. Soc. János Bolyai 48, North-Holland, Amsterdam, 1987, 167–177.

10
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