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Abstra
tA point set is separated if the minimum distan
e between its elements isone. We 
all two real numbers nearly equal if they di�er by at most one. Weprove that for any dimension d � 2 and any 
 > 0, if P is a separated setof n points in Rd su
h that at least 
n2 pairs in �P2� determine nearly equaldistan
es, then the diameter of P is at least C(d; 
)n2=(d�1) for some 
onstantC(d; 
) > 0. In the 
ase of d = 3, this result 
on�rms a 
onje
ture of Erd}os.The order of magnitude of the above bound 
annot be improved for any d.1 Introdu
tionErd}os asked and partially answered numerous questions on the distribution of dis-tan
es among n points in a Eu
lidean spa
e [E73℄, [PA95℄, [ST01℄, [MPS02℄, [KT04℄,[BMP05℄. Perhaps the best known question of this type is the so-
alled \unit distan
eproblem" he raised in 1946 [E46℄: Given n points in the plane (or, more generally, inRd), at most how many of the �n2� interpoint distan
es 
an 
oin
ide? It is 
onje
turedthat in the plane this maximum is n1+ 
onstlog log n , whi
h is asymptoti
ally sharp, for ex-ample for a pn�pn pie
e of the integer latti
e. The best known upper estimate isonly O(n4=3) [SST84℄, [S97℄. In 3-spa
e, the 
urrently best upper bound is n3=2�(n),where �(n) is an extremely slowly in
reasing fun
tion related to the inverse A
ker-mann fun
tion [CEG+90℄. However, the true order of magnitude of this fun
tion is�J�anos Pa
h has been supported by NSF Grant CCR-00-98246, by a PSC-CUNY Resear
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probably 
loser to n4=3. In higher dimensions, the asymptoti
ally tight answers are(see, e.g., [PA95℄): n2 �12 � 1d� +O(n) if d � 4 is even,n2�12 � 1d� 1� +O(n4=3) if d � 5 is odd.These questions are intimately related to problems 
on
erning in
iden
es betweenpoints and 
urves, surfa
es, et
. (See [AS02℄, [PS04℄.)Erd}os observed that the answer to the unit distan
e problem does not remainthe same if one 
ounts the number of distan
es that are nearly equal, where severaldistan
es are said to be nearly equal if they di�er by at most 1, i.e. they all liein an interval [t; t + 1℄ for some t > 0. To ex
lude trivial examples, we 
onsideronly separated point sets, i.e., point sets in whi
h the minimum distan
e between twopoints is at least 1. Erd}os et al. [EMPS91℄ proved that for any t > 0, d � 2, and forany separated set P of n points (ve
tors) inRd, the number of point pairs fu;vg � Pwith jju� vjj 2 [t; t+ 1℄ is at most T (d; n) = n22 (1� 1d + o(1)), as n tends to in�nity.Here, T (d; n) denotes the number of edges in a balan
ed d-partite 
omplete graph onn verti
es [B78℄, i.e., in a graph whose verti
es are divided into d 
lasses, ea
h havingbnd 
 or dnd e elements, and two verti
es are 
onne
ted by an edge if and only if theybelong to di�erent 
lasses. This is known to be the maximum number of edges thata Kd+1-free graph of n verti
es 
an have.The above lower bound on the number of point pairs fu;vg � P with jju� vjj 2[t; t+1℄ 
an be attained for every t � t(d; n), as shown by the following 
onstru
tion.Let w1; w2; : : : ; wd be the verti
es of a regular (d � 1)-dimensional simplex of edgelength t, lying in the hyperplane xd = 0. At ea
h wi, draw a line perpendi
ular to thehyperplane xd = 0, and on ea
h of these lines pi
k bn=d
 or dn=de distin
t points whosexd-
oordinates are integers between 0 and n=d, so that the total number of points isn (see Figure 1 for d = 3). If t is suÆ
iently large depending on d and n (roughly12d2n2), the distan
e between any pair of points sele
ted on di�erent perpendi
ularlines belongs to the interval [t; t + 1℄.
t

t
t

n
3

n
3

n
3

Figure 1: n points in R3 
an determine 13n2 nearly equal distan
es.The question arises, what is the minimal diameter of a separated set of n points2



in Rd with 
(n2) nearly equal distan
es? In the plane the answer is �(n2), by thePythagorean theorem. The problem be
omes more interesting in higher dimensions.Noti
e that the diameter of the 3-dimensional 
on�guration depi
ted in Figure 1 is
(n2). However, it is easy to �nd a set of n points in R3 with n24 nearly equaldistan
es, whose diameter is O(n): Take two pn2 �pn2 integer grids in two parallelplanes at distan
e n2 from ea
h other (see Figure 2). Erd}os 
onje
tured that thereexists no su
h example with diameter o(n).
n

n n

n

2

2 2
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2

Figure 2: An n-point separated set inR3 whi
h determines 14n2 nearly equal distan
esand has diameter O(n).We prove Erd}os's 
onje
ture in the following more general form:Theorem 1.1. Let d � 2 and 
 > 0 be �xed. Let P be a separated set of n points inRd su
h that at least 
n2 pairs of points in P determine nearly equal distan
es. ThenP has diameter at least C(d; 
)n2=(d�1) for some C(d; 
) > 0.The 
onstru
tion depi
ted on Figure 2 
an be easily generalized to higher dimen-sions, showing that the bound in Theorem 1.1 is tight. Our proof of Theorem 1.1 isbased on Szemer�edi's regularity lemma for dense graphs [KS96℄, and on a Ramsey-type result for dot produ
ts of ve
tors, derived in [APPRS05℄. In Se
tion 2, we redu
ethe problem to the \
omplete bipartite" 
ase. That is, we show that it is suÆ
ient toprove Theorem 1.1 for point sets P that 
an be obtained as the union of two sets Qand R su
h that all distan
es jju� vjj (u 2 Q;v 2 R) are nearly equal. At the endof Se
tion 2, we outline the proof in this spe
ial 
ase. The argument is divided intothree steps, presented in full detail in Se
tions 3, 4, and 5.2 Redu
tion to the 
omplete bipartite 
aseThe following result shows that it is suÆ
ient to establish Theorem 1.1 in the \
om-plete bipartite 
ase."
3



Theorem 2.1. Let 
 > 0; t > 0; and let P be a set of n points in Rd with at least
n2 pairs fu;vg � P , su
h that jju� vjj 2 [t; t + 1℄.Then there exist two subsets Q;R � P su
h that jQj = jRj � 
n and jju� vjj 2[t; t+1℄ for all u 2 Q, v 2 R. (Here 
 := 
(d; 
) is a positive 
onstant depending onlyon d and 
.)Proof. Let G = (V (G); E(G)) be the graph on the vertex set V (G) := P in whi
htwo verti
es u;v 2 V (G) are 
onne
ted by an edge if and only if jju� vjj 2 [t; t+ 1℄.By the assumptions, we have e(G) = jE(G)j � 
n2.For any subsets X; Y � V (G), let e(X; Y ) denote the number of edges of G withone endpoint in X and the other in Y . For any v 2 V (G), let deg(v) stand for thedegree of v in G.In order to use Szemer�edi's regularity lemma in the 
onvenient and eÆ
ient formproposed by Koml�os [KS96℄ (see also [H97℄), we have to introdu
e the notion ofsuper-regularity.De�nition 2.2. Let " > 0 and Æ > 0. Given a graph G = (V;E) and two disjointsubsets A;B � V , we say that the pair fA;Bg is ("; Æ)-super-regular if the followingtwo 
onditions are satis�ed:(i) e(X; Y ) > ÆjXj � jY j for every X � A; Y � B with jXj � "jAj; jY j � "jBj;(ii) deg(a) � ÆjBj for all a 2 A, and deg(b) � ÆjAj for all b 2 B.Lemma 2.3. (Koml�os) There exists a 
onstant "0 su
h that if " � "0, t = (3=") log (1="),and G is a graph with n verti
es and 
n2 edges, then G 
ontains an ("; Æ)-super-regularpair (A;B) with jAj = jBj � (2
)tbn2 
 and Æ � 
.Consider the graph G and set " = minf 14d+3 ; "0g. Using Lemma 2.3, we obtainan ("; Æ)-super-regular pair (A;B) with jAj = jBj � (2
)tbn2 
, Æ � 
, and t =(3=") log (1="). De�ne two maps !1, !2 : A [ B 7! Rd+2 as follows. For all u =(u1; u2; : : : ; ud) 2 A, v = (v1; v2; : : : ; vd) 2 B, let!1(u) = (u1; u2; : : : ; ud; jjujj2 � t2; 1);!2(u) = (u1; u2; : : : ; ud; jjujj2 � (t + 1)2; 1);!1(v) = (�2v1;�2v2; : : : ;�2vd; 1; jjvjj2);!2(v) = (2v1; 2v2; : : : ; 2vd;�1;�jjvjj2);Then, for all u 2 A, v 2 B, the edge fu;vg is in E(G), that is, jju� vjj 2 [t; t+1℄ ifand only if !1(u) � !1(v) � 0 and !2(u) � !2(v) � 0.We need the following lemma of Alon et al. [APPRS05℄ that 
an be establishedusing a 
onsequen
e of the Borsuk{Ulam theorem dis
overed by Yao and Yao [YY85℄.
4
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Figure 3: Finding a 
omplete bipartite subgraph in G.Lemma 2.4. (Alon et al.) Let U and V be �nite sets of ve
tors in Rk. Then thereexist subsets U 0 � U; V 0 � V with jU 0j � 12k+1 jU j, jV 0j � 12k+1 jV j su
h that eitheru � v � 0 holds for all u 2 U 0, v 2 V 0, or u � v < 0 holds for all u 2 U 0, v 2 V 0.Applying this lemma with k = d + 2 to the sets U := !1(A); V := !1(B), weobtain two subsets A0 � A; B0 � B su
h that jA0j � 12d+3 jAj, jB0j � 12d+3 jBj, andeither !1(u) �!1(v) � 0 holds for all u 2 A0, v 2 B0, or !1(u) �!1(v) < 0 holds for allu 2 A0, v 2 B0. Observe that this 
orresponds to jju� vjj � t or jju� vjj < t.Applying the same on
e again to U 0 = !2(A0) and V 0 = !2(B0), we obtain subsetsA00 � A0; B00 � B0 of size jA00j � 12d+3 jA0j; jB00j � 12d+3 jB0j su
h that either !2(u) �!2(v) � 0 holds for all u 2 A00, v 2 B00, or !2(u) � !2(v) < 0 holds for all u 2 A00,v 2 B00. Consequently the pairwise distan
es jju� vjj for u 2 A00, v 2 B00 are eitherall in [0; t), all in [t; t+ 1℄ or all in (t + 1;1).We 
laim that the pairwise distan
es between A00 and B00 must be all in [t; t+ 1℄.If this were not the 
ase, they would be all outside of [t; t + 1℄ and we would havee(A00; B00) = 0. However, by the ("; Æ)-super-regularity of the pair (A;B), we obtaine(A00; B00) > ÆjA00j � jB00j > 0, sin
e " = minf 14d+3 ; "0g and jA00j � 12d+3 jA0j � 14d+3 jAj �"jAj, jB00j � 12d+3 jB0j � 14d+3 jBj � "jBj.Thus, we 
on
lude that jju� vjj 2 [t; t+ 1℄ for all u 2 A00, v 2 B00. Furthermore,both A00 and B00 are of size at least "jAj = "jBj � "(2
)tbn2 
, where " = minf 14d+3 ; "0gand t = (3=") log (1=") = O(d4d). Consequently, the sets Q := A00 and R := B00 meetthe requirements of Theorem 2.1. The 
onstant fa
tor 
(d; 
) is roughly 
O(d4d).It remains to establish Theorem 1.1 for separated point sets that 
an be partitionedinto two parts Q and R of size m su
h that all pairs belonging to Q � R determinenearly equal distan
es. The argument is divided into three steps.1. In the �rst step, des
ribed in Se
tion 3, we sele
t a set T � R of at most 2dpoints, spanning a \fat 
rosspolytope" with near-orthogonal axes. The \fatness"of T is measured by a 
ertain determinant D(T ) (whi
h 
orresponds to the5



volume of the 
rosspolytope assuming it is 
onvex). We show that there is a setT � R with D(T ) = 
(jRj) = 
(m). The existen
e of T relies heavily on theassumption that R is a separated point set.2. In the se
ond step (Se
tion 4), we bound the volume of the lo
us of points whosedistan
e from ea
h vertex of T belongs to the interval [t; t + 1℄. Note that thisregion 
an be obtained as the interse
tion of jT j spheri
al annuli 
entered atthe verti
es of T . We show that this interse
tion has volume O(td�1=D(T )).3. In Se
tion 5, we 
omplete the proof of Theorem 1.1 by observing that Q is
ontained in the region dis
ussed in Se
tion 4, whose volume is O(td�1=D(T )) =O(td�1=m). Sin
e Q is a separated set of size m, the volume of this region mustbe 
(m). This implies t = 
(m2=(d�1)).3 Finding a fat 
rosspolytopeFirst, we 
onsider only one part of the bipartite subgraph, R, and we �nd a smallsubset T � R whi
h spans a suÆ
iently \fat" 
rosspolytope. In this se
tion, we arenot using the 
ondition of nearly equal distan
es, only the fa
t that R is a separatedset. The following is our measure of \fatness".De�nition 3.1. Given a set T = fp1;q1; : : : ;pr;qrg, 
onsisting of r pairs of points,let D(T ) = [q1 � p1; : : : ;qr � pr; er+1; : : : ; ed℄where er+1; : : : ; ed are mutually orthogonal and also orthogonal to q1�p1; : : : ;qr�pr.For T = ;, we set D(T ) = 1.Note that 1r!D(T ) is the r-dimensional volume of the 
onvex hull of T , providedthat the points fp1;q1; : : : ;pr;qrg are in a 
onvex position. However, in the sequelthis fa
t will not be used.Now we 
an formalize the �rst step of the proof outlined at the end of the lastse
tion. First, we need an elementary lemma bounding the size of a separated set ina given volume.Lemma 3.2. Let X � Rd be a separated set of points, and let B1=2(x) denote a ballof radius 1=2 
entered at x. If B1=2(x) � Z for every x 2 X, thenjXj < dd=2 V ol(Z):Proof. The balls B1=2(x) are disjoint for all x 2 X. Their union is 
ontained in Z,therefore V ol(Z) �Xx2X V ol(B1=2(x)) = �d=22d�(1 + d=2) jXj > 1dd=2 jXj:6



The main result of this se
tion is the following.Lemma 3.3. Let R � Rd be a separated set of m points, of diameter �. Let Æ > 1and � = 1=(kpd) for some k 2 Z+. Then there is an orthonormal basis fe1; : : : ; edgand points fp1;q1; : : : ;pr;qrg = T � R (for some 0 � r � d; T possibly empty) su
hthat1. For all k � r we have qk � pk = hkek +Pk�1j=1 �jkej, where hk � Æ; j�jkj � 1.2. D(T ) � � �d(Æ+3)�dm.3. The diameter of T is at most ��.Proof. First, we \redu
e" the diameter of R, whi
h must be 
ontained in a hyper
ubeH of side length �. We partition H into sub
ubes of diameter ��. This 
an bea

omplished, for example, by 
hoosing a = pd=� = kd and subdividingH uniformlyinto ad sub
ubes of side length �=a = ��=pd. (Note that we are using very roughestimates; we make no attempt to optimize multipli
ative fa
tors depending only ond.) By the pigeonhole prin
iple, there is a subset R1 � R su
h that1. jR1j = n1 � m=ad,2. diam(R1) � ��.Let fp1;q1g be a pair of points at maximal distan
e in R1 and let h1 = jjq1 � p1jj.If h1 < Æ then we stop, set T = ; and 
hoose an arbitrary orthonormal basisfe1; : : : edg. In this 
ase, R1 is 
ontained in a hyper
ube of side length Æ, whi
hmeans (by Lemma 3.2) that n1 < dd=2(Æ + 1)d and m � adn1 < (d(Æ + 1)=�)d, so thestatement of the lemma is true.Otherwise, let e1 = (q1 � p1)=h1. Note that for any point x 2 R1, we havex � e1 2 [p1 � e1;q1 � e1℄, whi
h is an interval of size h1. We assume, for simpli
ity,that h1 is an integer, and subdivide the interval [p1 � e1;q1 � e1℄ into h1 unit intervals.By the pigeonhole prin
iple, there is a subset R2 � R1 su
h that1. n2 = jR2j � n1=h1, and2. there exists b1 su
h that for all x 2 R2 we have x � e1 2 [b1; b1 + 1℄.We 
ontinue this pro
edure, restri
ting our attention to the subspa
e orthogonalto the previously 
onstru
ted pairs of points. For k > 1, assume that we have
onstru
ted ve
tors e1; : : : ; ek�1 and subsets R1; : : : ; Rk. Denote by Sk�1 the subspa
egenerated by fe1; : : : ; ek�1g and by S?k�1 its orthogonal 
omplement. Assume thatthe diameter of Rk proje
ted on S?k�1 is hk � Æ. Namely, there is a unit ve
tor ekorthogonal to e1; : : : ; ek�1, and there are extreme points pk;qk 2 Rk su
h thatqk � pk = hkek + k�1Xj=1 �jkej (1)7
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Figure 4: The �rst two steps of 
onstru
ting the fat polytope (proje
tion onto S2).R3 will be the set of points 
onsidered in the next stage.for some j�jkj � 1. In addition, for every x 2 Rk, we have x � ek 2 [pk � ek;qk � ek℄.Again, there must be a subset Rk+1 � Rk su
h that1. nk+1 = jRk+1j � nk=hk, and2. there exists bk su
h that for all x 2 Rk+1 we have x � ek 2 [bk; bk + 1℄.Iterate this pro
edure as long as hk � Æ. Let r be the minimum index su
h thathr+1 < Æ. If h1; h2; : : : ; hd � Æ, we set hd+1 = 0 and r = d. If r < d, 
hoose d � radditional unit ve
tors so that we have an orthonormal basis fe1; e2; : : : ; edg.We set T = fp1;q1; : : : ;pr;qrg. It remains to estimate the determinant D(T ).Note that due to (1), we haveD(T ) = [q1 � p1; : : : ;qr � pr; er+1; : : : ; ed℄ = h1h2 : : : hr: (2)Sin
e hr+1 < Æ, Rr+1 must be 
ontained in a hyper
ube of side length Æ and volume(Æ+ 1)d. By Lemma 3.2, we obtain nr+1 = jRr+1j < dd=2(Æ+ 1)d. On the other hand,we have nr+1 � nrhr � nr�1hr�1hr � : : : � n1h1h2 : : : hr � madh1 : : : hr :We assumed that ea
h hk is an integer; in general, we should 
onsider dhke andpartition ea
h interval [bk; bk+1℄ into dhke � hk(1+ 1=Æ) subintervals. This does notmake any signi�
ant di�eren
e; in general, we have nr+1 � m=(ad(1+ 1=Æ)dh1 : : : hr).Finally using (2), we obtainD(T ) = h1h2 : : : hr � maddd=2(1 + 1=Æ)d(Æ + 1)d � � �d(Æ + 3)�dm: (3)8



4 Interse
ting the annuliIn the se
ond step of the proof outlined at the end of Se
tion 2, we use the 
rosspoly-tope T 
onstru
ted in Se
tion 3 to restri
t the region of possible lo
ations for thepoints in Q. These points must be at distan
e between t and t+ 1 from ea
h vertexof T ; this de�nes an annulus 
ontaining Q, for ea
h vertex of T . In fa
t, we 
onsideran interval of distan
es [t � 12 ; t + 32 ℄, in order to 
ontain not only Q but also a ballof radius 1=2 around ea
h point in Q. First, we analyze the interse
tion of two su
hannuli.Lemma 4.1. Let jjp� qjj = h. De�ne an annulusAn(y) = �x 2 Rd : jjx� yjj 2 �t� 12 ; t + 32�� :Then the interse
tion of An(p)\An(q) is 
ontained in a \slab" of thi
kness (4t+2)=hde�ned byL(p;q) = �x 2 Rd : �x� p+ q2 � � (q� p) 2 [�2t� 1; 2t+ 1℄� :Proof. Assume jjx� pjj; jjx� qjj 2 [t� 12 ; t+ 32 ℄. We have�x� p+q2 � � (q� p) = 12 jjx� pjj2 � 12 jjx� qjj2� 12 �t+ 32�2 � 12 �t� 12�2 = 2t + 1:Similarly, �x� p+q2 � � (q� p) � �2t� 1.With the help of this lemma, we are now able to bound the interse
tion of theannuli 
entered at ea
h point of T .Lemma 4.2. Suppose that T = fp1;q1; : : : ;pr;qrg is a set of points as guaranteedby Lemma 3.3, for � = 2(t+ 1), � = 1=(16pd), Æ = maxf2d; 16pdg and t � 3. Forany y 2 T , de�ne the annulus An(y) 
entered at y as in Lemma 4.1. Then we haveV ol r\i=1(An(pi) \ An(qi))! � 100(4t+ 2)d�1D(T ) :Proof. Instead of dire
tly analyzing the interse
tion of the above annuli, we applyLemma 4.1. Consider the regionR = L(p1;q1) \ L(p2;q2) \ : : : \ L(pr;qr):By Lemma 4.1,R = �x 2 Rd : �x� pi + qi2 � � (qi � pi) 2 [�2t� 1; 2t+ 1℄ for all i = 1; : : : ; r� :9
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Figure 5: The interse
tion prism R = L(p1;q1) \ L(p2;q2) (proje
tion onto S2,r = 2). The prism extends inde�nitely in the dimensions orthogonal to S2.Sin
e the ve
tors q1�p1; : : : ;qr�pr are in the subspa
e Sr generated by fe1; : : : ; erg,we 
an regard R as a prism with an r-dimensional base Rr � Sr, extending inde�-nitely in the orthogonal subspa
e S?r generated by fer+1; : : : ; edg.Next, we 
al
ulate the r-dimensional volume of the base Rr. This is the same asthe volume of R 
on�ned to a unit hyper
ube in S?r :�R = fx 2 Rd : �x� pi + qi2 � � (qi � pi) 2 [�2t� 1; 2t+ 1℄ for all i = 1; 2; : : : ; rand x � ei 2 [0; 1℄ for all i = r + 1; : : : ; dg:�R is a set that maps to a hyper
ube of volume (4t+ 2)r via an aÆne transformationwhose Ja
obian is D(T ). ThereforeV olr(Rr) = V ol( �R) = (4t+ 2)r=D(T ): (4)Finally, we interse
t R on
e again with an annulus 
entered at a point of T , forexample, with An(p1). In order to bound the volume of R \ An(p1), we need toargue that R is lo
ated relatively 
lose to p1. For any point x 2 R and for anyk = 1; 2; : : : ; r, we havej(x� p1) � (qk � pk)j (5)� �����x� pk + qk2 � � (qk � pk)����+ �����pk + qk2 � p1� � (qk � pk)���� (6)� (2t+ 1) + ��������pk + qk2 � p1��������hk � 2(t+ 1)(1 + �hk); (7)using the de�nition of R and the fa
t that the diameter of T is bounded by �� =10



2�(t+ 1). We 
laim that for any k � rj(x� p1) � ekj � 4(t+ 1)� 1hk + �� (8)holds. Consider the index k maximizing j(x� p1) � ekj, and assume on the 
ontrarythat j(x� p1) � ekj > 4(t+1)(1=hk+�). Re
all (1). In the basis fe1; : : : edg, we 
anwrite qk � pk = hkek +Pj<k �jkej, where hk � Æ and j�jkj � 1. We obtainj(x� p1) � (qk � pk)j = j(x� p1) � (hkek + k�1Xj=1 �jkej)j� jhk(x� p1) � ekj � k�1Xj=1 j(x� p1) � ejj � (hk � (k � 1)) j(x� p1) � ekj;using the maximality of j(x � p1) � ekj. Finally, taking into a

ount that hk � Æ �2(k � 1), we havej(x� p1) � (qk � pk)j > hk2 j(x� p1) � ekj > 2(t+ 1)(1 + �hk)whi
h 
ontradi
ts (5)-(7). This proves (8). We assume hk � Æ � 16pd and we 
hoose� = 1=(16pd), whi
h implies thatj(x� p1) � ekj � t+ 12pd for all x 2 R and for all k � r: (9)Without loss of generality, assume that the base Rr is translated along the prism Rso that its r-dimensional aÆne hull 
ontains p1. Then every point x 2 Rr satis�es(x� p1) =Prj=1 ((x� p1) � ej)ej, andjjx� p1jj2 = rXj=1 ((x� p1) � ej)2 � r(t+ 1)24d � (t+ 1)24 :Thus, every point of Rr is at distan
e at most (t+ 1)=2 from p1.Now we are ready to estimate the volume ofR\An(p1). WriteR = Sx2Rr (x+ S?r ),where (x+ S?r ) denotes an aÆne subspa
e through x, orthogonal to Sr. Noti
e thatAn(p1)\ (x+S?r ) is a (d�r)-dimensional annulus, or the region between (d�r�1)-dimensional spheres of radii r1 =p(t� 1=2)2 � �2 and r2 =p(t+ 3=2)2 � �2, where� = jjx� p1jj � (t+1)=2. Let S(d�r�1) denote a (d� r� 1)-dimensional unit sphere.We getV old�r(An(p1) \ (x + S?r )) = Z r2r1 zd�r�1V old�r�1(S(d�r�1))dz� (r2 � r1)rd�r�12 V old�r�1(S(d�r�1)):11



We have � � (t+ 1)=2 andr2 � r1 �p(t+ 3=2)2 � (t + 1)2=4�p(t� 1=2)2 � (t + 1)2=4;whi
h 
an be veri�ed to be bounded from above by 3 for t � 3. The volume ofS(d�r�1) is bounded by 33 in any dimension. We obtain the volume of R \ An(p1)by integrating over all x 2 Rr:V ol(R \ An(p1)) = ZRr V old�r(An(p1) \ (x+ S?r ))dx< 100 ZRr rd�r�12 dx � 100(t+ 3=2)d�r�1 (4t+ 2)rD(T ) � 100(4t+ 2)d�1D(T ) ;using the volume of Rr from (4).5 Proof of Theorem 1.1 and 
on
luding remarksNow we 
an 
omplete the proof of Theorem 1.1 in the 
omplete bipartite 
ase.Theorem 5.1. Let Q [R � Rd be a separated set of points su
h that jQj = jRj = mand all distan
es between x 2 Q and y 2 R are between t and t + 1. Then there is a
onstant Cd > 0 su
h that t > (Cd � o(1)) m2=(d�1):Proof. We 
an assume that t � 3. (For t < 3, there is only a 
onstant number ofpoints in Q that 
an �t within distan
e t + 1 from any y 2 R.) Note also that thediameter of R is at most � = 2(t+1), due to the 
ondition of nearly equal distan
esbetween Q and R. Then the balls of radius 1=2 
entered at ea
h point of Q aredisjoint and, by Lemma 4.2, must be 
ontained in a region of volume V � 100(4t +2)d�1=D(T ). Lemma 3.3 with � = 1=(16pd) implies that D(T ) � m=(16d3=2(Æ+3))d.By Lemma 3.2, we obtainm = jQj < dd=2 � 100(4t+ 2)d�1 (16d3=2(Æ + 3))dm ;(4t+ 2)d�1 > m2100(16d2(Æ + 3))d ;where Æ = maxf2d; 16pdg. Asymptoti
ally (for d �xed and m!1), we havet > (Cd � o(1)) m2=(d�1):For large d, the multipli
ative 
onstant Cd is roughly 1=(128d3).12



Together with Theorem 2.1, this proves the main result, Theorem 1.1.Sin
e Theorem 2.1 provides only m � 
(d; 
)n where 
(d; 
) � 
O(d4d), the loss offa
tor O(d3) in Theorem 5.1 is insigni�
ant. The 
onstant fa
tor that we obtain forTheorem 1.1 is C(
; d) � 
O(4d), i.e. doubly exponentially small in d. We did not tryto optimize this 
onstant.We 
ould have used Szemer�edi's original regularity lemma in pla
e of Lemma 2.3.However, this would have given a mu
h smaller regular pair (A;B) of density roughly
: its size would have been only about n=tower(1=
) (a tower fun
tion of 1=
). Itwas shown in [APPRS05℄ that the 12k+1 -fa
tor in Lemma 2.4 
annot be substantiallyimproved.In [APPRS05℄, Lemma 2.4 was used to establish the existen
e of a positive 
on-stant � su
h that every family F of n semi-algebrai
 sets inRd of 
onstant des
ription
omplexity has two subfamilies F1;F2 � F , ea
h 
ontaining at least �n members,with the property that every member of F1 interse
ts all members of F2 or no memberof F1 interse
ts any member of F2. For other geometri
 
onsequen
es of Lemma 2.4,
onsult [APPRS05℄. We believe that Lemma 2.4, in 
ombination with other ideas,su
h as the regularity lemma, may be a useful tool for various other problems indis
rete geometry and Ramsey theory.Finally, we mention a related open problem of Erd}os. Let P be a set of n pointsin Rd. We 
all P admissible if the unit distan
e is the minimum distan
e determinedby P and any two di�erent distan
es determined by P di�er by at least 1. Erd}osasked for the minimum diameter of an n-element admissible set in Rd. For large n,it is known that the minimum is at least 
d � n1=(d�1). On the other hand, there existadmissible sets with diameter at most Cd � n2=(d�1) [B90℄.Referen
es[APPRS05℄ N. Alon, J. Pa
h, R. Pin
hasi, R. Radoi�
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