
DEGENERATE CROSSING NUMBERSJ�anos Pa
h� and G�eza T�othyR�enyi Institute, Hungarian A
ademy of S
ien
esAbstra
tLet G be a graph with n verti
es and e � 4n edges, drawn in the plane insu
h a way that if two or more edges (ar
s) share an interior point p, then theymust properly 
ross one another at p. It is shown that the number of 
rossingpoints, 
ounted without multipli
ity, is at least 
onstant times e and that theorder of magnitude of this bound 
annot be improved. If, in addition, two edgesare allowed to 
ross only at most on
e, then the number of 
rossing points mustex
eed 
onstant times (e=n)4.1 Introdu
tionLet S be a 
ompa
t surfa
e with no boundary. Given a graph G with no loops ormultiple edges, the 
rossing number of G on S, denoted by 
rS(G), is the minimumnumber of edge 
rossings over all proper drawings of G on S. If S is the sphere (orplane) then we simply write 
r(G). A drawing is proper if the verti
es and edges of Gare represented by points and simple Jordan-ar
s in S su
h that no ar
 representingan edge passes through a point representing a vertex other than its endpoints. Herewe 
ount a k-fold 
rossing �k2� times (or, equivalently, no three edges 
an pass throughthe same point). We also assume that between the ar
s no tangen
ies are allowed.See [8℄ for a survey.G. Rote, M. Sharir, and others asked what happens if multiple 
rossings are
ounted only on
e (equivalently, if several edges are allowed to pass through the samepoint)? To what extent does this modi�
ation e�e
t the notion of 
rossing number?Let 
r�(G) denote the degenerate 
rossing number of G, that is, the minimumnumber of 
rossing points over all drawings of G, where k-fold 
rossings are alsoallowed. Of 
ourse, we have 
r�(G) � 
r(G);and the two 
rossing numbers are not ne
essarily equal. For example, in the planeKleitman [2℄ proved that the 
rossing number of the 
omplete bipartite graph K5;5�Supported by NSF grant CCR-00-98246 and grants from NSA, PSC-CUNY, Hungarian Resear
hFoundation, and BSF.ySupported by OTKA-T-038397 and OTKA-T-046246.1



with �ve verti
es in its 
lasses is 16. On the other hand, the degenerate 
rossingnumber of K5;5 in the plane is at most 15. Another example is depi
ted in Figure 1.

Figure 1: 
r(G) = 2;
r�(G) = 1.Let n = n(G) and e = e(G) denote the number of verti
es and the number of edgesof a graph G. Ajtai, Chv�atal, Newborn, Szemer�edi [1℄ and, independently, Leighton[3℄ proved that 
r(G) � 164 e3(G)n2(G)for every graph G with e(G) � 4n(G). This statement, whi
h has many interest-ing appli
ations in 
ombinatorial geometry, easily generalizes to 
rossing numbers ofgraphs drawn on any �xed surfa
e S (see [6℄).In the present note we investigate whether the above inequality remains true forthe degenerate 
rossing number of G. First, we show that the answer is \no" if wepermit drawings in whi
h two edges may 
ross an arbitrary number of times.Theorem 1. Any graph with n verti
es and e edges has a proper drawing in the planewith fewer than e 
rossings, where ea
h 
rossing point that belongs to the interior ofseveral edges is 
ounted only on
e. The order of magnitude of this bound 
annot beimproved if e � 4n.Therefore, in Se
tion 3 we restri
t our attention to so-
alled simple drawings, i.e.,to proper drawings in whi
h two edges are allowed to 
ross at most on
e. Fromnow on, with a slight abuse of notation, 
r�(G) will stand for the minimum numberof 
rossings over all simple drawings. We prove that in this sense the degenerate
rossing number of very \sparse" graphs and very \dense" graphs ex
eed 
(e3=n2).More pre
isely, we have 2



Theorem 2. There exists a 
onstant 
� > 0 su
h that the degenerate 
rossing numberof G satis�es 
r�(G) � 
� e4(G)n4(G) ;for any graph G with e(G) � 4n(G).If it 
auses no 
onfusion, in notation and terminology we make no distin
tionbetween the graph G and its drawing, and between a vertex (edge) and the point(ar
) representing it.2 Proper drawings with few 
rossingsIn this se
tion, we prove Theorem 1.Let � = (�(1); �(2); : : : ; �(e)) be a permutation of the �rst e positive integers,and let 1 � i < j � e. Reversing the order of the elements between �(i) and �(j), weobtain another permutation�0 = (�(1); �(2); : : : ; �(i� 1); �(j); �(j � 1); : : : ; �(i); �(j + 1); �(j + 2); : : : ; �(e)) :Su
h an operation is 
alled a swap.Lemma 2.1. Any permutation of e numbers 
an be obtained from any other permu-tation by performing at most e� 1 swaps.Proof. The proof is by indu
tion on e. For e = 1; the statement is trivial. Sup-pose that the lemma has been veri�ed for permutations of fewer than e numbers.Let � = (�(1); �(2); : : : ; �(e)) and � = (�(1); �(2); : : : ; �(e)) be two permutationsof size e. For some j, we have �(j) = �(e). To obtain � from �, we �rst swapthe interval (�(j); : : : ; �(e)) of �. The last element of the resulting permutation(�(1); �(2); : : : ; �(j � 1); �(e); �(e � 1); : : : ; �(j)) is now the same as the last elementof the target permutation �. Pro
eeding by indu
tion, we 
an attain using at moste� 2 further swaps that all elements 
oin
ide. 2Proof of Theorem 1. Let G be a graph with e edges and n verti
es, v1; v2; : : : ; vn.Arbitrarily orient every edge of G. For 1 � i � n, pla
e vi at the point (0; i) on they-axis. Ea
h edge will be drawn as a 
ontinuous ar
 running 
lose to a huge 
ir
le
entered at a faraway point of the positive y-axis, so that its initial and �nal portionsare almost horizontal segments, oriented from left to right, that belong to the half-planes x � 0 and x � 0, respe
tively. (See Figure 2.) More pre
isely, for ea
h edge��!vivj , draw a short almost horizontal initial segment from vi pointing to the right anda short almost horizontal �nal segment pointing to vj from the left. Suppose thatall these segments have di�erent slopes. From bottom to top, enumerate the initialsegments by 1; 2; : : : ; e, and assign the same numbers to the �nal segments of the
orresponding edges, lying in the negative half-plane x � 0. The indi
es of these �nal3



segments (from bottom to top) form a permutation � = (�(1); �(2); : : : ; �(e)). Wehave to 
onne
t the right endpoint of ea
h initial segment to the left endpoint of the�nal segment denoted by the same number. These 
onne
ting ar
s will run parallelto one another, roughly along huge 
on
entri
 
ir
les, ex
ept that at 
ertain pointsseveral ar
s will 
ross.By Lemma 2.1, � 
an be obtained from 1; 2; : : : ; e by a sequen
e of at most e� 1swaps. We 
an \realize" ea
h swap as a 
rossing of the 
orresponding ar
s at a singlepoint. The parti
ipating ar
s leave the 
rossing in reverse order. Thus, introdu
ing atmost e� 1 
rossings, we 
an a
hieve that the order of the 
onne
ting ar
s is identi
alto the order in whi
h their �nal segments must rea
h the y-axis (from the left).It follows from Lemma 2.2 (see below) that any proper drawing of G has at leaste3 � n+ 2 
rossings. 2

Figure 2: 
r�(G) � e� 1.We prove the tightness of Theorem 1 in a slightly more general setting. Let S bea 
ompa
t surfa
e S with no boundary, whose Euler 
hara
teristi
 is �. That is, wehave �(S) = ( 2� 2g if S is orientable of genus g;2� g if S is nonorientable of genus g.Given a 
onne
ted graph G with no loops or multiple edges, let 
rS(G) stand forthe minimum number of 
rossing points over all proper drawings of G on S. Taking4



the minimum over all simple drawings (that is, allowing two edges to 
ross only atmost on
e), we obtain the degenerate 
rossing number of G on S, denoted by 
r�S(G).Clearly, we have 
rS(G) � 
r�S(G) for any G.Lemma 2.2. Let G be a graph with n(G) verti
es and e(G) edges, and let S be asurfa
e with Euler 
hara
teristi
 �. Then we have
r�S(G) � 
rS(G) � e(G)3 � n(G) + �:Proof. Fix an optimal proper drawing of G on S, i.e., a drawing for whi
h the numberof 
rossings is 
rS(G). Let p be a 
rossing determined by k edges e1; e2; : : : ; ek.Remove from S a small re
tangular pie
e ABCD su
h that ea
h ei interse
ts itsboundary in two points Ai 2 AB and Ci 2 CD and the 
ounter
lo
kwise order ofthese points is A1; A2; : : : ; Ak; C1; C2; : : : ; Ck. Assume that no further edges of G meetthe re
tangle ABCD. Modify S by adding a 
ross
ap at ABCD, i.e., by identifyingAiand Ci for every i (and identifying all other \diametri
ally opposite" pairs of points ofthe boundary of ABCD). In this way, we redu
e the number of 
rossings by one andwe obtain a drawing ofG on a surfa
e whose Euler 
hara
teristi
 is �(S)�1. Repeatingthe same pro
edure at ea
h 
rossing, �nally we obtain a 
rossing-free drawing of Gon a (nonorientable) surfa
e S0 with Euler 
hara
teristi
 �(S) � 
rS(G). Let f(G)denote the number of fa
es in this drawing (embedding). The number of fa
es or 
ellsin this embedding is denoted by f(G).A

ording to Poin
ar�e's formula, a generalization of Euler's polyhedral formula,we have n(G)� e(G) + f(G) � �(S0) = �(S)� 
rS(G):This inequality be
omes an equation, if the embedding is 
ellular, that is, if theboundary of ea
h fa
e is 
onne
ted. For details, see [4℄. Taking into a

ount that3f(G) � 2e(G), we obtain
rS(G) � e(G)3 � n(G) + �(S);as required. 23 Simple drawings|Proof of Theorem 2Let 
r�(G) stand for the minimum number of 
rossing points over all simple drawingsof G in the plane.Lemma 3.1. Let G be a graph with n verti
es and e edges, and suppose thatthe 
rossing number of G satis�es 
r(G) > 103e(G)n(G). Then for the degenerate5




rossing number of G we have 
r�(G) � 
r3(G)(40e)4 :Proof. Consider a simple drawing of G with 
r�(G) 
rossing points. Let M :=402e2=
r(G).For any 
rossing (point) p, letm(p) denote themultipli
ity of p, that is, the numberof edges passing through p. Let S denote the set of 
rossings of multipli
ity at mostM .For any integer i � 0, let Si be the set of 
rossing points p with 2iM < m(p) � 2i+1M .Sin
e m(p) 
annot ex
eed n=2, we have Si = ; whenever 2iM > n=2 . It follows fromthe generalization of the Szemer�edi{Trotter theorem [10℄, [9℄ for bounding the numberof in
iden
es between a set of points and a set of pseudo-segments that the numberof 
rossings of multipli
ity at least k is at most 100 � e2k3 + ek�. That is,jSij � 100 e223iM3 + e2iM !holds for every i. The number of 
rossing pairs of edges is at least 
r(G), and ea
hpoint of multipli
ity k 
ontributes �k2� < k2=2 to this number. Therefore, the total
ontribution of the points in Si is at most100 e223iM3 + e2iM ! 22i+1M2 = 100 e2M 21�i + eM2i+1! :Adding up, we obtain that the 
ontribution of all 
rossings of multipli
ity larger thanM to the number of 
rossing pairs of edges is at mostXi � 0M2i � n=2 100 e2M 21�i + eM2i+1! < 100 4e2M + 2en! < 
r(G)2 :Therefore, at least half of the edge 
rossings o

ur at points of multipli
ity atmost M , that is, at a point belonging to S. Ea
h of these points 
ontributes to the
rossing number at most �M2 � < M22 . Thus, we have jSjM22 > 
r(G)2 ; whi
h yieldsthat jSj > 
r3(G)(40e)4 : 2The bise
tion width, b(G), of a graph G is de�ned as the minimum number of edgeswhose removal splits the graph into two roughly equal subgraphs. More pre
isely, b(G)is the minimum number of edges running between V1 and V2, over all partitions ofthe vertex set of G into two parts V1 [ V2 su
h that jV1j; jV2j � n(G)=3. We need thefollowing result. 6



Lemma 3.2. [5℄ Let G be a graph of n verti
es and e edges. Then we haveb(G) � 10q
r(G) + 4pen:For the proof of Theorem 2, we pi
k a nested sequen
e of subgraphs G = G0 �G1 � G2 � : : :, a

ording to the following pro
edure.Step 0. Set G0 := G, n0 := n(G) = n, e0 := e(G) = e, and 
r0 =: 
r(G).Suppose that we have already exe
uted Step i. Denote the resulting graph by Gi,let by ni = n(Gi), ei = e(Gi), 
ri = 
r(Gi), and assume that (1=3)in � ni � (2=3)in.Step i+ 1. If 
ri � �eien �4=3 + 103eini;then stop.Else, delete b(Gi) edges from Gi su
h that Gi falls into two parts, both having atmost (2=3)ni verti
es. Let G0i be the resulting (dis
onne
ted) graph. Let Gi+1 be thepart in whi
h the average degree of the verti
es is at least as high as in the other.Suppose that the algorithm terminates in Step I + 1.Lemma 3.3. Suppose that e(G) > n4=3(G). For any 0 � i � I su
h that ei �1012(e=n)2, we have eini > e2n :Proof. We prove the statement by indu
tion on i. Obviously, it is true for i = 0.Let 1 � i � I, and suppose that the lemma has been proved for all j < i.Sin
e the pro
edure did not stop at an earlier stage, we have
rj < �ejen �4=3 + 103ejnj;for every j < i. In view of Lemma 3.2, we obtaine(G0j) = ej � b(Gj) � ej � 10p
rj � 4pejnj� ej 0�1� 10(e=n)2=3e1=3j � 103=2snjej � 4snjej 1A � ej 0�1� 10(e=n)2=3e1=3j � 40snjej 1A :Using the fa
t that the average degree in Gj+1 is at least as mu
h as in G0j and thati � 2 log2 n, we have eini � en Y0�j<i0�1� 10(e=n)2=3e1=3j � 40snjej 1A7



� en 0�1� X0�j<i 10(e=n)2=3e1=3j � X0�j<i 40snjej 1A� en 0�1� 10(e=n)2=3 � 2(n=e)1=3 X0�j<i 1n1=3j � 80 log nr2ne 1A� en  1� 200(e=n)1=3 � 1n1=3i � 80 log nr2ne ! > e2n;provided that n = n(G) is large enough. This 
on
ludes the proof of Lemma 3.3. 2Proof of Theorem 2. If e � n4=3 then the result is an immediate 
onsequen
e ofLemma 3.1.Assume that e > n4=3 and that the pro
edure stopped at step I+1. We distinguishthree 
ases.Case 1: Suppose that e = e0 < 4 � 1012 (e=n)2. Then e > n2=(4 � 1012). By theresult of Ajtai, Chv�atal, Newborn, Szemer�edi [1℄, and Leighton [3℄, quoted in Se
tion1 (see above Theorem 1), we have
r(G) � 164 e3n2 � 1012en;if n is large enough. Therefore, we 
an apply Lemma 3.1 and obtain that
r�(G) � 
r3(G)(40e)4 � 1404 � 1643 � e9n6e4 = 1404643 en2 � e4n4 > 11025 e4n4 :Case 2: Suppose that e = e0 � 4 � 1012(e=n)2 and eI < 4 � 1012(e=n)2. Clearly, forany j < I, ej � ej+1. Let j < I be the greatest index su
h that ej � 4 � 1012(e=n)2.Lemma 3.3 implies that ejnj > e2n > n1=32 .We 
laim that ej � ej+1 > ej=4. Indeed, by de�nition, we haveej+1 � e(G0j)3 = ej3 0�1� 10(e=n)2=3e1=3j � 40snjej 1A > ej4 ;provided that n is large enough. Hen
e, 1012(e=n)2 � ej+1 < 4 � 1012(e=n)2. Thus,we 
an again apply Lemma 3.3 to obtain ej+1nj+1 > e2n , so that nj+1 < ej+1 � (2n=e) <4 � 1012(e=n)2(2n=e) = 8 � 1012(e=n). The theorem of Ajtai et al. now implies that
r(Gj+1) � 164 431036821024 � en�4 > 1010 e4n4 :8



If n is suÆ
iently large, we 
an apply Lemma 3.1 to Gj+1 to 
on
lude that
r�(G) � 
r�(Gj+1) � 1030404 (e=n)12e4j+1 � 1030404 (e=n)124004(e=n)8 > 1013 e4n4 :Case 3: Suppose now that eI � 4 � 1012(e=n)2. Sin
e the pro
edure has stopped,we have 
rI � (eIe=n)4=3 + 103eInI . We 
an apply Lemma 3.1 and obtain that
r�(G) � 
r�(GI) � 1404 
r3Ie4I � 1404 e4n4 :This 
on
ludes the proof of Theorem 2. 2Referen
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