
DEGENERATE CROSSING NUMBERSJ�anos Pah� and G�eza T�othyR�enyi Institute, Hungarian Aademy of SienesAbstratLet G be a graph with n verties and e � 4n edges, drawn in the plane insuh a way that if two or more edges (ars) share an interior point p, then theymust properly ross one another at p. It is shown that the number of rossingpoints, ounted without multipliity, is at least onstant times e and that theorder of magnitude of this bound annot be improved. If, in addition, two edgesare allowed to ross only at most one, then the number of rossing points mustexeed onstant times (e=n)4.1 IntrodutionLet S be a ompat surfae with no boundary. Given a graph G with no loops ormultiple edges, the rossing number of G on S, denoted by rS(G), is the minimumnumber of edge rossings over all proper drawings of G on S. If S is the sphere (orplane) then we simply write r(G). A drawing is proper if the verties and edges of Gare represented by points and simple Jordan-ars in S suh that no ar representingan edge passes through a point representing a vertex other than its endpoints. Herewe ount a k-fold rossing �k2� times (or, equivalently, no three edges an pass throughthe same point). We also assume that between the ars no tangenies are allowed.See [8℄ for a survey.G. Rote, M. Sharir, and others asked what happens if multiple rossings areounted only one (equivalently, if several edges are allowed to pass through the samepoint)? To what extent does this modi�ation e�et the notion of rossing number?Let r�(G) denote the degenerate rossing number of G, that is, the minimumnumber of rossing points over all drawings of G, where k-fold rossings are alsoallowed. Of ourse, we have r�(G) � r(G);and the two rossing numbers are not neessarily equal. For example, in the planeKleitman [2℄ proved that the rossing number of the omplete bipartite graph K5;5�Supported by NSF grant CCR-00-98246 and grants from NSA, PSC-CUNY, Hungarian ResearhFoundation, and BSF.ySupported by OTKA-T-038397 and OTKA-T-046246.1



with �ve verties in its lasses is 16. On the other hand, the degenerate rossingnumber of K5;5 in the plane is at most 15. Another example is depited in Figure 1.

Figure 1: r(G) = 2;r�(G) = 1.Let n = n(G) and e = e(G) denote the number of verties and the number of edgesof a graph G. Ajtai, Chv�atal, Newborn, Szemer�edi [1℄ and, independently, Leighton[3℄ proved that r(G) � 164 e3(G)n2(G)for every graph G with e(G) � 4n(G). This statement, whih has many interest-ing appliations in ombinatorial geometry, easily generalizes to rossing numbers ofgraphs drawn on any �xed surfae S (see [6℄).In the present note we investigate whether the above inequality remains true forthe degenerate rossing number of G. First, we show that the answer is \no" if wepermit drawings in whih two edges may ross an arbitrary number of times.Theorem 1. Any graph with n verties and e edges has a proper drawing in the planewith fewer than e rossings, where eah rossing point that belongs to the interior ofseveral edges is ounted only one. The order of magnitude of this bound annot beimproved if e � 4n.Therefore, in Setion 3 we restrit our attention to so-alled simple drawings, i.e.,to proper drawings in whih two edges are allowed to ross at most one. Fromnow on, with a slight abuse of notation, r�(G) will stand for the minimum numberof rossings over all simple drawings. We prove that in this sense the degeneraterossing number of very \sparse" graphs and very \dense" graphs exeed 
(e3=n2).More preisely, we have 2



Theorem 2. There exists a onstant � > 0 suh that the degenerate rossing numberof G satis�es r�(G) � � e4(G)n4(G) ;for any graph G with e(G) � 4n(G).If it auses no onfusion, in notation and terminology we make no distintionbetween the graph G and its drawing, and between a vertex (edge) and the point(ar) representing it.2 Proper drawings with few rossingsIn this setion, we prove Theorem 1.Let � = (�(1); �(2); : : : ; �(e)) be a permutation of the �rst e positive integers,and let 1 � i < j � e. Reversing the order of the elements between �(i) and �(j), weobtain another permutation�0 = (�(1); �(2); : : : ; �(i� 1); �(j); �(j � 1); : : : ; �(i); �(j + 1); �(j + 2); : : : ; �(e)) :Suh an operation is alled a swap.Lemma 2.1. Any permutation of e numbers an be obtained from any other permu-tation by performing at most e� 1 swaps.Proof. The proof is by indution on e. For e = 1; the statement is trivial. Sup-pose that the lemma has been veri�ed for permutations of fewer than e numbers.Let � = (�(1); �(2); : : : ; �(e)) and � = (�(1); �(2); : : : ; �(e)) be two permutationsof size e. For some j, we have �(j) = �(e). To obtain � from �, we �rst swapthe interval (�(j); : : : ; �(e)) of �. The last element of the resulting permutation(�(1); �(2); : : : ; �(j � 1); �(e); �(e � 1); : : : ; �(j)) is now the same as the last elementof the target permutation �. Proeeding by indution, we an attain using at moste� 2 further swaps that all elements oinide. 2Proof of Theorem 1. Let G be a graph with e edges and n verties, v1; v2; : : : ; vn.Arbitrarily orient every edge of G. For 1 � i � n, plae vi at the point (0; i) on they-axis. Eah edge will be drawn as a ontinuous ar running lose to a huge irleentered at a faraway point of the positive y-axis, so that its initial and �nal portionsare almost horizontal segments, oriented from left to right, that belong to the half-planes x � 0 and x � 0, respetively. (See Figure 2.) More preisely, for eah edge��!vivj , draw a short almost horizontal initial segment from vi pointing to the right anda short almost horizontal �nal segment pointing to vj from the left. Suppose thatall these segments have di�erent slopes. From bottom to top, enumerate the initialsegments by 1; 2; : : : ; e, and assign the same numbers to the �nal segments of theorresponding edges, lying in the negative half-plane x � 0. The indies of these �nal3



segments (from bottom to top) form a permutation � = (�(1); �(2); : : : ; �(e)). Wehave to onnet the right endpoint of eah initial segment to the left endpoint of the�nal segment denoted by the same number. These onneting ars will run parallelto one another, roughly along huge onentri irles, exept that at ertain pointsseveral ars will ross.By Lemma 2.1, � an be obtained from 1; 2; : : : ; e by a sequene of at most e� 1swaps. We an \realize" eah swap as a rossing of the orresponding ars at a singlepoint. The partiipating ars leave the rossing in reverse order. Thus, introduing atmost e� 1 rossings, we an ahieve that the order of the onneting ars is identialto the order in whih their �nal segments must reah the y-axis (from the left).It follows from Lemma 2.2 (see below) that any proper drawing of G has at leaste3 � n+ 2 rossings. 2

Figure 2: r�(G) � e� 1.We prove the tightness of Theorem 1 in a slightly more general setting. Let S bea ompat surfae S with no boundary, whose Euler harateristi is �. That is, wehave �(S) = ( 2� 2g if S is orientable of genus g;2� g if S is nonorientable of genus g.Given a onneted graph G with no loops or multiple edges, let rS(G) stand forthe minimum number of rossing points over all proper drawings of G on S. Taking4



the minimum over all simple drawings (that is, allowing two edges to ross only atmost one), we obtain the degenerate rossing number of G on S, denoted by r�S(G).Clearly, we have rS(G) � r�S(G) for any G.Lemma 2.2. Let G be a graph with n(G) verties and e(G) edges, and let S be asurfae with Euler harateristi �. Then we haver�S(G) � rS(G) � e(G)3 � n(G) + �:Proof. Fix an optimal proper drawing of G on S, i.e., a drawing for whih the numberof rossings is rS(G). Let p be a rossing determined by k edges e1; e2; : : : ; ek.Remove from S a small retangular piee ABCD suh that eah ei intersets itsboundary in two points Ai 2 AB and Ci 2 CD and the ounterlokwise order ofthese points is A1; A2; : : : ; Ak; C1; C2; : : : ; Ck. Assume that no further edges of G meetthe retangle ABCD. Modify S by adding a rossap at ABCD, i.e., by identifyingAiand Ci for every i (and identifying all other \diametrially opposite" pairs of points ofthe boundary of ABCD). In this way, we redue the number of rossings by one andwe obtain a drawing ofG on a surfae whose Euler harateristi is �(S)�1. Repeatingthe same proedure at eah rossing, �nally we obtain a rossing-free drawing of Gon a (nonorientable) surfae S0 with Euler harateristi �(S) � rS(G). Let f(G)denote the number of faes in this drawing (embedding). The number of faes or ellsin this embedding is denoted by f(G).Aording to Poinar�e's formula, a generalization of Euler's polyhedral formula,we have n(G)� e(G) + f(G) � �(S0) = �(S)� rS(G):This inequality beomes an equation, if the embedding is ellular, that is, if theboundary of eah fae is onneted. For details, see [4℄. Taking into aount that3f(G) � 2e(G), we obtainrS(G) � e(G)3 � n(G) + �(S);as required. 23 Simple drawings|Proof of Theorem 2Let r�(G) stand for the minimum number of rossing points over all simple drawingsof G in the plane.Lemma 3.1. Let G be a graph with n verties and e edges, and suppose thatthe rossing number of G satis�es r(G) > 103e(G)n(G). Then for the degenerate5



rossing number of G we have r�(G) � r3(G)(40e)4 :Proof. Consider a simple drawing of G with r�(G) rossing points. Let M :=402e2=r(G).For any rossing (point) p, letm(p) denote themultipliity of p, that is, the numberof edges passing through p. Let S denote the set of rossings of multipliity at mostM .For any integer i � 0, let Si be the set of rossing points p with 2iM < m(p) � 2i+1M .Sine m(p) annot exeed n=2, we have Si = ; whenever 2iM > n=2 . It follows fromthe generalization of the Szemer�edi{Trotter theorem [10℄, [9℄ for bounding the numberof inidenes between a set of points and a set of pseudo-segments that the numberof rossings of multipliity at least k is at most 100 � e2k3 + ek�. That is,jSij � 100 e223iM3 + e2iM !holds for every i. The number of rossing pairs of edges is at least r(G), and eahpoint of multipliity k ontributes �k2� < k2=2 to this number. Therefore, the totalontribution of the points in Si is at most100 e223iM3 + e2iM ! 22i+1M2 = 100 e2M 21�i + eM2i+1! :Adding up, we obtain that the ontribution of all rossings of multipliity larger thanM to the number of rossing pairs of edges is at mostXi � 0M2i � n=2 100 e2M 21�i + eM2i+1! < 100 4e2M + 2en! < r(G)2 :Therefore, at least half of the edge rossings our at points of multipliity atmost M , that is, at a point belonging to S. Eah of these points ontributes to therossing number at most �M2 � < M22 . Thus, we have jSjM22 > r(G)2 ; whih yieldsthat jSj > r3(G)(40e)4 : 2The bisetion width, b(G), of a graph G is de�ned as the minimum number of edgeswhose removal splits the graph into two roughly equal subgraphs. More preisely, b(G)is the minimum number of edges running between V1 and V2, over all partitions ofthe vertex set of G into two parts V1 [ V2 suh that jV1j; jV2j � n(G)=3. We need thefollowing result. 6



Lemma 3.2. [5℄ Let G be a graph of n verties and e edges. Then we haveb(G) � 10qr(G) + 4pen:For the proof of Theorem 2, we pik a nested sequene of subgraphs G = G0 �G1 � G2 � : : :, aording to the following proedure.Step 0. Set G0 := G, n0 := n(G) = n, e0 := e(G) = e, and r0 =: r(G).Suppose that we have already exeuted Step i. Denote the resulting graph by Gi,let by ni = n(Gi), ei = e(Gi), ri = r(Gi), and assume that (1=3)in � ni � (2=3)in.Step i+ 1. If ri � �eien �4=3 + 103eini;then stop.Else, delete b(Gi) edges from Gi suh that Gi falls into two parts, both having atmost (2=3)ni verties. Let G0i be the resulting (disonneted) graph. Let Gi+1 be thepart in whih the average degree of the verties is at least as high as in the other.Suppose that the algorithm terminates in Step I + 1.Lemma 3.3. Suppose that e(G) > n4=3(G). For any 0 � i � I suh that ei �1012(e=n)2, we have eini > e2n :Proof. We prove the statement by indution on i. Obviously, it is true for i = 0.Let 1 � i � I, and suppose that the lemma has been proved for all j < i.Sine the proedure did not stop at an earlier stage, we haverj < �ejen �4=3 + 103ejnj;for every j < i. In view of Lemma 3.2, we obtaine(G0j) = ej � b(Gj) � ej � 10prj � 4pejnj� ej 0�1� 10(e=n)2=3e1=3j � 103=2snjej � 4snjej 1A � ej 0�1� 10(e=n)2=3e1=3j � 40snjej 1A :Using the fat that the average degree in Gj+1 is at least as muh as in G0j and thati � 2 log2 n, we have eini � en Y0�j<i0�1� 10(e=n)2=3e1=3j � 40snjej 1A7



� en 0�1� X0�j<i 10(e=n)2=3e1=3j � X0�j<i 40snjej 1A� en 0�1� 10(e=n)2=3 � 2(n=e)1=3 X0�j<i 1n1=3j � 80 log nr2ne 1A� en  1� 200(e=n)1=3 � 1n1=3i � 80 log nr2ne ! > e2n;provided that n = n(G) is large enough. This onludes the proof of Lemma 3.3. 2Proof of Theorem 2. If e � n4=3 then the result is an immediate onsequene ofLemma 3.1.Assume that e > n4=3 and that the proedure stopped at step I+1. We distinguishthree ases.Case 1: Suppose that e = e0 < 4 � 1012 (e=n)2. Then e > n2=(4 � 1012). By theresult of Ajtai, Chv�atal, Newborn, Szemer�edi [1℄, and Leighton [3℄, quoted in Setion1 (see above Theorem 1), we haver(G) � 164 e3n2 � 1012en;if n is large enough. Therefore, we an apply Lemma 3.1 and obtain thatr�(G) � r3(G)(40e)4 � 1404 � 1643 � e9n6e4 = 1404643 en2 � e4n4 > 11025 e4n4 :Case 2: Suppose that e = e0 � 4 � 1012(e=n)2 and eI < 4 � 1012(e=n)2. Clearly, forany j < I, ej � ej+1. Let j < I be the greatest index suh that ej � 4 � 1012(e=n)2.Lemma 3.3 implies that ejnj > e2n > n1=32 .We laim that ej � ej+1 > ej=4. Indeed, by de�nition, we haveej+1 � e(G0j)3 = ej3 0�1� 10(e=n)2=3e1=3j � 40snjej 1A > ej4 ;provided that n is large enough. Hene, 1012(e=n)2 � ej+1 < 4 � 1012(e=n)2. Thus,we an again apply Lemma 3.3 to obtain ej+1nj+1 > e2n , so that nj+1 < ej+1 � (2n=e) <4 � 1012(e=n)2(2n=e) = 8 � 1012(e=n). The theorem of Ajtai et al. now implies thatr(Gj+1) � 164 431036821024 � en�4 > 1010 e4n4 :8



If n is suÆiently large, we an apply Lemma 3.1 to Gj+1 to onlude thatr�(G) � r�(Gj+1) � 1030404 (e=n)12e4j+1 � 1030404 (e=n)124004(e=n)8 > 1013 e4n4 :Case 3: Suppose now that eI � 4 � 1012(e=n)2. Sine the proedure has stopped,we have rI � (eIe=n)4=3 + 103eInI . We an apply Lemma 3.1 and obtain thatr�(G) � r�(GI) � 1404 r3Ie4I � 1404 e4n4 :This onludes the proof of Theorem 2. 2Referenes[1℄ M. Ajtai, V. Chv�atal, M. Newborn, and E. Szemer�edi, Crossing-free subgraphs,in: Theory and Pratie of Combinatoris, North-Holland Math. Stud. 60,North-Holland, Amsterdam, 1982, 9{12.[2℄ D. Kleitman, The rossing number of K5;n, J. Combinatorial Theory 9 (1970),315{323.[3℄ F.T. Leighton, Complexity Issues in VLSI: Optimal Layouts for the Shu�e-Exhange Graph and Other Networks, MIT Press, Cambridge, MA, 1983.[4℄ B. Mohar and C. Thomassen, Graphs on Surfaes, Johns Hopkins Studies inthe Mathematial Sienes, Johns Hopkins University Press, Baltimore, MD,2001.[5℄ J. Pah, F. Shahrokhi, and M. Szegedy, Appliations of the rossing number,Algorithmia 16 (1996), 111{117.[6℄ J. Pah, J. Spener, and G. T�oth, New bounds on rossing numbers, DisreteComput. Geom. 24 (2000), 623{644.[7℄ J. Pah and G. T�oth, Graphs drawn with few rossings per edge, Combinatoria17 (1997), 427{439.[8℄ J. Pah and G. T�oth, Thirteen problems on rossing numbers, Geombinatoris9 (2000), 194{207.[9℄ L. Sz�ekely, Crossing numbers and hard Erd}os problems in disrete geometry,Combinatoris, Probability, and Computing, 6 (1997), 353{358.[10℄ E. Szemer�edi and W.T. Trotter, Extremal problems in disrete geometry, Com-binatoria 3 (1983), 381-392. 9


