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Abstract

Let d be a fixed positive integer and let ε > 0. It is shown that for
every sufficiently large n ≥ n0(d, ε), the d-dimensional unit cube can
be decomposed into exactly n smaller cubes such that the ratio of the
side length of the largest cube to the side length of the smallest one is
at most 1 + ε. Moreover, for every n ≥ n0, there is a decomposition
with the required properties, using cubes of at most d+2 different side
lengths. If we drop the condition that the side lengths of the cubes
must be roughly equal, it is sufficient to use cubes of three different
sizes.

1 Introduction

It was shown by Dehn [3] that, for d ≥ 2, in any decomposition (tiling)
of the d-dimensional unit cube into finitely many smaller cubes, the side
length of every participating cube must be rational. Sprague [9] proved that
in the plane there are infinitely many decompositions consisting of pairwise
incongruent squares. Such a decomposition is called perfect. Brooks, Smith,
Stone, and Tutte [1] developed a method to generate all perfect decompo-
sitions of squares, by reformulating the problem as a problem for flows in
electrical networks. Duijvestijn [4] discovered the unique perfect decom-
position of a square into the smallest number of squares: it consists of 21
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pieces. It is not hard to see that in 3 and higher dimensions no perfect
tilings exist [1].

Fine and Niven [6] and Hadwiger raised the problem of characterizing,
for a fixed d ≥ 2, the set Sd of all integers n such that the d-dimensional unit
cube can be decomposed into n not necessarily pairwise incongruent cubes.
Obviously, id ∈ Sd for every positive integer i. Hadwiger observed that no
positive integer smaller than 2d, or larger than 2d but smaller than 2d+2d−1,
belongs to Sd. On the other hand, Plüss [8] and Meier [7] showed that for any
d ≥ 2, there exists n0(d) such that all n ≥ n0(d) belong to Sd. It is known
that n0(2) = 6 and it is conjectured that n0(3) = 48 (see [2], problems C2,
C5). The best known general upper bound n0(d) ≤ (2d−2)((d+1)d−2)−1
is due to Erdős [5]. It is conjectured that this can be improved to n0(d) ≤ cd
for an absolute constant c.

To show that n0(2) ≤ 6, consider arbitrary decompositions of the square
into 6, 7, and 8 smaller squares; see Fig. 1.

Figure 1: Decompositions of the square into 4, 6, 7, and 8 squares. There
exists no decomposition into 5 squares.

Notice that from any decomposition into n squares, one can easily obtain
a decomposition into n+ 3 squares by replacing one of the squares, Q, with
four others whose side lengths are half of the side length of Q. If we are
careless, during this process we may create squares of many different sizes.
In particular, for most values of n, the ratio of the side length of the largest
square of the decomposition to the the side length of the smallest square is
at least 2.

Amram Meir asked many years ago whether for any d ≥ 2, ε > 0, and
for every sufficiently large n ≥ n0(d, ε), there exists a decomposition of a
d-dimensional cube into n smaller cubes such that the above ratio is smaller
than 1+ε. The aim of this paper is to answer this question in the affirmative.
In Section 2, we give a simple construction in the plane, which does not seem
to generalize to higher dimensions.

2



Theorem 1. For any integer n ≥ 6 that is not a square number, there exists
a tiling of a square with smaller squares of two different sizes such that the
ratio of their side length tends to 1 as n→∞.

Of course, if n is a square number, then any square can be decomposed
into precisely n smaller squares of the same size.

In Section 3, we review some elementary number-theoretic facts needed
for the proof of the following theorem, which will be established in Section
4.

Theorem 2. For any integer d ≥ 2 and any ε > 0, there exists n0 =
n0(d, ε) with the following property. For every n ≥ n0, the d-dimensional
unit cube can be decomposed into n smaller cubes such that the ratio of the
side length of the largest subcube to the side length of the smallest one is at
most 1 + ε. Moreover, for every n ≥ n0, there is a decomposition with the
required properties, using subcubes of at most d+ 2 different side lengths.

Figure 2: A decomposition of the 3-dimensional cube into 49 cubes.

The idea of the proof of Theorem 2 is the following. If n is of the form
a3d for some positive integer a, then we first divide the unit cube into a2d

small cubes of side length 1/a2. In the second step, we subdivide each
small cube into ad even smaller subcubes of side length 1/a3, and we are
done. We call these subcubes tiny. If n is not of this special form, we have
a3d < n < a3(d+1) for some a. In this case, after the first step, the number of
tiny cubes will be smaller than n. Therefore, in the second step, we have to
subdivide some of the small cubes into slightly more than ad equal subcubes.
Unfortunately, this simple strategy does not necessarily work: the number
of small cubes that need to be subdivided into more than ad pieces may
exceed a2d, the total number of small cubes produced in the first step. To
overcome this difficulty, in addition, a certain number of small cubes will
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be subdivided into fewer than ad tiny cubes. The details are worked out in
Section 4.

In the last section, we prove that for any d ≥ 3 and any sufficiently large
n depending on d, it is possible to tile a cube with precisely n smaller cubes
of at most three different sizes; see Theorem 5.1. We close the paper with a
few open problems.

2 The planar case – Proof of Theorem 1

For convenience, we start with a simple observation that allows us to disre-
gard small values of n and to suppose in the rest of the argument that n is
sufficiently large.

Lemma 2.1 For every integer n ≥ 6, a square can be tiled with n smaller
squares of at most two different sizes.

Proof: Consider the first, second, and last tilings depicted in Fig. 1. They
can be generalized as follows. For every integer k ≥ 1, take the unit square
and extend it to a square Sk of side length 1 + 1

k by adding 2k + 1 squares
of side length 1

k along its upper side and right side. We obtain a tiling with
2k + 2 squares of two different sizes, unless k = 1 and all 4 squares are of
the same size.

By dividing the original unit square of this tiling into 4 equal squares,
we obtain a tiling of Sk with 2k + 5 squares of side lengths 1

2 and 1
k . As

k runs through all positive integers, we obtain tilings with n squares, for
n = 4 and all n ≥ 6. 2

Next, we write every positive integer n > 36 in a special form.

Claim 2.2 Let n be a positive integer satisfying a2 < n < (a+ 1)2 for some
positive integer a. Then there exists an integer b such that a < b ≤ 2a and

(i) either n = a2 + b
(ii) or n = (a+ 1)2 − b.

Proof: If n ≤ a2 + a, then (ii) holds. If n > a2 + a, then (i) is true. 2

Claim 2.3 Let a and b be positive integers with b > a ≥ 6. Then there exists
an integer m with b−2

4 ≤ m ≤ b−1
2 such that precisely one of the following

conditions is satisfied.
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(i) b = 2m+ 1 = (m+ 1)2 −m2,
(ii) b = 4m = (m+ 1)2 − (m− 1)2,
(iii) b = 4m+ 2 = 2(m+ 1)2 − 2m2. 2

Proof of Theorem 1: In view of Lemma 2.1, it is sufficient to prove
Theorem 1 for sufficiently large n. From now on, suppose that n ≥ 36. We
can also assume that n is not a perfect square, otherwise, the statement is
trivially true. Then we have a2 < n < (a + 1)2, for some a ≥ 6. Let b be
the integer whose existence is guaranteed by Claim 2.2, and write b, as in
Claim 2.3, in the form (i), (ii), or (iii). Note that a, b, and m are uniquely
determined, and we clearly have b > a >

√
n− 1→∞ and m ≥ b−2

4 →∞,
as n→∞.

m+1︷ ︸︸ ︷

a + 1

Figure 3: Illustration to Case 1. The parameters are n = 55, a = 7, b = 9,
and m = 4, so that we have n = (a+ 1)2 − (m+ 1)2 +m2.

If b satisfies conditions (i) or (ii) in Claim 2.3, we obtain n as an ex-
pression consisting of three squares, two with positive signs and one with a
negative sign. More precisely, we have

n = p2 − q2 + r2 with p > q, (1)

where p ∈ {a, a+ 1}, and q, r ∈ {m− 1,m,m+ 1}.
If b satisfies condition (iii) in Claim 2.3, we get

n = p2 − 2q2 + 2r2 with p ≥ 2q, (2)

where p ∈ {a, a+ 1}, and q, r ∈ {m,m+ 1}.

We construct slightly different tilings in the above two cases.
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m+1︷ ︸︸ ︷ m+1︷ ︸︸ ︷

a + 1

Figure 4: Illustration to Case 2. The parameters n = 54, a = 7, b = 10,
and m = 2, so that we have n = (a+ 1)2 − 2(m+ 1)2 + 2m2.

Case 1: If (1) holds, take a p × p square divided into unit squares, and
replace a q × q part of it by a tiling consisting of r2 squares of side length
r
q . See Fig. 3.

Case 2: If (2) holds, take a p× p square divided into unit squares, choose
two disjoint q × q subsquares in it, and tile each of them with r2 squares of
side length r

q . See Fig. 4.
In both cases, we obtain a tiling of a large square that consists of precisely

n smaller squares such that the ratio of their side lengths is at most m+1
m−1 =

1 +O( 1√
n

). This completes the proof of Theorem 1. 2

Problem 2.4 Let ρ(n) denote the smallest ratio of the maximum side length
of a square to the minimum side length of a square over all decompositions
of a square into n smaller ones. Describe the asymptotic behavior of the
function

lim sup
n→∞

ρ(n)− 1.

It follows from the above proof that ρ(n)− 1 = O( 1√
n

), but we have no

good lower bound.
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3 Number-theoretic preliminaries

Before turning to the proof of Theorem 2, in this short section we collect
and prove some simple facts we need from elementary number theory.

Lemma 3.1 Let a1 < . . . < ar and b1 < . . . < bs be positive integers whose
greatest common divisor is 1.

(i) For every integer k, there exist integers x1, . . . , xr, y1, . . . , ys ≥ 0 with

r∑

i=1

xiai −
s∑

j=1

yjbj = k.

(ii) Moreover, we can assume that maxi xi < bs or maxj yj < ar.

Proof: Part (i) goes back to Euclid. As for part (ii), if xi ≥ bs and yj ≥ ar
for some i and j, then we can replace xi with xi − bj and yj with yj − ai,
and (i) continues to hold. Repeating this step, if necessary, (ii) follows. 2

In the last section, we will also use the following well known statement,
due to Sylvester [10].

Lemma 3.2 Let a1 and a2 be positive integers whose greatest common di-
visor is 1. Then for every integer k ≥ (a1 − 1)(a2 − 1), there exist integers
x1, x2 ≥ 0 with k = x1a1 + x2a2. 2

Lemma 3.3 Let d ≥ 2 be an integer and p a prime. Then, for every fixed
integer m, there exists t, 1 ≤ t ≤ d such that p does not divide (m+t)d−md.

Proof: Consider the polynomial q(x) = (x+ 1)d − xd of degree d− 1. We
have q(p) ≡ 1 mod p. Therefore, q(x) is not the zero-polynomial and it has
at most d− 1 roots over GF(p). Consequently, at least one of the numbers
q(m), q(m + 1), . . . , q(m + d − 1) is not divisible by p. If p does not divide
q(m), we are done. Otherwise, suppose that p divides q(m), . . . , q(m+t−2),
but does not divide q(m+ t− 1) for some t, 2 ≤ t ≤ d. Then we have

(m+ t)d −md =
t−1∑

i=0

q(m+ i) ≡ q(m+ t− 1) 6≡ 0 mod p,

as required. 2

Corollary 3.4 For any integers d,m > 0, the greatest common divisor of
the numbers (m+ 1)d −md, (m+ 2)d −md, . . . , (m+ d)d −md is 1. 2
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4 Proof of Theorem 2

Let ε be a (small) positive number, which will be fixed throughout this
section.

Suppose first that n = a3d for a positive integer a. Dividing the unit
cube into a2d small cubes of side length 1/a2, and then each small cube into
ad tiny subcubes of the same size, we are done.

If n is not of the above special form, we have a3d < n < (a + 1)3d for
some integer a > 0. Suppose that n is so large that we have a > d(d + 1)
and

(a− 1)(1 + ε) > a+ d (3)

Using the assumption a > d(d + 1) ≥ 6, we have that a2d(a + 4)d >
(a+ 1)3d. Thus, there exists an integer c, 0 ≤ c ≤ 3, with

a2d(a+ c)d ≤ n < a2d(a+ c+ 1)d. (4)

Let m := a+ c.

We now construct a tiling of the unit cube with n smaller cubes, each of
side length 1

a2(m+i)
for some i, −1 ≤ i ≤ d. Now these smaller cubes will be

called tiny.
In the first step, divide the unit cube into a2d small cubes of side length

1/a2. If we subdivided each small cube into md subcubes of side length
1/(a2m), we would obtain only a2dmd ≤ n tiny cubes of the same size. In
order to obtain precisely n tiny cubes, we need to increase their number by

k := n− a2dmd.

To achieve this, for i = 1, 2, . . . , d, we pick xi small cubes, and instead of
subdividing them into md tiny subcubes, we subdivide them into (m + i)d

ones. This results in an increase of
∑d

i=1 xiai, where

ai = (m+ i)d −md.

However, if k is relatively small (for example, if k = 1), we may not be able
to write k in the form

∑d
i=1 xiai. Therefore, we also select y1 small cubes,

different from the previously picked ones, and instead of subdividing them
into md pieces, we subdivide them into only (m − 1)d tiny subcubes of the
same size. This will reduce the number of tiny subcubes by y1b1, where

b1 = md − (m− 1)d.
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By Corollary 3.4, the greatest common divisor of a1, . . . , ad, b1 is 1. Ap-
plying Lemma 3.1 with r = d, s = 1, we can find nonnegative numbers
x1, . . . , xd, y1 such that

d∑

i=1

xiai − y1b1 = k, (5)

as required. If, in addition, we manage to guarantee that

x1 + . . .+ xd + y1 ≤ a2d, (6)

then we are done, because there are sufficiently many small cubes in which
the required replacements can be performed.

In what follows, we show how to find a solution of (5), for which condi-
tion (6) is satisfied. Start with any solution of (5) and, as long as possible,
repeat the following two steps, producing other solutions.

1. If xi ≥ b1 for some i, 1 ≤ i ≤ d, and y1 ≥ ad, then replace xi by xi−b1
and y1 by y1 − ad.

2. If xi ≥ ad for some i, 1 ≤ i < d, then replace xi by xi − ad and xd by
xd + ai.

Both of these operations, independently, can be performed at most a bounded
number of times. Thus, the above procedure will terminate after a finite
number of steps. We claim that the resulting solution satisfies (6).

It follows from m ≥ a > d(d+ 1) that

ad = (m+ d)d −md =

(
(1 +

d

m
)d − 1

)
md < (e− 1)md. (7)

We also have

b1 = md − (m− 1)d ≤ (a+ 3)d − (a+ 2)d < (e− 1)ad (8)

and

md ≤ (a+ 3)d =

(
1 +

3

a

)d

ad <

(
1 +

3

d(d+ 1)

)d

ad < ead. (9)

We distinguish two cases.

Case 1: y1 ≥ ad
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Since we cannot perform step 1, we have xi < b1 for all i (1 ≤ i ≤ d).
From (5), we obtain

y1b1 <

d∑

i=1

xiai <

d∑

i=1

b1ai ≤ db1ad.

In view of (7) and (9), this yields that

y1 < dad < d(e− 1)md < de(e− 1)ad.

Taking (8) into account, in this case we have

x1 + . . .+ xd < db1 < d(e− 1)ad.

Combining the last two inequalities, we get

x1 + . . .+ xd + y1 < d(e− 1)ad + de(e− 1)ad = d(e2 − 1)ad < a2d,

so (6) holds, as required.

Case 2: y1 < ad
Since we cannot perform step 2 of the algorithm, we have xi < ad for all

i, 1 ≤ i < d. Now, using (7) and (9), we obtain

x1 + . . .+ xd−1 + y1 < dad < d(e− 1)md < de(e− 1)ad. (10)

It remains to bound xd from above. From (5), we have xdad ≤ k+ y1b1.
Since k = n− a2dmd, in view of (4), we get

xdad < a2d((m+ 1)d −md) + y1b1 < a2d((m+ 1)d −md) + adb1.

Hence,

xd − b1 < a2d
(m+ 1)d −md

ad
= a2d

(m+ 1)d −md

(m+ d)d −md
< a2d

1

d
. (11)

The last inequality follows from the fact that

(m+ d)d −md =
d−1∑

i=0

((n+ i+ 1)d − (n+ i)d) > d((n+ 1)d − nd).

Adding (10), (11), and (8), and using that a > d(d+ 1), we conclude that

x1 + . . .+ xd + y1 < de(e− 1)ad + a2d
1

d
+ (e− 1)ad

= a2d
(

1

d
+

(de+ 1)(e− 1)

ad

)
< a2d.

Thus, in both cases, (6) is true. This completes the proof of the Theorem
2. 2
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5 Concluding remarks, open problems

The proof in the previous section shows that, for any sufficiently large n, the
d-dimensional unit cube can be tiled with n smaller cubes having at most
d + 2 different sizes. Moreover, we can even require these smaller cubes to
be of roughly the same size. Lemma 2.1 states that for d = 2, two different
sizes suffice. For any d larger than 2, if we do drop the condition that the
ratio of the sizes of the largest and smallest cubes must tend to 1, one can
decompose a cube into smaller cubes of only three different sizes.

Theorem 5.1 For any d ≥ 3, there is an n0 = n0(d) with the following
property. For any integer n ≥ n0(d), there exists a tiling of a cube with
precisely n smaller cubes, each of side length 1, 1

2 , or 1
2d−1 .

Proof: Since (2d−1)d is a multiple of 2d−1, the numbers (2d−1)d−1 and
2d−1 are relatively prime. Thus, we can apply Lemma 3.2 with a1 = 2d−1
and a2 = (2d − 1)d − 1. It implies that every integer k ≥ 2(d+1)d can be
expressed as

k = x1(2
d − 1) + x2((2

d − 1)d − 1), (12)

for suitable integers x1, x2 ≥ 0.
Suppose that n > 2(d+3)d. Then we can choose an integer a ≥ 2d+3 such

that ad ≤ n < (a+ 1)d. Consider an (a− 1)× (a− 1) cube C of side length
a − 1, and decompose it into (a − 1)d unit cubes. Set k := n − (a − 1)d.
Observe that

k ≥ ad − (a− 1)d ≥ (2d+3)d − (2d+3 − 1)d ≥ d(2d+3 − 1)d−1 ≥ 2(d+1)d.

Therefore, we can write k in the form (12), where x1 and x2 are nonnegative
integers and, clearly,

x1 + x2 ≤
k

2d − 1
=
n− (a− 1)d

2d − 1
<

(a+ 1)d − (a− 1)d

2d − 1
< (a− 1)d. (13)

When we subdivide a unit cube in C into cubes of side length 1
2 , the number

of cubes increases by 2d−1. When we subdivide a unit cube in C into cubes
of side length 1

2d−1 , the number of cubes in the tiling increases by (2d−1)d−1.
According to (13), there are enough unit cubes in C to make x1 subdivisions
of the first kind and x2 subdivisions of the second kind. The resulting tiling
consists of precisely n cubes, as required. 2

The last theorem can be generalized in possibly two different ways.
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Problem 5.2 Can one find, for every sufficiently large positive integer n,
two 3-dimensional cubes with side lengths smaller than 1 such that the unit
cube can be tiled with their congruent copies?

Problem 5.3 Does there exist, for every sufficiently large positive integer
n, a tiling of the unit cube with n smaller cubes having at most three (or at
most two) different side lengths so that the ratios of these side length tend
to 1, as n→∞?

Theorem 2 shows that in 3-dimensional space one can find tilings con-
sisting of copies of four different cubes such that the ratios of their side
lengths tend to 1. However, in higher dimensions the number of different
cubes used in our construction grows.

Problem 5.4 Does there exist an absolute constant k such that for any d ≥
3 there exists n0(d) satisfying the following property? For every n ≥ n0(d),
there is a tiling of a cube in Rd with precisely n cubes of at most k different
side lengths.
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[5] P. Erdős: Remarks on some problems in number theory, Math. Balk. 4
(1974), 197–202.

[6] N. J. Fine and I. Niven: Problem E724, Amer. Math. Monthly 53 (1946),
271; Solution in 54 (1947), 41–42.

[7] C. Meier: Decomposition of a cube into smaller cubes, Amer. Math.
Monthly 81 (1974), no. 6, 630–631.

[8] W. Plüss: Zerlegung des n-dimensionalen Würfels in homothetische
Teilwürfel, Diplomschrift, Universität Bern, 1972.

12



[9] R. Sprague: Zur Abschätzung der Mindestzahl inkongruenter Quadrate,
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