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Abstract. The celebrated Crossing Lemma states that, in every draw-
ing of a graph with n vertices and m > 4n edges there are at least
2(m®/n?) pairs of crossing edges; or equivalently, there is an edge that
crosses £2(m?/n?) other edges. We strengthen the Crossing Lemma for
drawings in which any two edges cross in at most O(1) points.

We prove for every k € N that every graph G with n vertices and
m > 3n edges drawn in the plane such that any two edges intersect in
at most k points has two disjoint subsets of edges, F1 and Fa, each of
size at least ¢ym?/n?, such that every edge in F; crosses all edges in Fs,
where ¢, > 0 only depends on k. This bound is best possible up to the
constant cj for every k € N. We also prove that every graph G with n
vertices and m > 3n edges drawn in the plane with z-monotone edges has
disjoint subsets of edges, F1 and Fs, each of size £2(m?/(n? polylogn)),
such that every edge in E; crosses all edges in F2. On the other hand,
we construct z-monotone drawings of bipartite dense graphs where the
largest such subsets E; and E» have size O(m?/(n?log(m/n))).

1 Introduction

The crossing number cr(G) of a graph? G is the minimum number of crossings
in a drawing of G. A drawing of a graph G is a planar embedding which maps
the vertices to distinct points in the plane and each edge to a simple continuous
arc connecting the corresponding vertices but not passing through any other
vertex. A crossing is a pair of curves and a common interior point between the
two curves (the intersections at endpoints or vertices do not count as cross-
ings). A celebrated result of Ajtai et al. [ACNS82] and Leighton [L84], known as
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the Crossing Lemma, states that the crossing number of every graph G with n
vertices and m > 4n edges satisfies

m3
cr(G) =12 (712> . (1)
The best known constant coefficient is due to [PRTT06]. Leighton [L84] was mo-
tivated by applications to VLSI design. Szekély [S97] used the Crossing Lemma
to give simple proofs of Szemerédi-Trotter bound on the number of point-line
incidences [ST83], a bound on Erdés’s unit distance problem and Erdés’s dis-
tinct distance problem [E46]. The Crossing Lemma has since found many im-
portant applications, in combinatorial geometry [D98,KT04,PS98,PT02,STT02],
and number theory [ENRO0,TV06].

The pairwise crossing number pair-cr(G) of a graph G is the minimum num-
ber of pairs of crossing edges in a drawing of G. The lower bound (1) also holds
for the pairwise crossing number with the same proof. It follows that in every
drawing of a graph with n vertices and m > 4n edges, there is an edge that
crosses at least £2(m?/n?) other edges. Conversely, if in every drawing of every
graph with m > 3n edges some edge crosses 2(m?/n?) others, then we have
pair-cr(G) = 2(m3/n?) for every graph G with m > 4n edges. Indeed, by suc-
cessively removing edges that cross many other edges, we obtain the desired
lower bound for the total number of crossing pairs. In this note, we prove a
bipartite strengthening of this result for drawings where any two edges intersect
in at most a constant number of points.

Theorem 1. For every k € IN, there is a constant ¢, > 0 such that for every
drawing of a graph G = (V, E) with n vertices and m > 3n edges, no two of
which intersect in more than k points, there are disjoint subsets F1,FEy C E,
each of size at least c;m?/n?, such that every edge in Ey crosses all edges in Es.

We have k = 1 in straight-line drawings, k = (£ + 1)? if every edge is a polyline
with up to ¢ bends, and k = d? if the edges are sufficiently generic algebraic
curves (e.g., splines) of degree at most d. Note also that every graph G has a
drawing with cr(G) crossings in which any two edges cross at most once [VO05].

The dependence on k in Theorem 1 is necessary: We show that one cannot
expect bipartite crossing families of edges of size £2(m?/n?) if any two edges
may cross arbitrarily many times, even if the graph drawings are restricted to
be z-monotone. An x-monotone curve is a continuous arc that intersects every
vertical line in at most one point. A drawing of a graph is x-monotone if every
edge is mapped to an z-monotone curve.

Theorem 2. For every n,m € N with m < n?/4, there is a bipartite graph
G = (V, E) with n vertices, m edges, and an x-monotone drawing such that any
two disjoint subsets E1, Fy C E of equal size |E| = |Es| = t, where every edge
in By crosses all edges in Fo, satisfy

t:O(mJé@/m)



We present the tools used for the bipartite strengthening of the Crossing
Lemma in the next section. Theorem 1 is proved in Section 3. Our construction
of xz-monotone drawings are discussed in Section 4. Finally, Section 5 contains a
weaker analogue of Theorem 1 for z-monotone drawings and a further strength-
ening of the Crossing Lemma for graphs satisfying some monotone property.

2 Tools

The proof of Theorem 1 relies on a recent result on the intersection pattern of
k-intersecting curves. For a collection C of curves in the plane, the intersection
graph is defined on the vertex set C, two elements of C' are adjacent if the
(relative) interiors of the corresponding curves intersect. A complete bipartite
graph is balanced if the vertex classes differ in size by at most one. For brevity,
we call a balanced complete bipartite graph a bi-clique.

Theorem 3. [FPT07a] Given m curves in the plane such that at least em? pairs
intersect and any two curves intersect in at most k points, their intersection
graph contains a bi-clique with at least ce%m vertices where ¢ > 0 depends
only on k.

If follows from the Crossing Lemma that in every drawing of a dense graph,
the intersection graph of the edges is also dense. Therefore, Theorem 3 implies
Theorem 1 in the special case that G is dense. This connection was first observed
by Pach and Solymosi [PS01] who proved Theorem 1 for straight-line drawings
of dense graphs.

If a graph G is not dense, we decompose G recursively into induced subgraphs
with an algorithm reminiscent of [PST00] until one of the components is dense
enough so that Theorem 3, like before, implies Theorem 1. The decomposition
algorithm successively removes bisectors, and we use Theorem 4 below to keep
the total number of deleted edges under control.

The bisection width, denoted by b(G), is defined for every simple graph G
with at least two vertices. It is the smallest nonnegative integer such that there
is a partition of the vertex set V = V3 U* V3 with & - [V| < V; < 2. |V] for
i=1,2, and |E(V1,V2)| = b(G). Pach, Shahrokhi, and Szegedy [PSS96] gave an
upper bound on the bisection width in terms of the crossing number and the
Lo-norm of the degree vector (it is an easy consequence of the weighted version
of the famous Lipton-Tarjan separator theorem [LT79,GM90]).

Theorem 4. [PSS96] Let G be a graph with n vertices of degree dy,da, ..., d,.
Then




3 Proof of Theorem 1

Let G = (V, E) be a graph with n vertices and m > 3n edges. Since a graph with
more than 3n — 6 edges cannot be planar, it must have crossing edges. Hence, as
long as 3n < m < 10%n, Theorem 1 holds with |E1| = |Es| = 1 > 1072m?/n?.
We assume m > 10°n in the remainder of the proof.

Let D be a drawing of G. To use the full strength of Theorem 4, we transform
the drawing D into a drawing D’ of a graph G’ = (V' E’) with m edges, at most
2n vertices, and maximum degree at most [2m/n], so that the intersection graph
of E’ is isomorphic to that of E. If the degree of a vertex v € V is above the

average degree d = 2m /n, split v into [d/d] vertices vy, . .. ; Urayaq) arranged along
a circle of small radius centered at v. Denote the edges of G incident to v by
(v,w1),. .., (v, wq) in clockwise order in the drawing D. In G’, connect w; with

v; if and only if d(i — 1) < j < di, where 1 < j < d and 1 < i < [d/d]. Two
edges of G’ cross if and only if the corresponding edges of G cross. Also, letting
d(v) denote the degree of vertex v in G’, the number of vertices of G’ is

> Td(v)/d] <Y 1+d(v)/d = 2n.

veV veV

Hence the resulting G’ and D’ have all the required properties.

We will decompose G’ recursively into induced subgraphs until each induced
subgraph is either a singleton or it has so many pairs of crossing edges that
Theorem 3 already implies Theorem 1. Theorem 3 implies that the intersection
graph of the edges of an induced subgraph H of G’ contains a bi-clique of size

64
at least ¢y ( 817(%)2) e(H), where p(H) is the number of pairs of crossing edges

in H in the drawing D', e(H) is the number of edges of H, and ¢, > 0 is the
constant depending on k£ only in Theorem 3. So the intersection graph of the
edge set of G’ (and hence also of G) contains a bi-clique of size 2(m?/n?) if
there is an induced subgraph H of G’ with
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where £, > 0 is any constant depending on k only. We use &5, = (10°k)~% for
convenience. Assume, to the contrary, that (3) does not hold for any induced
subgraph H of G'.

Every induced subgraph H has at most kp(H) crossings in the drawing D’,
hence cr(H) < kp(H). It is enough to find an induced subgraph H for which

e(H)2_1/64 m\ 55
e () satm, (4)
since this combined with cr(H) < kp(H) implies (3).

Next, we decompose the graph G’ of at most 2n vertices and m edges with
the following algorithm.



DECOMPOSITION ALGORITHM
1. Let So = {G'} and i = 0.
2. While (3/2)" < 4n?/m and no H € S, that satisfies (4), do
Set i: =i+ 1. Let S; := (). For every H € S;_1, do
o If [V(H)| < (2/3)" 2n, then let S; := S; U{H};
e otherwise split H into induced subgraphs H; and Hs along a bisector
of size b(H), and let S; := S; U{Hy, Ha}.
3. Return S;.

For every i, every graph H € S; satisfying the end condition has at most
[V(H)| < (2/3)" 2n vertices. Hence, the algorithm terminates in ¢ < log s o) 2n
rounds and it returns a set Sy of induced subgraphs. Let T; C .S; be the set of
those graphs in S; that have more than (2/3)° 2n vertices. Notice that |T;| <
(3/2)%. Denote by G; the disjoint union of the induced subgraphs in S;.

We use Theorem 4 for estimating the number of edges deleted throughout
the decomposition algorithm. Substituting the upper bound for cr(H) and using
Jensen’s inequality for the concave function f(z) = z'~/12%  we have for every

i=0,1,...,t,
H)2-1/64 m = e /mN\ & o
S Vi < YU (Y E e ()Y ey
HET; HET; HET;
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Denoting by d(v, H) the degree of vertex v in an induced subgraph H, we have

> ZdZ‘vH VT d2(v,Gy)
HeT; \| veV(H vEVG)

</(3/2)i\/n- (d)? < \/ (3/2)".

In the first of the two above inequalities, we use the Cauchy-Schwartz inequality

to get 3o per, vVIH < VITil\/ X per, tr with oy =3 oy gy & (v, H).

By Theorem 4, the total number of edges deleted during this process is

t—1 t—1 t—1
Do bH)<10) 0 Y Vea(H)+2y > [ Y d(uH)
i=0 HET; i=0 HET; i=0 HET; \| veV (H)
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The second inequality uses the earlier upper bounds for o \/cr(H) and

doHer, \/EUEV(H) d?(v, H), the third inequality uses the geometric series for-
mula and the upper bound ¢ < log 3,5 2n, while the last inequality follows from
the fact that m > 10%n.

So at least m/2 edges survive and each of the induced subgraphs in S; has at
most (2/3)! 2n < 2n/(4n?/m) = m/2n vertices. Also G’ has at most 2n vertices,
so using Jensen’s inequality for the convex function g(x) = (”2“), the total number
of vertex pairs lying in a same induced subgraph of S; is less than

2n  (m/2n)>  m

m/2n 2 2’
a contradiction. We conclude that the decomposition algorithm must have found

an induced subgraph H satisfying (4). This completes the proof of Theorem 1.
O

4 Drawings with Edges as z-monotone Curves

It is known that Theorem 3 does not hold without the assumption that any two
curves intersect in at most a constant number of points. Using a construction
from [F06], Pach and G. Téth [PT06] constructed for every n € IN, a collection
of n z-monotone curves whose intersection graph is dense but every bi-clique it
contains has at most O(n/logn) vertices. Theorem 2 shows a stronger construc-
tion holds: the curves are edges in an z-monotone drawing of a dense bipartite
graph, where ©(n?) curves have only n distinct endpoints.

The proof of Theorem 3 builds on a crucial observation: Golumbic et al. [GRU83|
noticed a close connection between intersection graphs of z-monotone curves and
partially ordered sets. Consider n continuous functions f; : [0, 1] — R. The graph
of every continuous real function is clearly an x-monotone curve. Define the par-
tial order < on the set of functions by f; < f; if and only if f;(z) < f;(z) for all
x € ]0,1]. Two z-monotone curves intersect if and only if they are incomparable
under this partial order <.

Lemma 1. [GRUS83] The elements of any partially ordered set ({1,2,...,n}, <)
can be represented by continuous real functions f1, fo, ..., fn defined on the in-
terval [0, 1] such that fi(z) < f;j(z) for every x if and only if i < j (i # 7).

Proof. Let ({1,2,...,n},<) be a partial order, and let IT denote the set con-
sisting of all of its extensions m(1) < m(2) < ... < 7(n) to a total order. Clearly,
every element of I] is a permutation of the numbers 1,2, ... n. Let my, 7o, ..., 7
be an arbitrary labeling of the elements of IT. Assign distinct points xj € [0, 1]
to each 7 such that 0 = 21 < 29 < ... <z = 1. For each ¢ (1 <i < n), define
a continuous, piecewise linear function f;(x), as follows. For any k (1 < k < ¢),
set fi(zy,) = m; ' (i), and let f;(x) be linear over each interval [y, T541].
Obviously, whenever i < j for some i # j, we have that 7, ' (i) < 7, ' ()
for every k, and hence f;(z) < f;(z) for all z € [0,1]. On the other hand, if ¢



and j are incomparable under the partial order <, there are indices k and &k’
(1 <k # Kk < m)such that fi(zx) < fj(zx) and f;(zx) > fj(xw), therefore,
by continuity, the graphs of f; and f; must cross at least once in the interval
(g, g ). This completes the proof. O

The following lemma is the key for the proof of Theorem 2. It presents a
partially ordered set of size n? whose incomparability graph contains bi-cliques
of size at most O(n?/logn), yet it can be represented with z-monotone curves
having only 2n endpoints.

Lemma 2. For everyn € IN, there is a partially ordered set P with n® elements
satisfying the following properties

1. every bi-clique in the incomparability graph of P has size at most O(n?/logn),
2. there are equitable partitions P=P,U...UP, and P=0Q1U...UQ,
such that
(a) for each i, there is a linear extension of P where the elements of P; are
consecutive,
(b) there is a linear extension of P where the elements of each Q; are con-
secutive, and
(c) for every i and j, we have |P;NQ,;| = 1.

‘We now prove Theorem 2, pending the proof of Lemma 2. Note that it suffices
to prove Theorem 2 in the case m = n?/4, that is, when G is a bi-clique. By
deleting some of the edges of this construction, we obtain a construction for
every m < n?/4, since edge deletions also decrease the intersection graph of the
edges. So it is enough to prove the following.

Lemma 3. There is an x-monotone drawing of K, ,, such that every bi-clique
in the intersection graph of the edges has size at most O(n?/logn).

Proof. Let P be a poset described in Lemma 2. Represent P with z-monotone
curves as in the proof of Lemma 1 such that the last linear extension 7; has
property (b) of Lemma 2, that is, the elements of each @); are consecutive in .

We transform the n? z-monotone curves representing P into an z-monotone
drawing of K, ,. We introduce two vertex classes, each of size n, as follows.
Along the line x = 1, the right endpoints of the z-monotone curves in each
(Q); are consecutive. Introduce a vertex on x = 1 for each @;, and make it the
common right endpoint of all curves in @; by deforming the curves over the
interval (z;_1,1] but keeping their intersection graph intact. These n vertices
along the line = 1 form one vertex class of K, .

For each i, there is a vertical line x = x; along which the z-monotone curves
in P; are consecutive. Introduce a vertex for each P; on line x = x;, and make
it the common left endpoint of all curves in P; by deforming the curves over
the interval [z;,x;11) and erasing their portion over the interval [0, ;). These
n vertices, each lying on a line = z;, form the second vertex class of K, .
After truncating and slightly deforming the n? curves representing P, we have
constructed an z-monotone drawing of K, .



Note that the intersection graph of the edges of this drawing of K, , is a
subgraph of the incomparability graph of P, so every bi-clique of the intersection
graph of the edges has size at most O(n?/logn). a

Proof of Lemma 2. We start out with introducing some notation for directed
graphs. For a subset S of vertices in a directed graph G, let N4 (S) denote the
set of vertices  in G such that there is a vertex s € S with an edge (s,z) in G.
Similarly, N_(S) is the set of vertices y in G such that there is a vertex s € S
with an edge (y,s) in G. A directed graph has path-girth k if k is the smallest
positive integer for which there are vertices z and y having at least two distinct
walks of length & from x to y. Equivalently, denoting the adjacency matrix of G
by Ag, it has path-girth k if A}, ... ,Alé_l are all 0-1 matrices, but the matrix
A’g’; has an entry greater than 1.

A directed graph H = (X, E) is an e-expander if both N, (S) and N_(S) has
size at least (1 4 ¢€)|S| for all S C V with 1 < |S| < |[V|/2. An ezpander is a
directed graph with constant expansion.

We will use that for every v € IN, there is a constant degree expander with
v vertices and path-girth (2(logv). This can be proved by a slight alteration
of a random constant degree directed graph. We suppose for the remainder of
the proof that H = (X, E) is an e-expander with v vertices, maximal degree at
most d, and path-girth greater than clog v, where €, ¢, and d are fixed positive
constants.

For every a € IN, we define a poset P(a, H) with ground set X x {1,2,...,a},
generated by the relations (j1,k1) < (j2, k2) whenever ko = k1 + 1 and (41, j2)
is an edge of H.

Let Py = P(a, H) with a = |min (c, (10logd)~") - logv|. One can show, by
essentially the same argument as in [F06], that the partially ordered set Py has
the following three properties.

1. Py has a|X| = ©(vlogv) elements,

2. each element of Py is comparable with fewer than d* < v'/10 other elements
of Py, and

3. the largest bi-clique in the incomparability graph of P, has size at most
O(IX|) = O(v).

Since the path-girth of H is greater than a, if x,y,z,w € P, satisfy both
w <y <xand w < z < z, then y and z must be comparable. That is, the poset
in Figure 1(a) cannot be a subposet of Py. The poset P required for Lemma 2
will be a linear size subposet of Py. We next describe the construction of P.

A chain is a set of pairwise comparable elements. The maximum chains in
Py each have size a, having one element from each of X x {i}, i = 1,2,...,a.
Greedily choose as many disjoint chains of size a as possible from F,, denote
the set of chains by C = {C4,...,Cy}, where w is the number of chains. By the
expansion property of H, we have w = O(|X|) = O(v).

We choose greedily disjoint subsets P, ..., Pn, of P, each of which is the
union of i = O (y/v) chains of C. Each P; has the property that, besides the
comparable pairs within each of the the h chains, there are no other comparable
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Fig. 1. (a) The Hasse diagram of a four element excluded subposet of Py. (b) A linear
extension of P where B; < P; < A;.

pairs in P;. We can choose the h chains of each P; greedily: after choosing the
kB chain in P;, we have to choose the (k + 1)th chain such that none of its
elements are comparable with any element of the first k& chains of P;. Since at
most kav'/10 < hav'/10 = v3/5+°() of the w — (i — 1)h — k = O(v) remaining
chains contain an element comparable with the first k chains of P;, almost any
of the remaining chains can be chosen as the (k + l)th chain of P;. Finally,
let P = Py U...U Pp,. As mentioned earlier, we have |P| = ©(|Fy]), and the
largest bi-clique in the incomparability graph of P is of size O(|Py|/log|FPo|) =
O(|P|/log |P]).

Since the poset in Fig. 1(a) is not a subposet of Py, no element of Py \ Cj,
Cy € C, can be both greater than an element of Cj, and less than another element
of C. By construction, if two elements of P; are comparable, then they belong
to the same chain. Therefore, no element of P\ P; can be both greater than an
element of P; and less than another element of P;.

Consider the partition P = A; U P; U B;, where an element a € P\ P; is
in A; if and only if there is an element z € P; such that z < a. There is a
linear extension of P in which the elements of A; are the largest, followed by the
elements of P;, and the elements of B; are the smallest (see Fig. 1(b)). This is
because no element of P\ P; can be both greater than an element of P; and less
than another element of P;.

Partition P into subsets P = X;U...UX,, where X consists of the elements
(j,z) € P with z € X. Each X contains exactly h%a elements, h elements from
each P;. Arbitrarily partition each X; into h sets X; = Qj_1)p41 U ... U Qjn
such that each @ contains one element from each P;. Since the elements in each
X, form an antichain (a set of pairwise incomparable elements), any linear order
of the elements of P for which the elements of X; are smaller than the elements
of X for 1 < j < k < a is a linear extension of P. Hence, there is a linear
extension of P such that, for each j, the elements of every (); are consecutive.

We have established that P has all the desired properties. We can choose v
such that n < ha and ha = O(n), so v = O(n?/logn). If ha is not exactly n, we
may simply take the subposet whose elements are (PyU...UP,)N(Q1U...UQ,).
This completes the proof of Lemma 2. O



10

5 Concluding Remarks

We can prove a weaker form of Theorem 1 for z-monotone curves, since our
main tools (Theorems 3 and 4) are available in weaker forms in this case. It
was recently shown in [FPTO07b] that there is a constant ¢ > 0 such that the
intersection graph G of any n z-monotone curves, at least en? pairs of which
intersect, contains a bi-clique with at least ce?n/(log % log n) vertices. The Cross-
ing Lemma implies that the intersection graph of the edges of a dense topological
graph is dense, so we have the following corollary.

Corollary 1. For every xz-monotone drawing of a graph G = (V,E) with n
vertices and m = 2(n?) edges, there are disjoint subsets E1,Ey C E, each of
size at least £2(n?/logn), such that every edge in Ey crosses all edges in Es.

Corollary 1 is tight up to a constant factor by Theorem 2. Similar to Theo-
rem 4, Kolman and Matousek [KMO04] proved an upper bound on the bisection
width in terms of the pairwise crossing number and the L, norm of the degree
sequence di,ds, ..., dy:

b(G)=0 pair-cr(G) +

Using the same strategy as in the proof of Theorem 1, with the above men-
tioned tools instead of Theorems 3 and 4, it is straightforward to establish the
following.

Theorem 5. For every x-monotone drawing of a graph G = (V, E) with n ver-
tices and m > 3n edges, there are disjoint subsets Ey1, Fo C E, each of cardinality
at least m2/(n21og® °M n), such that every edge in Ey crosses every edge in E.

In a special case, we can prove the same bound as in Theorem 1.

Proposition 1. Given a bipartite graph G with n vertices and m > 3n edges,
and an x-monotone drawing where the vertices of the two vertex classes lie on
the lines x = 0 and x = 1, respectively, then the intersection graph of the edges
contains a bi-clique of size 2(m?/n?).

Proof. Consider the two dimensional partial order < on the edges of GG, where an
edge e; is greater than another edge es if and only if, for j = 0,1 the endpoint of
e1 on the line x = j lies above that of e5. Two edges of G must cross if they are
incomparable by the partial order <. Also notice that there is an z-monotone
drawing of G with the vertices in the same position where two edges of G cross
if and only if they are incomparable under <. Indeed, this is done by drawing
the edges as straight line segments.

By the Crossing Lemma, there are at least £2(m3/n?) pairs of crossing edges
in this straight-line drawing of G. Hence, there are at least 2(m3/n?) pairs of
incomparable elements under the partial order <. In [FPT07b] (Theorem 3), we
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prove that any incomparability graph with m vertices and at least dm edges
contains a bi-clique of size at least d, so the intersection graph of the edges of G
must contain a bi-clique of size 2(m?/n?). a

Proposition 1 implies that Theorem 1 holds for z-monotone drawings if the
vertex set lies in a bounded number of vertical lines. Indeed, an z-monotone
drawing of a graph with all vertices contained in the union of d vertical lines
can be partitioned into (£) z-monotone drawings of bipartite graphs with each

vertex class lying on a vertical line.

Monotone properties. If a graph is drawn with at most k crossings between any
two edges and the graph has some additional property, then one may improve
on the bound of Theorem 1.

A graph property P is monotone if whenever a graph G satisfies P, every
subgraph of G also satisfies P, and whenever graphs G; and G satisfy P, then
their disjoint union also satisfies P. The extremal number ex(n,P) denotes the
maximum number of edges that a graph with property P on n vertices can have.
For graphs satisfying a monotone graph property, the bound (1) of the Cross-
ing Lemma can be improved [PST00]. In particular, if P is a monotone graph
property and ex(n,P) = O(n'*®) for some o > 0, then there exist constants
¢,¢ > 0 such that for every graph G with n vertices, m > enlog®n edges, and
property P, the crossing number is at least cr(G) > ¢/m?T1/ /p'*+1/ Further-
more, if ex(n, P) = O(n'*®), then this bound is tight up to a constant factor.
A straightforward calculation shows, using the same strategy as in the previous
section, the following strengthening of Theorem 1.

Theorem 6. Let P be a monotone graph property such that ex(n, P) = O(n'*+®)
for some o > 0. For every k € IN, there exist positive constants ¢ and cy, such that
for any drawing of a graph G = (V, E) satisfying property P, having n vertices
and m > enlog?n edges, no two of which intersecting in more than k points,
there are disjoint subsets Ey, By C E, each of cardinality at least ci(m/n)' T/,
such that every edge in E1 crosses all edges in Fs.
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