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Abstract. The celebrated Crossing Lemma states that, in every draw-
ing of a graph with n vertices and m ≥ 4n edges there are at least
Ω(m3/n2) pairs of crossing edges; or equivalently, there is an edge that
crosses Ω(m2/n2) other edges. We strengthen the Crossing Lemma for
drawings in which any two edges cross in at most O(1) points.

We prove for every k ∈ N that every graph G with n vertices and
m ≥ 3n edges drawn in the plane such that any two edges intersect in
at most k points has two disjoint subsets of edges, E1 and E2, each of
size at least ckm2/n2, such that every edge in E1 crosses all edges in E2,
where ck > 0 only depends on k. This bound is best possible up to the
constant ck for every k ∈ N. We also prove that every graph G with n
vertices and m ≥ 3n edges drawn in the plane with x-monotone edges has
disjoint subsets of edges, E1 and E2, each of size Ω(m2/(n2 polylog n)),
such that every edge in E1 crosses all edges in E2. On the other hand,
we construct x-monotone drawings of bipartite dense graphs where the
largest such subsets E1 and E2 have size O(m2/(n2 log(m/n))).

1 Introduction

The crossing number cr(G) of a graph4 G is the minimum number of crossings
in a drawing of G. A drawing of a graph G is a planar embedding which maps
the vertices to distinct points in the plane and each edge to a simple continuous
arc connecting the corresponding vertices but not passing through any other
vertex. A crossing is a pair of curves and a common interior point between the
two curves (the intersections at endpoints or vertices do not count as cross-
ings). A celebrated result of Ajtai et al. [ACNS82] and Leighton [L84], known as
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the Crossing Lemma, states that the crossing number of every graph G with n
vertices and m ≥ 4n edges satisfies

cr(G) = Ω

(
m3

n2

)
. (1)

The best known constant coefficient is due to [PRTT06]. Leighton [L84] was mo-
tivated by applications to VLSI design. Szekély [S97] used the Crossing Lemma
to give simple proofs of Szemerédi-Trotter bound on the number of point-line
incidences [ST83], a bound on Erdős’s unit distance problem and Erdős’s dis-
tinct distance problem [E46]. The Crossing Lemma has since found many im-
portant applications, in combinatorial geometry [D98,KT04,PS98,PT02,STT02],
and number theory [ENR00,TV06].

The pairwise crossing number pair-cr(G) of a graph G is the minimum num-
ber of pairs of crossing edges in a drawing of G. The lower bound (1) also holds
for the pairwise crossing number with the same proof. It follows that in every
drawing of a graph with n vertices and m ≥ 4n edges, there is an edge that
crosses at least Ω(m2/n2) other edges. Conversely, if in every drawing of every
graph with m ≥ 3n edges some edge crosses Ω(m2/n2) others, then we have
pair-cr(G) = Ω(m3/n2) for every graph G with m ≥ 4n edges. Indeed, by suc-
cessively removing edges that cross many other edges, we obtain the desired
lower bound for the total number of crossing pairs. In this note, we prove a
bipartite strengthening of this result for drawings where any two edges intersect
in at most a constant number of points.

Theorem 1. For every k ∈ IN, there is a constant ck > 0 such that for every
drawing of a graph G = (V, E) with n vertices and m ≥ 3n edges, no two of
which intersect in more than k points, there are disjoint subsets E1, E2 ⊂ E,
each of size at least ckm2/n2, such that every edge in E1 crosses all edges in E2.

We have k = 1 in straight-line drawings, k = (` + 1)2 if every edge is a polyline
with up to ` bends, and k = d2 if the edges are sufficiently generic algebraic
curves (e.g., splines) of degree at most d. Note also that every graph G has a
drawing with cr(G) crossings in which any two edges cross at most once [V05].

The dependence on k in Theorem 1 is necessary: We show that one cannot
expect bipartite crossing families of edges of size Ω(m2/n2) if any two edges
may cross arbitrarily many times, even if the graph drawings are restricted to
be x-monotone. An x-monotone curve is a continuous arc that intersects every
vertical line in at most one point. A drawing of a graph is x-monotone if every
edge is mapped to an x-monotone curve.

Theorem 2. For every n,m ∈ N with m ≤ n2/4, there is a bipartite graph
G = (V, E) with n vertices, m edges, and an x-monotone drawing such that any
two disjoint subsets E1, E2 ⊂ E of equal size |E1| = |E2| = t, where every edge
in E1 crosses all edges in E2, satisfy

t = O

(
m2

n2 log(m/n)

)
.
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We present the tools used for the bipartite strengthening of the Crossing
Lemma in the next section. Theorem 1 is proved in Section 3. Our construction
of x-monotone drawings are discussed in Section 4. Finally, Section 5 contains a
weaker analogue of Theorem 1 for x-monotone drawings and a further strength-
ening of the Crossing Lemma for graphs satisfying some monotone property.

2 Tools

The proof of Theorem 1 relies on a recent result on the intersection pattern of
k-intersecting curves. For a collection C of curves in the plane, the intersection
graph is defined on the vertex set C, two elements of C are adjacent if the
(relative) interiors of the corresponding curves intersect. A complete bipartite
graph is balanced if the vertex classes differ in size by at most one. For brevity,
we call a balanced complete bipartite graph a bi-clique.

Theorem 3. [FPT07a] Given m curves in the plane such that at least εm2 pairs
intersect and any two curves intersect in at most k points, their intersection
graph contains a bi-clique with at least ckε64m vertices where ck > 0 depends
only on k.

If follows from the Crossing Lemma that in every drawing of a dense graph,
the intersection graph of the edges is also dense. Therefore, Theorem 3 implies
Theorem 1 in the special case that G is dense. This connection was first observed
by Pach and Solymosi [PS01] who proved Theorem 1 for straight-line drawings
of dense graphs.

If a graph G is not dense, we decompose G recursively into induced subgraphs
with an algorithm reminiscent of [PST00] until one of the components is dense
enough so that Theorem 3, like before, implies Theorem 1. The decomposition
algorithm successively removes bisectors, and we use Theorem 4 below to keep
the total number of deleted edges under control.

The bisection width, denoted by b(G), is defined for every simple graph G
with at least two vertices. It is the smallest nonnegative integer such that there
is a partition of the vertex set V = V1 ∪∗ V2 with 1

3 · |V | ≤ Vi ≤ 2
3 · |V | for

i = 1, 2, and |E(V1, V2)| = b(G). Pach, Shahrokhi, and Szegedy [PSS96] gave an
upper bound on the bisection width in terms of the crossing number and the
L2-norm of the degree vector (it is an easy consequence of the weighted version
of the famous Lipton-Tarjan separator theorem [LT79,GM90]).

Theorem 4. [PSS96] Let G be a graph with n vertices of degree d1, d2, . . . , dn.
Then

b(G) ≤ 10
√

cr(G) + 2

√√√√
n∑

i=1

d2
i (G). (2)
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3 Proof of Theorem 1

Let G = (V,E) be a graph with n vertices and m ≥ 3n edges. Since a graph with
more than 3n−6 edges cannot be planar, it must have crossing edges. Hence, as
long as 3n ≤ m < 106n, Theorem 1 holds with |E1| = |E2| = 1 ≥ 10−12m2/n2.
We assume m ≥ 106n in the remainder of the proof.

Let D be a drawing of G. To use the full strength of Theorem 4, we transform
the drawing D into a drawing D′ of a graph G′ = (V ′, E′) with m edges, at most
2n vertices, and maximum degree at most d2m/ne, so that the intersection graph
of E′ is isomorphic to that of E. If the degree of a vertex v ∈ V is above the
average degree d̄ = 2m/n, split v into dd/d̄e vertices v1, . . . , vdd/d̄e arranged along
a circle of small radius centered at v. Denote the edges of G incident to v by
(v, w1), . . . , (v, wd) in clockwise order in the drawing D. In G′, connect wj with
vi if and only if d̄(i − 1) < j ≤ d̄i, where 1 ≤ j ≤ d and 1 ≤ i ≤ dd/d̄e. Two
edges of G′ cross if and only if the corresponding edges of G cross. Also, letting
d(v) denote the degree of vertex v in G′, the number of vertices of G′ is

∑

v∈V

dd(v)/d̄e <
∑

v∈V

1 + d(v)/d̄ = 2n.

Hence the resulting G′ and D′ have all the required properties.
We will decompose G′ recursively into induced subgraphs until each induced

subgraph is either a singleton or it has so many pairs of crossing edges that
Theorem 3 already implies Theorem 1. Theorem 3 implies that the intersection
graph of the edges of an induced subgraph H of G′ contains a bi-clique of size

at least ck

(
p(H)
e(H)2

)64

e(H), where p(H) is the number of pairs of crossing edges
in H in the drawing D′, e(H) is the number of edges of H, and ck > 0 is the
constant depending on k only in Theorem 3. So the intersection graph of the
edge set of G′ (and hence also of G) contains a bi-clique of size Ωk(m2/n2) if
there is an induced subgraph H of G′ with

εk
m2

n2
≤

(
p(H)
e(H)2

)64

e(H), (3)

where εk > 0 is any constant depending on k only. We use εk = (109k)−64 for
convenience. Assume, to the contrary, that (3) does not hold for any induced
subgraph H of G′.

Every induced subgraph H has at most kp(H) crossings in the drawing D′,
hence cr(H) ≤ kp(H). It is enough to find an induced subgraph H for which

e(H)2−1/64

109

(m

n

) 1
32 ≤ cr(H), (4)

since this combined with cr(H) ≤ kp(H) implies (3).
Next, we decompose the graph G′ of at most 2n vertices and m edges with

the following algorithm.
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Decomposition Algorithm

1. Let S0 = {G′} and i = 0.
2. While (3/2)i ≤ 4n2/m and no H ∈ Si that satisfies (4), do

Set i := i + 1. Let Si := ∅. For every H ∈ Si−1, do
• If |V (H)| ≤ (2/3)i 2n, then let Si := Si ∪ {H};
• otherwise split H into induced subgraphs H1 and H2 along a bisector

of size b(H), and let Si := Si ∪ {H1,H2}.
3. Return Si.

For every i, every graph H ∈ Si satisfying the end condition has at most
|V (H)| ≤ (2/3)i 2n vertices. Hence, the algorithm terminates in t ≤ log(3/2) 2n
rounds and it returns a set St of induced subgraphs. Let Ti ⊂ Si be the set of
those graphs in Si that have more than (2/3)i 2n vertices. Notice that |Ti| ≤
(3/2)i. Denote by Gi the disjoint union of the induced subgraphs in Si.

We use Theorem 4 for estimating the number of edges deleted throughout
the decomposition algorithm. Substituting the upper bound for cr(H) and using
Jensen’s inequality for the concave function f(x) = x1−1/128, we have for every
i = 0, 1, . . . , t,

∑

H∈Ti

√
cr(H) ≤

∑

H∈Ti

√
e(H)2−1/64

109

(m

n

) 1
32

= 10−
9
2

(m

n

) 1
64 ∑

H∈Ti

e(H)1−
1

128

≤ 10−
9
2

(m

n

) 1
64 |Ti| 1

128 m1− 1
128 ≤ 10−

9
2

(
3
2

) i
128 m1+1/128

n1/64
.

Denoting by d(v, H) the degree of vertex v in an induced subgraph H, we have

∑

H∈Ti

√ ∑

v∈V (H)

d2(v,H) ≤
√
|Ti|

√ ∑

v∈V (Gi)

d2(v, Gi)

≤
√

(3/2)i

√
n · (d̄)2 ≤ 2m√

n

√
(3/2)i.

In the first of the two above inequalities, we use the Cauchy-Schwartz inequality
to get

∑
H∈Ti

√
xH ≤

√
|Ti|

√∑
H∈Ti

xH with xH =
∑

v∈V (H) d2(v,H).

By Theorem 4, the total number of edges deleted during this process is

t−1∑

i=0

∑

H∈Ti

b(H) ≤ 10
t−1∑

i=0

∑

H∈Ti

√
cr(H) + 2

t−1∑

i=0

∑

H∈Ti

√ ∑

v∈V (H)

d2(v, H)

≤ 10−
7
2
m1+1/128

n1/64

t−1∑

i=0

(3/2)
i

128 + 4
m√
n

t−1∑

i=0

√
(3/2)i

≤ m1+1/128

4n1/64

(
n2

m

)1/128

+ 100m1/2n1/2 ≤ m

2
.
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The second inequality uses the earlier upper bounds for
∑

H∈Ti

√
cr(H) and

∑
H∈Ti

√∑
v∈V (H) d2(v, H), the third inequality uses the geometric series for-

mula and the upper bound t ≤ log(3/2) 2n, while the last inequality follows from
the fact that m ≥ 106n.

So at least m/2 edges survive and each of the induced subgraphs in St has at
most (2/3)t 2n ≤ 2n/(4n2/m) = m/2n vertices. Also G′ has at most 2n vertices,
so using Jensen’s inequality for the convex function g(x) =

(
x
2

)
, the total number

of vertex pairs lying in a same induced subgraph of St is less than

2n

m/2n

(m/2n)2

2
=

m

2
,

a contradiction. We conclude that the decomposition algorithm must have found
an induced subgraph H satisfying (4). This completes the proof of Theorem 1.
2

4 Drawings with Edges as x-monotone Curves

It is known that Theorem 3 does not hold without the assumption that any two
curves intersect in at most a constant number of points. Using a construction
from [F06], Pach and G. Tóth [PT06] constructed for every n ∈ IN, a collection
of n x-monotone curves whose intersection graph is dense but every bi-clique it
contains has at most O(n/ log n) vertices. Theorem 2 shows a stronger construc-
tion holds: the curves are edges in an x-monotone drawing of a dense bipartite
graph, where Θ(n2) curves have only n distinct endpoints.

The proof of Theorem 3 builds on a crucial observation: Golumbic et al. [GRU83]
noticed a close connection between intersection graphs of x-monotone curves and
partially ordered sets. Consider n continuous functions fi : [0, 1] → R. The graph
of every continuous real function is clearly an x-monotone curve. Define the par-
tial order ≺ on the set of functions by fi ≺ fj if and only if fi(x) < fj(x) for all
x ∈ [0, 1]. Two x-monotone curves intersect if and only if they are incomparable
under this partial order ≺.

Lemma 1. [GRU83] The elements of any partially ordered set ({1, 2, . . . , n},≺)
can be represented by continuous real functions f1, f2, . . . , fn defined on the in-
terval [0, 1] such that fi(x) < fj(x) for every x if and only if i ≺ j (i 6= j).

Proof. Let ({1, 2, . . . , n},≺) be a partial order, and let Π denote the set con-
sisting of all of its extensions π(1) ≺ π(2) ≺ . . . ≺ π(n) to a total order. Clearly,
every element of Π is a permutation of the numbers 1, 2, . . . , n. Let π1, π2, . . . , πt

be an arbitrary labeling of the elements of Π. Assign distinct points xk ∈ [0, 1]
to each πk such that 0 = x1 < x2 < . . . < xt = 1. For each i (1 ≤ i ≤ n), define
a continuous, piecewise linear function fi(x), as follows. For any k (1 ≤ k ≤ t),
set fi(xk) = π−1

k (i), and let fi(x) be linear over each interval [xk, xk+1].
Obviously, whenever i ≺ j for some i 6= j, we have that π−1

k (i) ≺ π−1
k (j)

for every k, and hence fi(x) < fj(x) for all x ∈ [0, 1]. On the other hand, if i
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and j are incomparable under the partial order ≺, there are indices k and k′

(1 ≤ k 6= k′ ≤ m) such that fi(xk) < fj(xk) and fi(xk) > fj(xk′), therefore,
by continuity, the graphs of fi and fj must cross at least once in the interval
(xk, xk′). This completes the proof. 2

The following lemma is the key for the proof of Theorem 2. It presents a
partially ordered set of size n2 whose incomparability graph contains bi-cliques
of size at most O(n2/ log n), yet it can be represented with x-monotone curves
having only 2n endpoints.

Lemma 2. For every n ∈ IN, there is a partially ordered set P with n2 elements
satisfying the following properties

1. every bi-clique in the incomparability graph of P has size at most O(n2/ log n),
2. there are equitable partitions P = P1 ∪ . . . ∪ Pn and P = Q1 ∪ . . . ∪Qn

such that
(a) for each i, there is a linear extension of P where the elements of Pi are

consecutive,
(b) there is a linear extension of P where the elements of each Qj are con-

secutive, and
(c) for every i and j, we have |Pi ∩Qj | = 1.

We now prove Theorem 2, pending the proof of Lemma 2. Note that it suffices
to prove Theorem 2 in the case m = n2/4, that is, when G is a bi-clique. By
deleting some of the edges of this construction, we obtain a construction for
every m ≤ n2/4, since edge deletions also decrease the intersection graph of the
edges. So it is enough to prove the following.

Lemma 3. There is an x-monotone drawing of Kn,n such that every bi-clique
in the intersection graph of the edges has size at most O(n2/ log n).

Proof. Let P be a poset described in Lemma 2. Represent P with x-monotone
curves as in the proof of Lemma 1 such that the last linear extension πt has
property (b) of Lemma 2, that is, the elements of each Qj are consecutive in πt.

We transform the n2 x-monotone curves representing P into an x-monotone
drawing of Kn,n. We introduce two vertex classes, each of size n, as follows.
Along the line x = 1, the right endpoints of the x-monotone curves in each
Qj are consecutive. Introduce a vertex on x = 1 for each Qj , and make it the
common right endpoint of all curves in Qj by deforming the curves over the
interval (xt−1, 1] but keeping their intersection graph intact. These n vertices
along the line x = 1 form one vertex class of Kn,n.

For each i, there is a vertical line x = xi along which the x-monotone curves
in Pi are consecutive. Introduce a vertex for each Pi on line x = xi, and make
it the common left endpoint of all curves in Pi by deforming the curves over
the interval [xi, xi+1) and erasing their portion over the interval [0, xi). These
n vertices, each lying on a line x = xi, form the second vertex class of Kn,n.
After truncating and slightly deforming the n2 curves representing P , we have
constructed an x-monotone drawing of Kn,n.
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Note that the intersection graph of the edges of this drawing of Kn,n is a
subgraph of the incomparability graph of P , so every bi-clique of the intersection
graph of the edges has size at most O(n2/ log n). 2

Proof of Lemma 2. We start out with introducing some notation for directed
graphs. For a subset S of vertices in a directed graph G, let N+(S) denote the
set of vertices x in G such that there is a vertex s ∈ S with an edge (s, x) in G.
Similarly, N−(S) is the set of vertices y in G such that there is a vertex s ∈ S
with an edge (y, s) in G. A directed graph has path-girth k if k is the smallest
positive integer for which there are vertices x and y having at least two distinct
walks of length k from x to y. Equivalently, denoting the adjacency matrix of G
by AG, it has path-girth k if A1

G, . . . , Ak−1
G are all 0-1 matrices, but the matrix

Ak
G has an entry greater than 1.

A directed graph H = (X, E) is an ε-expander if both N+(S) and N−(S) has
size at least (1 + ε)|S| for all S ⊂ V with 1 ≤ |S| ≤ |V |/2. An expander is a
directed graph with constant expansion.

We will use that for every v ∈ IN, there is a constant degree expander with
v vertices and path-girth Ω(log v). This can be proved by a slight alteration
of a random constant degree directed graph. We suppose for the remainder of
the proof that H = (X, E) is an ε-expander with v vertices, maximal degree at
most d, and path-girth greater than c log v, where ε, c, and d are fixed positive
constants.

For every a ∈ IN, we define a poset P (a,H) with ground set X×{1, 2, . . . , a},
generated by the relations (j1, k1) ≺ (j2, k2) whenever k2 = k1 + 1 and (j1, j2)
is an edge of H.

Let P0 = P (a,H) with a = bmin
(
c, (10 log d)−1

) · log vc. One can show, by
essentially the same argument as in [F06], that the partially ordered set P0 has
the following three properties.

1. P0 has a|X| = Θ(v log v) elements,
2. each element of P0 is comparable with fewer than da ≤ v1/10 other elements

of P0, and
3. the largest bi-clique in the incomparability graph of P0 has size at most

O(|X|) = O(v).

Since the path-girth of H is greater than a, if x, y, z, w ∈ P0 satisfy both
w ≺ y ≺ x and w ≺ z ≺ x, then y and z must be comparable. That is, the poset
in Figure 1(a) cannot be a subposet of P0. The poset P required for Lemma 2
will be a linear size subposet of P0. We next describe the construction of P .

A chain is a set of pairwise comparable elements. The maximum chains in
P0 each have size a, having one element from each of X × {i}, i = 1, 2, . . . , a.
Greedily choose as many disjoint chains of size a as possible from P0, denote
the set of chains by C = {C1, . . . , Cw}, where w is the number of chains. By the
expansion property of H, we have w = Θ(|X|) = Θ(v).

We choose greedily disjoint subsets P1, . . . , Pha of P , each of which is the
union of h = Θ (

√
v) chains of C. Each Pi has the property that, besides the

comparable pairs within each of the the h chains, there are no other comparable
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x

w

yz

(a) (b)

Ai

Pi

Bi

a

x

Fig. 1. (a) The Hasse diagram of a four element excluded subposet of P0. (b) A linear
extension of P where Bi ≺ Pi ≺ Ai.

pairs in Pi. We can choose the h chains of each Pi greedily: after choosing the
kth chain in Pi, we have to choose the (k + 1)th chain such that none of its
elements are comparable with any element of the first k chains of Pi. Since at
most kav1/10 ≤ hav1/10 = v3/5+o(1) of the w − (i − 1)h − k = Θ(v) remaining
chains contain an element comparable with the first k chains of Pi, almost any
of the remaining chains can be chosen as the (k + 1)th chain of Pi. Finally,
let P = P1 ∪ . . . ∪ Pha. As mentioned earlier, we have |P | = Θ(|P0|), and the
largest bi-clique in the incomparability graph of P is of size O(|P0|/ log |P0|) =
O(|P |/ log |P |).

Since the poset in Fig. 1(a) is not a subposet of P0, no element of P0 \ Ck,
Ck ∈ C, can be both greater than an element of Ck and less than another element
of Ck. By construction, if two elements of Pi are comparable, then they belong
to the same chain. Therefore, no element of P \ Pi can be both greater than an
element of Pi and less than another element of Pi.

Consider the partition P = Ai ∪ Pi ∪ Bi, where an element a ∈ P \ Pi is
in Ai if and only if there is an element x ∈ Pi such that x ≺ a. There is a
linear extension of P in which the elements of Ai are the largest, followed by the
elements of Pi, and the elements of Bi are the smallest (see Fig. 1(b)). This is
because no element of P \Pi can be both greater than an element of Pi and less
than another element of Pi.

Partition P into subsets P = X1∪ . . .∪Xa, where Xj consists of the elements
(j, x) ∈ P with x ∈ X. Each Xj contains exactly h2a elements, h elements from
each Pi. Arbitrarily partition each Xj into h sets Xj = Q(j−1)h+1 ∪ . . . ∪ Qjh

such that each Qk contains one element from each Pi. Since the elements in each
Xj form an antichain (a set of pairwise incomparable elements), any linear order
of the elements of P for which the elements of Xj are smaller than the elements
of Xk for 1 ≤ j < k ≤ a is a linear extension of P . Hence, there is a linear
extension of P such that, for each j, the elements of every Qj are consecutive.

We have established that P has all the desired properties. We can choose v
such that n ≤ ha and ha = O(n), so v = Θ(n2/ log n). If ha is not exactly n, we
may simply take the subposet whose elements are (P1∪. . .∪Pn)∩(Q1∪. . .∪Qn).
This completes the proof of Lemma 2. 2
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5 Concluding Remarks

We can prove a weaker form of Theorem 1 for x-monotone curves, since our
main tools (Theorems 3 and 4) are available in weaker forms in this case. It
was recently shown in [FPT07b] that there is a constant c > 0 such that the
intersection graph G of any n x-monotone curves, at least εn2 pairs of which
intersect, contains a bi-clique with at least cε2n/(log 1

ε log n) vertices. The Cross-
ing Lemma implies that the intersection graph of the edges of a dense topological
graph is dense, so we have the following corollary.

Corollary 1. For every x-monotone drawing of a graph G = (V, E) with n
vertices and m = Ω(n2) edges, there are disjoint subsets E1, E2 ⊂ E, each of
size at least Ω(n2/ log n), such that every edge in E1 crosses all edges in E2.

Corollary 1 is tight up to a constant factor by Theorem 2. Similar to Theo-
rem 4, Kolman and Matoušek [KM04] proved an upper bound on the bisection
width in terms of the pairwise crossing number and the L2 norm of the degree
sequence d1, d2, . . . , dn:

b(G) = O





√

pair-cr(G) +

√√√√
n∑

i=1

d2
i (G)


 log n


 .

Using the same strategy as in the proof of Theorem 1, with the above men-
tioned tools instead of Theorems 3 and 4, it is straightforward to establish the
following.

Theorem 5. For every x-monotone drawing of a graph G = (V, E) with n ver-
tices and m ≥ 3n edges, there are disjoint subsets E1, E2 ⊂ E, each of cardinality
at least m2/(n2 log5+o(1) n), such that every edge in E1 crosses every edge in E2.

In a special case, we can prove the same bound as in Theorem 1.

Proposition 1. Given a bipartite graph G with n vertices and m ≥ 3n edges,
and an x-monotone drawing where the vertices of the two vertex classes lie on
the lines x = 0 and x = 1, respectively, then the intersection graph of the edges
contains a bi-clique of size Ω(m2/n2).

Proof. Consider the two dimensional partial order ≺ on the edges of G, where an
edge e1 is greater than another edge e2 if and only if, for j = 0, 1 the endpoint of
e1 on the line x = j lies above that of e2. Two edges of G must cross if they are
incomparable by the partial order ≺. Also notice that there is an x-monotone
drawing of G with the vertices in the same position where two edges of G cross
if and only if they are incomparable under ≺. Indeed, this is done by drawing
the edges as straight line segments.

By the Crossing Lemma, there are at least Ω(m3/n2) pairs of crossing edges
in this straight-line drawing of G. Hence, there are at least Ω(m3/n2) pairs of
incomparable elements under the partial order ≺. In [FPT07b] (Theorem 3), we
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prove that any incomparability graph with m vertices and at least dm edges
contains a bi-clique of size at least d, so the intersection graph of the edges of G
must contain a bi-clique of size Ω(m2/n2). 2

Proposition 1 implies that Theorem 1 holds for x-monotone drawings if the
vertex set lies in a bounded number of vertical lines. Indeed, an x-monotone
drawing of a graph with all vertices contained in the union of d vertical lines
can be partitioned into

(
d
2

)
x-monotone drawings of bipartite graphs with each

vertex class lying on a vertical line.

Monotone properties. If a graph is drawn with at most k crossings between any
two edges and the graph has some additional property, then one may improve
on the bound of Theorem 1.

A graph property P is monotone if whenever a graph G satisfies P, every
subgraph of G also satisfies P, and whenever graphs G1 and G2 satisfy P, then
their disjoint union also satisfies P. The extremal number ex(n,P) denotes the
maximum number of edges that a graph with property P on n vertices can have.
For graphs satisfying a monotone graph property, the bound (1) of the Cross-
ing Lemma can be improved [PST00]. In particular, if P is a monotone graph
property and ex(n,P) = O(n1+α) for some α > 0, then there exist constants
c, c′ > 0 such that for every graph G with n vertices, m ≥ cn log2 n edges, and
property P, the crossing number is at least cr(G) ≥ c′m2+1/α/n1+1/α. Further-
more, if ex(n,P) = Θ(n1+α), then this bound is tight up to a constant factor.
A straightforward calculation shows, using the same strategy as in the previous
section, the following strengthening of Theorem 1.

Theorem 6. Let P be a monotone graph property such that ex(n,P) = O(n1+α)
for some α > 0. For every k ∈ IN, there exist positive constants c and ck such that
for any drawing of a graph G = (V, E) satisfying property P, having n vertices
and m ≥ cn log2 n edges, no two of which intersecting in more than k points,
there are disjoint subsets E1, E2 ⊂ E, each of cardinality at least ck(m/n)1+1/α,
such that every edge in E1 crosses all edges in E2.
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Golumbic, Rotem, and Urrutia [GRU83] to our attention.
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[FPT07a] J. Fox, J. Pach, and C. D. Tóth: Intersection patterns of curves, manuscript,

2007. Cf. http://math.nyu.edu/ pach/publications/justcurves050907.pdf
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