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Abstract

We show that the lines of every arrangement of n lines in the plane can be colored with
O(

√
n/ log n) colors such that no face of the arrangement is monochromatic. This improves

a bound of Bose et al. [1] by a Θ(
√
log n) factor. Any further improvement on this bound

would also improve the best known lower bound on the following problem of Erdős: estimate
the maximum number of points in general position within a set of n points containing no
four collinear points.
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1 Introduction

Given a simple arrangement A of a set L of lines in R2 (no parallel lines and no three lines going
through the same point), decomposing the plane into the set C of cells (i.e. maximal connected
components of R2 \ L), Bose et al. [1] defined a hypergraph Hline-cell = (L,C) with the vertex
set L (the set of lines of A), and each hyperedge c ∈ C being defined by the set of lines forming
the boundary of a cell of A. They initiated the study of the chromatic number of Hline-cell,

and proved that for |L| = n, χ(Hline-cell) = O(
√
n) and χ(Hline-cell) = Ω

(
logn

log logn

)
. In other

words, they proved that the lines of every simple arrangement of n lines can be colored with
O(

√
n) colors so that there is no monochromatic face; furthermore, they provided an intricate

construction of a simple arrangement of n lines that requires Ω
(

logn
log logn

)
colors.

In this short note, we improve their upper bound by a Θ(
√
log n) factor, and extend it to

not necessarily simple arrangements.

Theorem 1. The lines of every arrangement of n lines in the plane can be colored with
O(

√
n/ log n) colors so that no face of the arrangement is monochromatic.

A set of points in the plane is in general position if it does not contain three collinear points.
Let α(S) denote the maximum number of points in general position in a set S of points in the
plane, and let α4(n) be the minimum of α(S) taken over all sets S of n points in the plane
with no four point on a line. Erdős pointed out that α4(n) ≤ n/3 and suggested the problem
of determining or estimating α4(n). Füredi [3] proved that Ω(

√
n log n) ≤ α4(n) ≤ o(n).
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We observe that any improvement of the bound in Theorem 1 would immediately imply a
better lower bound for α4(n). Indeed, suppose that χ(A) ≤ k(n) for any arrangement of n lines,
and let P be a set of n points, no four on a line. Let P ∗ be the dual arrangement of a slightly
perturbed P (according to the usual point-line duality, see, e.g., [2, § 8.2]). Color P ∗ with k(n)
colors such that no face is monochromatic, let S∗ ⊆ P ∗ be the largest color class, and let S be
its dual point set. Observe that the size of S is at least n/k(n) and it does not contain three
collinear points, since the three lines that correspond to any three collinear points in P bound
a face of size three in P ∗.

2 Proof of Theorem 1

Let A be an arrangement of a set L of n lines, decomposing the plane into the set C of cells,
and let Hline-cell be the corresponding hypergraph (defined as in the previous section). We show

that χ(Hline-cell) = O
(√

n
logn

)
.

An independent set in Hline-cell is a set S ⊂ L such that for every c ∈ C, c is not a subset of
S (in other words, no cell of A has its boundary formed only by lines in S). The proof is based
on the following fact.

Theorem 2. There is an absolute constant c > 0 such that the size α(Hline-cell) of the maximum
independent set is at least c

√
n log n.

We color the lines in A so that no face is monochromatic by following the same method as
in [1] (where they used the weaker version of Theorem 2 stating α(Hline-cell) = Ω(

√
n)). That is,

we iteratively find a large independent set of lines (whose existence is guaranteed by Theorem 2),
color them with the same (new) color, and remove them from A.

Clearly, this algorithm produces a valid coloring. We verify, by induction on n, that at
most 2

c

√
n/ log n colors are used in this coloring. We assume the bound is valid for all n ≤ 256

(by taking sufficiently small c > 0). For n > 256, we have log 4 < 1
4 logn. Let i be the

smallest integer such that after i iterations the number of remaining lines is at most n/4.
Since in each of these iterations at least c

√
n
4 log

n
4 ≥ c

√
n
8 log n vertices (lines) are removed,

i ≤ n/4

c
√

n
8
logn

≤ 1√
2c

√
n/ log n. Therefore, by the induction hypothesis the number of colors that

the algorithm uses is at most

i+
2

c

√
n
4

log n
4

≤ 1√
2c

√
n

logn
+
1

c

√
n

log n− 1
4 log n

<
1√
2c

√
n

log n
+

√
4/3

c

√
n

log n
<

2

c

√
n

log n
2

The proof of Theorem 2 is based on a result on independent sets in sparse hypergraphs.
Given a hypergraph H on a vertex set V , the sub-hypergraph H[X] induced by X ⊂ V consists
of all edges of H that are contained in X. A hypergraph H = (V,E) is k-uniform if every
edge e ∈ E has size k. Given a k-uniform hypergraph H and a set S ⊂ V with |S| = k − 1,
the co-degree of S is the number of all vertices v ∈ V such that S ∪ {v} ∈ E. Kostochka
et al. [4] proved that if H is a k-uniform hypergraph, k ≥ 3, with all co-degrees at most d,

d < n/(log n)3(k−1)2 , then α(H) ≥ ck
(
n
d log

n
d

) 1
k−1 , where ck > 0.

In fact, a careful look at their proof reveals the following result, that we state for 3-uniform
hypergraphs, since this is the case that we need.

Lemma 2.1 ([4]). Let H = (V,E) be a 3-uniform hypergraph on |V | = n vertices with all co-
degrees at most d, d < n/(log n)12. Let X be a random subset of V , obtained by choosing each

vertex of V independently with probability p = n−2/5

(d log log logn)3/5
. Let Z be a set chosen uniformly at

random among all the independent sets of H[X]. Then, with high probability |Z| = Ω(
√
n log n).
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With Lemma 2.1 in hand we can now prove Theorem 2.

Proof of Theorem 2: A cell of an arrangement A is called an r-cell, if r lines of L are forming its
boundary. Let H△ ⊂ Hline-cell be the 3-uniform hypergraph with the vertex set L being the set
of lines, and each hyperedge defined by the triple of lines forming the boundary of a 3-cell of A.
Since any two lines can participate in the boundaries of at most four 3-cells of A, all co-degrees
of H are at most d = 4. Now, as in Lemma 2.1, let X be a random subset of L, obtained

by choosing each line in L independently with probability p = n−2/5

(4 log log logn)3/5
. Since there are

O(n2) faces in A and O(n) of them are 2-cells (since every line can bound at most four such
faces), expected number of 2-cells of A in Hline-cell[X] is O(p2n) = o(

√
n log n), and expected

number of r-cells, r ≥ 4, of A in Hline-cell[X] is O(p4n2) = o(
√
n log n). From Lemma 2.1 it

follows that there exists a set Z ⊂ X ⊂ L of size Ω(
√
n log n), that is an independent set of

H△[X], and such that the number of r-cells, r ̸= 3, of A in Hline-cell[Z] is o(
√
n log n). Removing

from Z one vertex (line) for each such r-cell, we obtain an independent set of Hline-cell of size
Ω(

√
n log n). 2
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[4] A. Kostochka, D. Mubayi, J. Verstraëte, On independent sets in hypergraphs, Random Structures
and Algorithms, to appear.

3


