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Abstract

The intersection graph of a collection C of sets is a graph on the vertex set C, in which
C1, C2 ∈ C are joined by an edge if and only if C1 ∩ C2 6= ∅. Erdős conjectured that the
chromatic number of triangle-free intersection graphs of n segments in the plane is bounded
from above by a constant. Here we show that it is bounded by a polylogarithmic function of
n, which is the first nontrivial bound for this problem. More generally, we prove that for any t
and k, the chromatic number of every Kk-free intersection graph of n curves in the plane, every
pair of which have at most t points in common, is at most (ct

log n
log k )c log k, where c is an absolute

constant and ct only depends on t. We establish analogous results for intersection graphs of
convex sets, x-monotone curves, semialgebraic sets of constant description complexity, and sets
that can be obtained as the union of a bounded number of sets homeomorphic to a disk.

Using a mix of results on partially ordered sets and planar separators, for large k we improve
the best known upper bound on the number of edges of a k-quasi-planar topological graph with
n vertices, that is, a graph drawn in the plane with curvilinear edges, no k of which are pairwise
crossing. As another application, we show that for every ε > 0 and for every positive integer
t, there exist δ > 0 and a positive integer n0 such that every topological graph with n ≥ n0

vertices, at least n1+ε edges, and no pair of edges intersecting in more than t points, has at least
nδ pairwise intersecting edges.

1 Introduction

For a graph G, the independence number α(G) is the size of the largest independent set, the clique
number ω(G) is the size of the largest clique, and the chromatic number χ(G) of G is the minimum
number of colors needed to properly color the vertices of G. To compute or to approximate these
parameters is a notoriously difficult problem [18, 35, 23]. In this paper, we study some geometric
versions of the question.

The intersection graph G(C) of a family C of sets has vertex set C and two sets in C are adjacent
if they have nonempty intersection. The independence number of an intersection graph G(C) is
often referred to in the literature as the packing number of C. It is well known that the problem of
computing this parameter, even for intersection graphs of families of very simple geometric objects
such as unit disks or axis-aligned unit squares, is NP-hard [17, 25]. Because of its applications
in VLSI design [24], data mining [9, 26], map labeling [3], and elsewhere, these questions have
generated a lot of research. In particular, starting with the work of Hochbaum and Maas [24], several
polynomial time approximation schemes (PTAS) have been found in special settings [3, 9, 10].

∗Department of Mathematics, Princeton, Princeton, NJ. Email: jacobfox@math.princeton.edu. Research sup-
ported by an NSF Graduate Research Fellowship and a Princeton Centennial Fellowship.

†City College, CUNY and Courant Institute, NYU, New York, NY, USA. Email: pach@cims.nyu.edu. Supported
by NSF Grant CCF-05-14079, and by grants from NSA, PSC-CUNY, Hungarian Research Foundation OTKA, and
BSF.

1



Motivated by applications in graph drawing and in geometric graph theory, here we establish
lower bounds for the independence numbers of intersection graphs of families of curves in the
plane. Following [41], some algorithmic aspects of this approach were explored in [4]. Obviously,
α(G) ≥ n/χ(G) holds for every graph G with n vertices. Therefore, any upper bound on the
chromatic number yields a lower bound for the independence number. It will be more convenient
to formulate our results in this more general setting.

The study of the chromatic number of intersection graphs of segments and their relatives in
the plane was initiated by Asplund and Grünbaum [7] almost half a century ago. Since then, this
topic has received considerable attention [5, 22, 27, 30, 31, 32, 36, 44]. In particular, a classical
question of Erdős [21, 31, 36] asks whether the chromatic number of all triangle-free intersection
graphs of segments in the plane is bounded by a constant. It is know that there exist such graphs
with chromatic number eight. In the first half of this paper, we provide upper bounds on the
chromatic number of intersection graphs of families of curves in the plane in terms of their clique
number. In particular, we prove that every triangle-free intersection graph of n segments in the
plane has chromatic number at most polylogarithmic in n. Most of our results generalize to in-
tersection graphs of families of planar regions whose boundaries do not cross in too many points
(e.g., semialgebraic sets of bounded description complexity) and to families of convex bodies in the
plane. See Subsection 1.1.

In the second half of the paper, we apply our results to improve on the best known upper bounds
on the maximum number of edges of k-quasi-planar topological graphs. The terminology and the
necessary preliminaries will be explained in Subsection 1.2.

1.1 Upper bounds on the chromatic number of intersection graphs

A (simple) curve in the plane is the range of a continuous (bijective) function f : I → R2 whose
domain is a closed interval I ⊂ R. A family of curves in the plane is t-intersecting if every pair of
curves in the family intersect in at most t points.

The following theorem gives an upper bound on the chromatic number of the intersection graph
of any t-intersecting family of n curves with no clique of order k.

Theorem 1.1 If G is a Kk-free intersection graph of a t-intersecting family of n curves in the
plane, then

χ(G) ≤
(

ct
log n

log k

)c log k

,

where ct is a constant in t and c is an absolute constant.

In other words, for every family C of n curves in the plane with no pair intersecting in more than

t points and no k curves pairwise crossing, each curve can be assigned one of at most
(
ct

log n
log k

)c log k

colors such that no pair of curves of the same color intersect. Here, and throughout the paper,
unless it is indicated otherwise, all logarithms are assumed to be to the base 2.

Taking δ such that ε = cδ log ct
δ and noting that α(G) ≥ n

χ(G) for every graph G with n vertices,
we have the following corollary of the previous theorem.

Corollary 1.2 For each ε > 0 and positive integer t, there is δ = δ(ε, t) > 0 such that if G is an
intersection graph of a t-intersecting family of n curves in the plane, then G has a clique of size at
least nδ or an independent set of size at least n1−ε.
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A Jordan region is a subset of the plane that is homeomorphic to a closed disk. We say that a
Jordan region α contains another Jordan region β if β lies in the interior of α. Define an r-region
to be a subset of the plane that is the union of at most r Jordan regions. Call these (at most r)
Jordan regions of an r-region the components of the r-region.

A crossing between a pair of Jordan regions is either a crossing between their boundaries or a
containment between them. A family of Jordan regions is t-intersecting if the boundaries of any
two of them intersect in at most t points. A family of r-regions is t-intersecting if the family of all
of their components is t-intersecting.

By slightly fattening curves in the plane, it is easy to see that if G is an intersection graph of
a t-intersecting family of curves, then G is also an intersection graph of a 4t-intersecting family of
Jordan regions. Theorem 1.1 and its proof generalize in a straightforward manner to intersection
graphs of t-intersecting families of Jordan regions. With a little more effort, we will generalize
Theorem 1.1 to intersection graphs of t-intersecting family of r-regions.

Theorem 1.3 If G is a Kk-free intersection graph of a t-intersecting family of n r-regions, then

χ(G) ≤
(

ct,r
log n

log k

)cr log k

,

where ct,r only depends on t and r and c is an absolute constant.

A semialgebraic set in Rd is the locus of points that satisfy a given finite boolean combination
of polynomial equations and inequalities in the d coordinates. The description complexity of such
a set S is the minimum κ such that there is a representation of S with dimension d at most κ, the
number of equations and inequalities at most κ, and each of them has degree at most κ. (See [8].)

As mentioned in [15], every semialgebraic set in the plane of constant description complexity
is the intersection graph of a t-intersecting family of r-regions, where r and t depend only on the
description complexity. Therefore, we have the following corollary of Theorem 1.3.

Corollary 1.4 If G is a Kk-free intersection graph of a family of n ≥ k2 semialgebraic sets in the
plane of description complexity d, then

χ(G) ≤
(

log n

log k

)cd log k

,

where cd is a constant that only depends on d.

An x-monotone curve is a curve in the plane such that every vertical line intersects it in at
most one point. Equivalently, an x-monotone curve is the curve of a continuous function defined
on an interval. A pair of convex sets or x-monotone curves can have arbitrarily many intersection
points between their boundaries. Theorem 1.5 and Theorem 1.7 below are similar to Theorem 1.1,
but for intersection graphs of convex sets and x-monotone curves, respectively.

Theorem 1.5 If G is a Kk-free intersection graph of n convex sets in the plane, then

χ(G) ≤
(

c
log n

log k

)13 log k

,

where c is an absolute constant.

3



Taking δ such that ε = 13δ log c
δ and noting that α(G) ≥ n

χ(G) for every graph G with n vertices,
we have the following corollary of the previous theorem.

Corollary 1.6 For each ε > 0 there is δ = δ(ε) > 0 such that every intersection graph of n convex
sets in the plane has a clique of size at least nδ or an independent set of size at least n1−ε.

A result of a similar flavor was obtained by Larman et al. [33]. They showed that for every
positive integer k, every family of n convex sets in the plane has an independent set of size k or
a clique of size at least n/k4. Notice that Corollary 1.6 only applies in the case that the clique
number is not too large while the result of Larman et al. [33] only applies when the independence
number is not too large.

Theorem 1.7 If G is a Kk-free intersection graph of n x-monotone curves in the plane, then

χ(G) ≤ (c log n)15 log k ,

where c is an absolute constant.

In Theorem 1.5 and Theorem 1.7, the constant factors in the exponent can be improved by
more careful calculation.

1.2 Applications to topological graphs

We next discuss a few applications of the above results to graph drawings, beginning with some
pertinent background. A topological graph is a graph drawn in the plane so that its vertices are
represented by points and its edges are represented by curves connecting the corresponding points
such that no curve passes through a point representing a vertex different from its endpoints. A
topological graph is simple if any pair of its edges have at most one point in common. A geometric
graph is a (simple) topological graph whose edges are represented by straight-line segments.

It follows by a simple application of Euler’s Polyhedral Formula that every planar graph of
n vertices has at most 3n − 6 edges. A topological graph is called k-quasi-planar if no k edges
pairwise intersect. In particular, a 2-quasi-planar graph is just a planar graph. According to an
old conjecture (see, e.g., Problem 6 in [38]), for any positive integer k, there is a constant Ck such
that every k-quasi-planar topological graph on n vertices has at most Ckn edges. In the case k = 3,
Agarwal et al. [2] proved the conjecture for simple topological graphs. Later Pach, Radoičić, and
G. Tóth [39] extended the result for all topological graphs. More recently, Ackerman [1] proved the
conjecture for k = 4.

There also has been progress in the general case. Pach, Shahrokhi, and Szegedy [40] proved
that every k-quasi-planar simple topological graph on n vertices has at most ckn(log n)2k−4 edges.
Plugging into the proof the result of Agarwal et al. [2], this upper bound can be improved to
ckn(log n)2k−6. Analogously, using the result of Ackerman [1] instead, we obtain ckn(log n)2k−8.
Valtr [48] proved that every k-quasi-planar geometric graph on n vertices has at most ckn log n
edges. In [49], he extended this result to topological graphs with edges drawn as x-monotone
curves. Pach, Radoičić, and G. Tóth [39] proved that every k-quasi-planar topological graph with
n vertices has at most ckn(log n)4k−12 edges, and by the result of Ackerman [1], this can be improved
to ckn(log n)4k−16.

The following theorem improves the exponent in the polylogarithmic factor from O(k) to
O(log k) for simple topological graphs.
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Theorem 1.8 Every k-quasi-planar topological graph with n vertices and no pair of edges inter-

secting in more than t points has at most n
(
ct

log n
log k

)c log k
edges, where c is an absolute constant

and ct only depends on t.

It was shown in [6] that every complete geometric graph on n vertices contains at least
√

n/12
pairwise crossing edges. It was noted in [42] that the result of Pach, Shahrokhi, and Szegedy [40]
implies that every complete simple topological graph has at least c log n

log log n pairwise crossing edges.
Pach and G. Tóth [42] conjectured that there is δ > 0 such that every complete simple topological
graph on n ≥ 5 vertices has at least nδ pairwise crossing edges. Our next theorem settles this
conjecture and generalizes the result of Aronov et al. [6].

Theorem 1.9 For every ε > 0 and every integer t > 0, there exist δ > 0 and a positive integer n0

with the following property. If G is a topological graph with n ≥ n0 vertices and at least n1+ε edges
such that no pair of them intersect in more than t points, then G has nδ pairwise crossing edges.

Notice that every lower bound on the independence number (and, hence, every upper bound
on the chromatic number) of intersection graphs of curves yields an upper bound on the number
of edges of a topological graph. To see this, consider a topological graph G with n vertices. Delete
from each edge a small neighborhood around its endpoints, and take the intersection graph G′ of
the resulting curves. Any independent set in G′ corresponds to a planar subgraph of G, so that the
independence number of G′ is at most 3n − 6. Therefore, Theorem 1.8 follows from Theorem 1.1
and Theorem 1.9 follows from Corollary 1.2. In the same way the conjecture that the maximum
number of edges of a topological graph with n vertices and no k pairwise crossing edges is Ok(n)
would be a direct consequence of the following general conjecture.

Conjecture 1.10 For every positive integer k, there is ck > 0 such that every Kk-free intersection
graph of curves in the plane has an independent set of size ckn.

These results suggest that the extra restriction that curves connect vertices of a graph may be
unnecessary for many of the problems in geometric graph theory.

The following result improves the exponent in the polylogarithmic factor in the upper bound
for topological graphs from O(k) to O(log k).

Theorem 1.11 Every k-quasi-planar topological graph with n vertices has at most n (log n)c log k

edges, where c is an absolute constant.

We have the following immediate corollary.

Corollary 1.12 For each ε > 0 there is δ > 0 and n0 such that every topological graph with n ≥ n0

vertices and at least n1+ε edges has nδ/ log log n pairwise crossing edges.

A string graph is an intersection graph of curves in the plane. An incomparability graph of a
partially ordered set P has vertex set P and two elements of P are adjacent if and only if they are
incomparable in P . The proof of Theorem 1.11 uses a recent result of the authors showing that
string graphs and incomparability graphs are closely related.

In Section 2, we prove Theorem 1.1 and Theorem 1.3. In Section 3, we establish a separator
theorem which is used in the proof of Theorems 1.5 and 1.7. In Section 4, we establish Theorems
1.5 and 1.7. In Section 5 we prove Theorem 1.11.

5



2 Proofs of Theorem 1.1 and Theorem 1.3

The proof of Theorem 1.1 uses a separator theorem due to the authors [12] (see Corollary 2.2 below)
and a Turán-type theorem from [15] on intersection graphs of curves (see Lemma 2.3).

A separator for a graph G = (V, E) is a subset V0 ⊂ V such that there is a partition V =
V0 ∪ V1 ∪ V2 with |V1|, |V2| ≤ 2

3 |V | and no vertex in V1 is adjacent to any vertex in V2. The well-
known separator theorem by Lipton and Tarjan [34] states that every planar graph with n vertices
has a separator of size O(

√
n). By a beautiful theorem of Koebe [28], every planar graph can be

represented as the intersection graph of closed disks in the plane with disjoint interiors. Miller,
Teng, Thurston, and Vavasis [37] found a generalization of the Lipton-Tarjan separator theorem
to higher dimensions. They proved that the intersection graph of any family of n balls in Rd such
that no k of them have a point in common has a separator of size O(dk1/dn1−1/d). (See also [46].)

Fox and Pach [12] established the following generalization of the separator theorems of Lipton
and Tarjan and of Miller et al. [37] in two dimensions.

Theorem 2.1 [12] If C is a finite family of Jordan regions with a total of m crossings, then the
intersection graph of C has a separator of size O(

√
m).

The following result is a corollary of Theorem 2.1.

Corollary 2.2 [12] If C is a finite family of curves in the plane with a total of m crossings, then
the intersection graph of C has a separator of size O(

√
m).

The constant in the big-O notation in both Theorem 2.1 and Corollary 2.2 can easily be taken
to be 100, though a detailed analysis of the proof gives a much better constant.

A bi-clique is a complete bipartite graph whose two parts differ in size by at most one. The
following theorem is the second main tool in the proof of Theorem 1.1.

Lemma 2.3 [15] Every intersection graph of n curves in the plane with at least εn2 edges and no
pair of curves intersecting in more than t points contains a bi-clique of size at least ctε

cn, where c
is an absolute constant and ct > 0 depends only on t.

A family of graphs is said to be hereditary if it is closed by taking induced subgraphs. A family
of graphs F is normal if every graph G ∈ F is a proper induced subgraph of another graph G′ ∈ F .
For any family F of graphs, let αF (n) = minG∈F ,v(G)=n α(G) and let χF (n) = maxG∈F ,v(G)=n χ(G).
For example, if F is a hereditary family and for every integer n there is a graph in F with clique
number at least n, then αF (n) = 1 and χF (n) = n. If F is a hereditary normal family, then
it is easy to show that αF and χF are increasing, subadditive functions of n. Clearly, we have
αF (n) ≥ n

χF (n) , as α(G) ≥ n
χ(G) holds for every graph G with n vertices. The following lemma

essentially shows that the last inequality is tight apart from a logarithmic factor, that is, n log n
χF (n) is

roughly an upper bound on αF (n). More precisely, we have the following lemma.

Lemma 2.4 If F is a hereditary normal family of graphs, then for all n, χF (n) ≤ d n
αF (n)edlog ne.

Proof: Let G ∈ F with n vertices. For simplicity, we will assume that n = 2i is a perfect power of
2, although the proof works as well for n not a power of 2. The proof is by a straightforward greedy
algorithm: take a maximum independent set of vertices in G and color its elements with the first
color. Then pick a maximum independent set from the graph induced by the uncolored vertices
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and color its elements with the second color, and continue picking out maximum independent sets
from the remaining uncolored vertices until all vertices are colored.

We first give an upper bound on the number of colors used to color half of the vertices of G.
Each of the color classes used to color the first half of the vertices of G has size at least αF (n/2).
Hence, the number of colors used in coloring half of the vertices of G is at most d n/2

αF (n/2)e ≤ d n
αF (n)e,

where the inequality follows from subadditivity of αF . Therefore, to color all but at most n/2k

vertices of G, we use at most
∑k−1

j=0d n/2j

αF (n/2j)
e ≤ kd n

αF (n)e colors. Taking k = log n, we can properly
color all vertices using at most dn/αF (n)e log n colors. 2

By Lemma 2.4, to establish Theorem 1.1, it suffices to prove the following result.

Theorem 2.5 If G = (V, E) is a Kk-free intersection graph of a t-intersecting family of n curves
in the plane, then

α(G) ≥ n

(
ct

log n

log k

)−c log k

,

where c is an absolute constant and ct only depends on t.

Proof: Let S0 = {V } be the family consisting of a single set, V . At step i (i = 1, 2, . . .), we replace
each W ∈ Si−1 satisfying |W | ≥ 2 by either one or two subsets of W such that the resulting family
Si consists of pairwise disjoint subsets of V and no edge of G connects two vertices belonging to
distinct members W ′,W ′′ ∈ Si. We proceed as follows.

Let ε = 10−8t−1
(

log k
log n

)3
. If the subgraph of G induced by W ∈ Si−1 has at least ε|W |2 edges,

then apply Lemma 2.3 to obtain disjoint subsets W1 and W2 with |W1| = |W2| ≥ ctε
c|W | such that

every vertex in W1 is adjacent to every vertex in W2. We may assume without loss of generality
that the clique number of the subgraph of G induced by W1 is at most the clique number of the
subgraph induced by W2, so that the clique number of the subgraph induced by W1 is at most half
of the clique number of the subgraph of G induced by W . In this case, in Si we replace W by W1.

If the subgraph of G induced by W has fewer than ε|W |2 edges, then apply Corollary 2.2 to
obtain two disjoint subsets W1,W2 ⊂ W such that

|W | − |W1| − |W2| ≤ 100
√

tε|W |2 = 100
√

tε|W |,
|W1|, |W2| ≤ 2|W |/3, and no vertex in W1 is adjacent to any vertex in W2. In this case, we replace
W ∈ Si−1 by W1 and W2.

Following this procedure, we build a tree of subsets of V , with V being its root, so that the
vertices of the tree at height i are the members of Si. Any vertex W of the tree has either one or
two children, which are subsets of W . Any path in this tree connecting the root V to a leaf has
fewer than log2 k nodes W with at least ε|W |2 edges; each of these nodes has precisely one child.
Since the size of a child Wi is at most 2/3 times the size of its parent W , the height of the tree is
at most log3/2 n. Therefore, the graph G must have an independent set of size at least

(1− 100t1/2ε1/2)log3/2 n(ctε
c)log kn ≥ 4−100t1/2ε1/2 log3/2 n(ctε

c)log kn

≥ k−1/10

(
10−3(t−1ct)1/3 log k

log n

)3c log k

n,

where the first inequality uses the fact that 1− x ≥ 4−x holds for 0 ≤ x ≤ 1/2. This completes the
proof, noting that for Theorem 2.5, we have to pick ct and c different from the constants ct and c
that we used from Lemma 2.3. 2
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The proof of Theorem 1.3 is a variant of the above argument. We need the following straight-
forward generalization of Lemma 2.3.

Lemma 2.6 [15] The intersection graph of any t-intersecting family of n Jordan regions with at
least εn2 edges contains a bi-clique of size at least ctε

cn, where c is an absolute constant and ct > 0
depends only on t.

By Lemma 2.4, to prove Theorem 1.3, it suffices to establish the following result.

Theorem 2.7 If G = (V, E) is a Kk-free intersection graph of a t-intersecting family of n r-regions,
then

α(G) ≥ n

(
ct,r

log n

log k

)−cr log k

,

where c is an absolute constant and ct,r depends only on t and r.

Let It(n, k, r) be the minimum of α(G) taken over every Kk-free graph G that is an intersection
graph of a t-intersecting family of at least n r-regions. The proof of Theorem 2.7, which gives a
lower bound on It(n, k, r), is by triple induction on n, k, and r. The proof of the nontrivial base
case r = 1 is essentially identical to the proof of Theorem 1.1, except that we use Lemma 2.6 instead
of Lemma 2.3 and Theorem 2.1 instead of Corollary 2.2. The other base cases, which are trivial,
are when n = 1 (in which case It(1, k, r) = 1), and when k = 2 (in which case It(n, 2, r) = n). The
induction is then straightforward, using the following lemma.

Lemma 2.8 For every positive integer t, there are constants ct > 0 and c such that the following
is true. For any δ > 0 and for any positive integers n, k, r, at least one of the following three
inequalities hold:

1. It(n, k, r) ≥ It(ctr
−cδcn, dk/2e, r).

2. It(n, k, r) ≥ It(a, k, r) + It(b, k, r) where a + b ≥ n− 200δ1/2rt1/2n and a, b ≤ (1− 1
3r )n.

3. It(n, k, r) ≥ It(n1, k, i) where n1 = It(n2, k, r − i), 1 ≤ i ≤ r − 1, and n2 = d100δ1/2t1/2ne.

Proof: Let G = (V, E) be a Kk-free intersection graph of a t-intersecting family of n r-regions
with independence number α(G) = It(n, k, r). Let εn2 be the number of edges of G. Let C denote
the family of all the components, so |C| ≤ rn.

Case 1: ε ≥ δ. The family C has at most rn Jordan regions and at least εn2 intersecting pairs,
so applying Lemma 2.6, the intersection graph G(C) contains a bi-clique of size h ≥ ct(ε/r2)cn.
Then G contains a bi-clique of size at least h/r. The induced subgraph of at least one of the two
vertex classes of this bi-clique is Kdk/2e-free. In this case, with a different value of c, the first of the
three inequalities is satisfied.

Case 2: ε < δ. By Theorem 2.1, there are disjoint subfamilies C1, C2 of C with |C1|, |C2| ≤ 2
3n,

|C| − |C1| − |C2| ≤ 100
√

εr2tn2 < 100δ1/2rt1/2n,

and no Jordan region in C1 intersects any Jordan region in C2. For 0 ≤ i ≤ r, let Vi ⊂ V consist of
all those r-regions in V that have all of their components in C1 ∪ C2 and exactly i components in
C1. Note that |V \⋃r

i=0 Vi| < 100δ1/2rt1/2n.
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Case 2a: There is i ∈ {1, . . . , r−1} such that |Vi| ≥ 100δ1/2t1/2n. In this case, the components
of Vi in C1 form a t-intersecting family of i-regions. So there is a subfamily V ′

i ⊂ Vi of n1 :=
It(|V1|, k, i) r-regions such that no pair of them have intersecting components in C1. Furthermore,
there exists a subfamily V ′′

i ⊂ V ′
i of It(n1, k, r − i) r-regions in Vi such that no pair of them have

intersecting components in C2. Hence, these r-regions form an independent set of size It(n1, k, r− i)
in the intersection graph.

Case 2b: |Vi| < 100δt1/2n for i ∈ {1, . . . , r − 1}. Since |Ci| ≤ 2
3 |C| for i ∈ {1, 2}, then |V0| and

|Vr| each have cardinality at most (1− 1
3r )n. Notice that every r-region in V0 is disjoint from every

r-region in Vr and |V0| + |Vr| ≥ n − 200δ1/2t1/2rn. Letting a = |V0| and b = |Vr|, we obtain an
independent set of size at least It(a, k, r) + It(b, k, r). 2

Fixing δ = 10−8t−1r−4( log k
log n)3, applying triple induction on n, k, and r, using Lemma 2.8, we

arrive at Theorem 2.7, and hence also at Theorem 1.3.

3 A separator theorem for outerstring graphs

A family C of curves in the plane is said to be grounded if there is a closed (Jordan) curve γ such
that every member of C has one endpoint on γ and the rest of the curve lies in the exterior of γ.
The intersection graph of a collection of grounded curves is called an outerstring graph.

The members of a family C of n grounded curves can be cyclically labeled in a natural way,
according to the order of the endpoints of the curves along the ground γ. Start by assigning the
label 0 to any member of C, and then proceed to label the curves clockwise, breaking ties arbitrarily,
so that the (i + 1)-st member of C has label i ∈ Z. Define the distance d(i, j) between a pair of
grounded curves in C as the cyclic distance between their labels i, j ∈ Z. That is, let

d(i, j) := min(|i− j|, n− |i− j|).

Let [i, j] denote the cyclic interval of elements {i, i + 1, . . . , j}.
In this section, we prove the following separator theorem for outerstring graphs. We then show

that this result is best possible apart from the constant factor. In the next section, we will use this
separator theorem to prove Theorems 1.5 and 1.7.

Theorem 3.1 Every outerstring graph with m edges and maximum degree ∆ has a separator of
size at most 4min(∆,

√
m).

Notice that the upper bound on the size of the separator is the minimum of 4∆ and 4
√

m. We
first prove the following lemma, and then deduce Theorem 3.1.

Lemma 3.2 Every outerstring graph with maximum degree ∆ has a separator of size at most 4∆.

Proof: Let G be the outerstring graph of a collection C = {C0, . . . , Cn−1} of grounded curves,
with this cyclic labeling. We may assume without loss of generality that every curve intersects at
least one other curve, that is, G has no isolated vertices. Let (Ca, Cb) be a pair of intersecting
curves whose distance is maximum.

9



L

≥
n

3

≥
n

3

a

b

L

<
n

3

a

b

≥
n

3

<
n

3

c

d

e

f

Figure 1: On the left: there are two curves, Ca and Cb, whose cyclic distance along L is at least
n/3. On the right: the maximum distance between any two arcs is less than n/3.

Case 1: d(a, b) ≥ n
3 ; see the left-hand side of Figure 1. Let V0 be the set of curves that intersect

at least one of the curves Ca or Cb. Since Ca and Cb each intersect at most ∆ other curves, V0 has
at most 2∆ elements. Let V1 consist of all curves in C \V0 whose labels belong to the cyclic interval
[a, b], and let V2 consist of all curves in C \ V0 whose labels belong to [b, a]. Notice that |V0| ≤ 2∆,
|V1|, |V2| ≤ 2

3 |C|, and no curve in V1 intersects any curve in V2. Therefore, G has a separator of size
at most 2∆.

Case 2: d(a, b) < n
3 ; see the right-hand side of Figure 1. Let c ∈ Zn be defined by c ≡ b + dn

3 e
(mod n). By assumption, the curve Cc intersects at least one other curve in C. Let d be a label
such that Cd intersects Cc and d(c, d) is as large as possible. Finally, let e ∈ [b, c] and f ∈ [d, a]
be two labels such that Ce intersects Cf and d(e, f) is as large as possible. Let V0 denote the set
of curves in C that intersect at least one of the curves Ca, Cb, Ce, or Cf . Since each member of
C intersects at most ∆ other curves, V0 has at most 4∆ elements. Let V1 consist of all curves in
C \ V0 whose labels belong to the cyclic interval [a, b], let V2 consist of all curves in C \ V0 whose
labels belong to [b, e], let V3 consist of all curves in C \ V0 whose labels belong to [e, f ], and let V4

consist of all curves in C \ V0 whose labels belong to [f, a]. Clearly, we have |V0| ≤ 4∆, |Vi| ≤ 2
3 |C|

for i ∈ {1, 2, 3, 4}, and no curve in Vi intersects any curve in Vj with 1 ≤ i < j ≤ 4. Therefore, by
combining the Vi’s into two sets each of cardinality at most 2|C|/3, the graph G has a separator of
size at most 4∆. 2

Proof of Theorem 3.1: Let G be an outerstring graph with m edges. Delete vertices of G of
maximum degree one by one until the remaining induced subgraph G′ has maximum degree at most
∆ :=

√
m/2. Let D denote the set of deleted vertices. The cardinality of D is at most m/∆ = 2

√
m.

By Lemma 3.2, G′ has a separator V ′
0 of cardinality at most 4∆ = 2

√
m. Then the set V0 := D∪V ′

0 ,
which has cardinality at most 4

√
m, is a separator for G. 2

We now discuss two constructions which together show that apart from a constant factor of
4, Theorem 3.1 is best possible as a function of the maximum degree and number of edges of the
outerstring graph. A split graph is a graph whose vertex set can be partitioned into a clique and an
independent set. It is an easy exercise to show that every split graph is an outerstring graph. It is
also straightforward to check that for each ε > 0, there is Cε such that if Cεn ≤ m ≤ n2/18, then
there is a split graph G with n vertices and at most m edges such that every separator for G has
size at least (1− ε)

√
2m. Indeed, the desired split graph can be chosen, with high probability, to be

the random split graph whose vertex set V has n vertices and a partition V = A ∪B into a clique
A and an independent set B with |A| = d(1 − ε/2)

√
2me, and for each vertex v ∈ A, the set of
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neighbors of v in B is a random subset of dε√m/4e vertices from B. It is also easy to check that for
∆ even and at most n/3, the Cayley graph with vertex set Zn and two vertices are adjacent if and
only if they have cyclic distance at most ∆/2 is an outerstring graph and its smallest separator has
size ∆. These two constructions demonstrate that Theorem 3.1 is tight up to the constant factor.

Recall that the incomparability graph G = GP,< of a partially ordered set (P, <) is the graph
with vertex set P in which two vertices are connected by an edge if and only if they are incomparable
by the relation <. Since every incomparability graph is an outerstring graph (see [20], [43], [45]), it
follows that every incomparability graph G with maximum degree ∆ and m edges has a separator
of size at most 4min(∆,

√
m). This can easily be improved upon as the separator size in an

incomparability graph can be bounded by a constant times the average degree.

Proposition 3.3 Every incomparability graph with n vertices and m edges has a separator of size
at most 6m/n.

Proof: Let G = GP,< be an incomparability graph with m edges. Pick any linear extension of the
partial order <, and let W ⊂ P denote the set of vertices belonging to the middle third of P with
respect to this linear ordering. Let v be an element of W whose neighborhood N(v) is as small as
possible. Obviously, the set N(v) is a separator for G, and it has at most 6m/n elements. 2

4 Proofs of Theorem 1.5 and Theorem 1.7

The following analogues of Lemma 2.3 for intersection graphs of convex sets and x-monotone curves
in the plane were obtained by the authors and Cs. Tóth in [16].

Lemma 4.1 [16] There is a constant c > 0 such that every intersection graph of n convex sets in
the plane with at least εn2 edges contains a bi-clique with at least cε2n vertices in each of its vertex
classes.

Lemma 4.2 [16] There is a constant c > 0 such that every intersection graph of n x-monotone
curves with at least εn2 edges contains a bi-clique with at least c ε2

log 1/ε
n

log n vertices in each of its
vertex classes.

It was pointed out in [43], that a result of Fox [11] implies that the dependence on n in Lemma
4.2 is tight.

The proofs of Theorems 1.5 and 1.7 are so similar that we only include the proof of Theorem
1.5. For the proof of Theorem 1.5, we may assume that the convex sets are closed convex polygons.
This is justified, since every intersection graph of finitely many convex sets in the plane is the
intersection graph of convex closed polygons, as observed in [16].

Let X(n, k) denote the maximum chromatic number over all Kk-free intersection graphs of n
convex sets in the plane. Let V (n, k) denote the maximum chromatic number over all Kk-free
intersection graphs of n convex sets in the plane that each intersect the same vertical line L.

The following lemma relates V (n, k) and X(n, k).

Lemma 4.3 For all positive integers n and k, we have

X(n, k) ≤ X(bn
2
c, k) + V (n, k).
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Proof: Let C be a family of n convex polygons in the plane, and let x1 ≤ . . . ≤ xn denote the
x-coordinates of the leftmost points of the members of C. Let L be the vertical line x = xdn

2
e.

Notice that every convex set whose rightmost point has x-coordinate smaller than xdn
2
e is disjoint

from every convex set whose leftmost point has x-coordinate larger than xdn
2
e. There are at most

bn
2 c members of C whose rightmost points have x-coordinates smaller than xdn

2
e and at most bn

2 c
members whose leftmost points have x-coordinates larger than xdn

2
e. Hence, all members of C

that do not intersect L can be properly colored with X(bn
2 c, k) colors. The remaining members

of C all intersect L, hence they can be colored with V (n, k) colors. Thus, we have X(n, k) ≤
X(bn

2 c, k) + V (n, k). 2

By iterating Lemma 4.3, we obtain

X(n, k) ≤
blog nc∑

i=0

V (b n

2i
c, k) ≤ (1 + log2 n)V (n, k).

Let G(n, k) denote the maximum chromatic number over all Kk-free intersection graphs of n
convex sets in the plane that intersect a vertical line L and lie in the half-plane to the right of L.

Lemma 4.4 For all positive integers n and k, we have

V (n, k) ≤ G(n, k)2.

Proof: Let C = {C1, . . . , Cn} be a family of convex polygons that intersect a vertical line L : x =
x0. For 1 ≤ i ≤ n, let Li denote the intersection of Ci with the left half-plane {(x, y) : x ≤ x0}, and
let Ri denote the intersection of Ci with the right half-plane {(x, y) : x ≥ x0}. Let L = {L1, . . . , Ln}
andR = {R1, . . . , Rn}. Notice that the intersection graph of L can be properly colored with G(n, k)
colors, and the intersection graph of R can be properly colored with G(n, k) colors. Consider two
proper colorings c1 : L → {1, . . . , G(n, k)} and c2 : R → {1, . . . , G(n, k)} of the intersection graphs
of L and R. Assigning each convex set Ci, 1 ≤ i ≤ n, the color (c1(Li), c2(Ri)), we obtain a proper
coloring of C with G(n, k)2 colors. Hence, we have V (n, k) ≤ G(n, k)2. 2

Every intersection graph of convex sets in the plane with the property that all of them intersect
a vertical line L and lie in the half-plane to the right of L is an outerstring graph. Therefore,
to establish the following lemma, we may use the proof of Theorem 1.1, with the difference that
Corollary 2.2 and Lemma 2.3 have to be replaced by Theorem 3.1 and Lemma 4.1.

Lemma 4.5 There is a constant c > 0 such that G(n, k) ≤ (c log n
log k )6 log k for all k and n with k ≤ n.

Putting together the last three lemmas, Theorem 1.5 follows.

5 k-quasi-planar topological graphs

In [20], it is shown that every incomparability graph is a string graph. Recently, the authors proved
the following theorem which implies that every dense string graph contain a dense subgraph which
is an incomparability graph.

Theorem 5.1 [13] There is a constant c1 such that for every collection C of n curves in the plane
whose intersection graph has ε|C|2 edges, we can pick for each curve γ ∈ C a subcurve γ′ such that
the intersection graph of {γ′ : γ ∈ C} has at least εc1 |C|2 edges and is an incomparability graph. In
particular, every string graph on n vertices and εn2 edges has a subgraph with at least εc1n2 edges
that is an incomparability graph.

12



Theorem 5.1 shows that string graphs and incomparability graphs are closely related. The
following result of the authors and Tóth shows that every dense incomparability graph contains a
large balanced complete bipartite graph.

Lemma 5.2 [16] Every incomparability graph I with n vertices and εn2 edges contains the complete
bipartite graph Kt,t with t ≥ c2

ε
log 1/ε

n
log n , where c2 is a positive absolute constant.

From Theorem 5.1 and Lemma 5.2, we have the following corollary.

Corollary 5.3 Every string graph with n vertices and εn2 edges contains the complete bipartite
graph Kt,t with t ≥ εc3 n

log n , where c3 is an absolute constant.

The bisection width b(G) of a graph G = (V, E) is the least integer for which there is a partition
V = V1 ∪ V2 such that |V1|, |V2| ≤ 2

3 |V | and the number of edges between V1 and V2 is b(G). The
pair-crossing number pcr(G) of a graph G is the smallest number of pairs of edges that cross in
a drawing of G in the plane. For a graph G, let ssqd(G) =

∑
v∈V (G) deg(v)2. We will use the

following result of Kolman and Matoušek [29].

Lemma 5.4 [29] Every graph G on n vertices satisfies

b(G) ≤ c4 log n
(√

pcr(G) +
√

ssqd(G)
)

,

where c4 is an absolute constant.

Proof of Theorem 1.11: Define T (n, k) to be the maximum number of edges in a k-quasi-planar
topological graph with n vertices. We will prove by induction on n and k the upper bound

T (n, k + 1) ≤ n(log n)c5 log k

where c5 is a sufficiently large absolute constant, which implies Theorem 1.11.
Note that we have the simple bounds T (n, k) ≤ (

n
2

)
, T (n, 1) = 0, and T (n, 2) = 3n − 6 for

n ≥ 3. The last bound is from the fact that every n-vertex planar graph has at most 3n− 6 edges.
The induction hypothesis is that if n′ ≤ n and k′ ≤ k and (n′, k′) 6= (n, k), then T (n′, k′ + 1) ≤
n′ (log n′)c5 log k′ .

Let G = (V, E) be a k + 1-quasi-planar topological graph with n vertices and m = T (n, k + 1)
edges. Let F denote the intersection graph of the edge set of G, and let x denote the number of
edges of F , that is, the number of pairs of intersecting edges in G. Let y = 100c2

4 log4 n, where c4

is the absolute constant in Lemma 5.4.
Case 1: x < m2

y . Note that x is an upper bound on the pair-crossing number of G. By Lemma
5.4, there is a partition V = V1 ∪ V2 such that |V1|, |V2| ≤ 2

3 |V |, and the number of edges between
these two sets satisfies

e(V1, V2) = b(G) ≤ c4(log n)
(√

x +
√

ssqd(G)
)

.

Note that by the convexity of the function f(z) = z2, we have ssqd(G) ≤ 2m
n n2 = 2mn. If m < 2ny,

then we are done. Thus, we may assume that m ≥ 2ny, and it follows that
√

x +
√

ssqd(G) ≤ 2my−1/2.
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For i ∈ {1, 2}, the subgraph of G induced by Vi is also a k + 1-quasi-planar topological graph.
Hence,

m ≤ T (|V1|, k + 1) + T (|V2|, k + 1) + e(V1, V2) ≤ T (|V1|, k + 1) + T (|V2|, k + 1) + 2cmy−1/2 log n.

Substituting in y = 100c2
1 log4 n, we have

m ≤
(

1− 1
5 log n

)−1

(T (|V1|, k + 1) + T (|V2|, k + 1)) .

Estimating T (|Vi|, k+1) for i = 1, 2 by the bound guaranteed by the induction hypothesis, after
routine calculation we obtain that

T (n, k + 1) = m ≤
(

1− 1
5 log n

)−1 (
|V1|(log |V1|)c5 log k + |V2|(log |V2|)c5 log k

)

≤ n(log n)c5 log k.

Case 2: x ≥ m2

y . So F , the intersection graph of the edge set of G, has x ≥ m2

y edges. Using
the fact that F is a string graph, Corollary 5.3 implies that F contains a Kt,t with

t ≥ y−c3 m

log m
≥ (log n)−c5m.

Hence, there are two sets of edges E1, E2 ⊂ E of size t such that every edge in E1 intersects every
edge in E2. Since G has no k +1 pairwise crossing edges, there is i ∈ {1, 2} such that the subgraph
of G with edge set Ei has no bk/2c+ 1 pairwise intersecting edges. Therefore,

T (n, bk/2c+ 1) ≥ t ≥ (log n)−c5T (n, k).

By the induction hypothesis, we have

T (n, k) ≤ (log n)c5T (bk/2c+ 1, n) ≤ (log n)c5n(log n)c5 log(bk/2c+1) ≤ n(log n)c5 log k,

completing the proof. 2
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[33] D. Larman, J. Matoušek, J. Pach, and J. Törőcsik, A Ramsey-type result for convex sets, Bull.
London Math. Soc. 26 (1994), 132–136.

[34] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs. Proceedings of a
Conference on Theoretical Computer Science (Univ. Waterloo, Waterloo, Ont., 1977), pp. 1–10.
Comput. Sci. Dept., Univ. Waterloo, Waterloo, Ont., 1978.

[35] F. Maffray and M. Preissmann, On the NP-completeness of the k-colorability problem for
triangle-free graphs, Discrete Mathematics 162 (1996), 313–317.

[36] S. McGuinness, Colouring arcwise connected sets in the plane. I. Graphs Combin. 16 (2000),
429–439.

[37] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis, Separators for sphere-packings and
nearest neighbor graphs, J. ACM 44 (1) (1997), 1–29.

[38] J. Pach, Notes on geometric graph theory, Discrete and Computational Geometry (J.E. Good-
man et al, eds.), DIMACS Series, Vol 6, Amer. Math. Soc., Providence, 1991, 273–285.

16
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Paul Erdős. Discrete Comput. Geom. 19 (1998), no. 3, Special Issue, 461–469.

[49] P. Valtr, Graphs drawn in the plane with no k pairwise crossing edges, In G. D. Battista,
editor, Graph Drawing, volume 1353 of Lecture Notes in Computer Science, 205–218, Springer,
1997.

17


