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1 IntrodutionLet P be a set of n points in Rd and R a set of subsets of Rd , alled ranges (e.g., the set of all disksin the plane). A oloring of P is alled onit-free (CF for short) with respet to R if for eahr 2 R with P \ r 6= ;, there is at least one olor that appears exatly one in r.We onsider the following dynami senario of onit-free oloring of points on the line, withrespet to interval ranges. We maintain a �nite set P � R. Initially, P is empty, and we repeatedlyinsert points into P , one point at a time. We denote by P (t) the set P after the t-th point hasbeen inserted. Eah time we insert a point p, we need to assign a olor (p) to it, whih is apositive integer. One the olor has been assigned to p, it annot be hanged in the future. Theoloring should remain onit-free at all times. That is, as in the stati ase, for any interval Ithat ontains points of P (t), there is a olor that appears exatly one in I.The stati version of CF-oloring has been studied reently in several papers [5, 7, 9℄ in onsid-erably more general settings, involving point sets in higher dimensions, and ranges that are disks,balls, axis-parallel boxes, or more general ranges that satisfy ertain geometri onditions. Thestudy of this problem is motivated by the problem of frequeny-assignment in ellular networks.Spei�ally, ellular networks are heterogeneous networks with two di�erent types of nodes: basestations (that at as servers) and lients. The base stations are interonneted by an external �xedbakbone network. Clients are onneted only to base stations; onnetions between lients andbase stations are implemented by radio links. Fixed frequenies are assigned to base stations toenable links to lients. Clients, on the other hand, ontinuously san frequenies in searh of abase station with good reeption. The fundamental problem of frequeny-assignment in ellularnetworks is to assign frequenies to base stations so that every lient, loated within the reeivingrange of at least one station, an be served by some base station, in the sense that the lient isloated within the range of the station and no other station within its reeption range has the samefrequeny (Suh a station would be in \onit" with the given station due to mutual interferene).The goal is to minimize the number of assigned frequenies (\olors") sine the frequeny spetrumis limited and ostly.Suppose we are given a set of n base stations, also referred to as antennea. Assume, for simpliity,that the area overed by a single antenna is given as a disk in the plane. Namely, the loation ofeah antenna (base station) and its radius of transmission is �xed and is given (the transmissionradii of the antennea are not neessarily equal). Even et al. [5℄ have shown that one an �nd anassignment of frequenies to the antennea with a total of at most O(log n) frequenies suh thateah antenna (a base station) is assigned one of the frequenies and the resulting assignment isfree of onits, in the preeding sense. Furthermore, it was shown that this bound is worst-aseoptimal. When the given antennea all have the same radius of transmission (say, unit radius), theproblem is easily seen to be equivalent to that of oloring n points in the plane suh that for anyunit radius disk that ontains more than one of the given points, at least one of the olors in thatdisk is unique. Har-Peled and Smorodinsky [7℄ and Smorodinsky [9℄ have extended these resultsand introdued new tools for (stati) CF-oloring.When the reeption radii of the antennea are not equal, one faes a dual version of the CFoloring problem, in whih the goal is to olor n given ranges so that, for eah point p that lies intheir union, there is a olor that appears exatly one among the ranges that ontain p. This dualversion has been sudied in the previous papers [5, 7, 9℄, but we will not adress it in this paper.To apture a dynami senario where antennea an be added to the network, we introdue and1



study an online version of the CF oloring problem, as desribed above. As we show in this paper,the online version of the problem is onsiderably harder, even in the one-dimensional ase. Webegin by proposing a natural, simple, and obvious oloring algorithm (to whih we refer as theUniMax greedy algorithm), but show that in the worst ase it has poor performane. Spei�ally,the UniMax greedy algorithm may require 
(pn) olors in the worst ase. We still do not haveany nontrivial (i.e., sublinear) upper bound on the performane of the algorithm.The UniMax greedy algorithm is indeed greedy in nature, but there are several di�erent greedyapproahs, and we briey disuss another greedy alternative, about whih almost nothing is known.We next remedy the situation, by presenting several more eÆient algorithms. We begin with asimple randomized algorithm, whih uses, with high probability,12 O(log2 n) olors, and the oloringthat it produes is onit-free, with high probability. We then desribe a 2-stage deterministivariant of the UniMax greedy algorithm, and show that the maximum number of olors that it usesis �(log2 n). By ombining ideas from both algorithms, we obtain a seond randomized algorithm,whih is a variant of the eÆient deterministi solution. It uses O(log n log log n) olors with highprobability.The best known general lower bound for this problem is 
(log n), whih holds also for the statiase (see [5, 8, 9℄), so there still remains a gap between the upper and lower bounds.Next, we return to the UniMax greedy algorithm, whih an be ineÆient in the worst ase, andanalyze its performane when the points are inserted in a random order. We redue the problemto a ertain stationary stohasti proess, and present partial analysis of its performane, as wellas a fairly reasonable set of onjetures, strongly supported by simulations, that indiate that theexpeted number of olors that the simple algorithm uses in this ase is only O(logn).Finally, we onsider the extension of the online version to point sets in the plane. Unfortunately,we show that, in the simple ase where the ranges that are required to be onit-free are disks (orarbitrary radii), n olors may be needed in the worst ase. Nevertheless, (muh) better solutionsmight still exist for random distributions of the points, for other ranges, or for relaxed versions ofthe problem, in whih eah range has a olor that appears in it at least one and at most k times,for some onstant k [9℄. A reent follow-up study by Kaplan and Sharir [6℄ gives randomized onlineCF oloring algorithms for points in the plane, with respet to halfplanes, unit disks, or nearlyequal axis-parallel retangles. The algorithms use O(log3 n) olors, with high probability.There are many open problems that our study raises: Obtain, if possible, an improved algorithm-independent lower bound for online CF oloring for intervals; get a better understanding of theproblem behavior in the plane and in higher dimensions; design and analyze other strategies, andso on (see additional problems posted later throughout the paper). We note that CF oloring islosely related to the problem of vertex ranking in graphs (see, e.g., [4℄). Some of our algorithms,that maintain the property that the maximum olor in any interval is unique, atually performonline vertex ranking in paths. Extending our analysis to online vertex ranking in other kinds ofgraphs (trees, for example) raises yet another set of interesting open problems.12This means that the probability of failure is at most 1=p(n), where p(n) is polynomial in n, whose degree an bemade arbitrarily large by adjusting the onstants of proportionality in the performane bound.
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2 The UniMax Greedy Coloring AlgorithmInstead of the usual onit-free property, we wish to maintain the following stronger UniqueMaximum Invariant (in whih we assume that the olors are positive integers):At any given step t and for any interval I, there is only one element of P (t) \ I thatattains the maximum olor in that set.This invariant implies that the oloring of P (t) is onit-free, at any time t. It is indeed astronger ondition: Conit-free oloring only requires that for eah interval there exists a olor(not neessarily the maximum) that is assigned to a unique point in that interval.We employ the following simple-minded algorithm for inserting a point p into the urrent setP (t). In a nutshell, the rule is simply to assign to p the smallest possible olor that maintainsthe invariant. This rule is implemented as follows. We say that the newly inserted point p sees apoint x if all the olors of the points between p and x (exlusive) are smaller than (x). In thisase we also say that p sees the olor (x). We then give p the smallest olor that it does not see.(Note that a olor an be seen from p either to the left or to the right, but not in both diretions;see below.) We refer to this algorithm as the Unique Maximum Greedy algorithm, or the UniMaxgreedy algorithm, in short.Below is an illustration of the oloring rule of the UniMax greedy algorithm. The left olumngives the olors (integers in the range 1; 2; : : : ; 6) assigned to the points in the urrent set P andthe loation of the next point to be inserted (indiated by a period). The right olumn gives theolors \seen" by the new point. The olors seen to the left preede the � and those seen to the rightsueed the period. 1� [1�℄1 � 2 [1 � 2℄1 � 32 [1 � 3℄12 � 32 [2 � 3℄121 � 32 [21 � 3℄121 � 432 [21 � 4℄121 � 3432 [21 � 34℄1215 � 3432 [5 � 34℄1215 � 13432 [5 � 134℄12152 � 13432 [52 � 134℄121526 � 13432 [6 � 134℄Corretness. The orretness of the algorithm is established by indution on the insertion order.First, note that no olor an be seen twie from p: This is obvious for two points that lie both tothe left or both to the right of p. If p sees the same olor at a point u to its left and at a pointv to its right then the interval uv, before p is inserted, does not have a unique maximum olor,so this ase is impossible too. Next, if p is assigned olor , any interval that ontains p still hasa unique maximum olor: This follows by indution when the maximum olor is greater than .If the maximum olor is  then it annot be shared by another point u in the interval, beausethen p would have seen the nearest suh point, and thus would not be assigned olor . It is alsoeasy to see that the algorithm assigns to eah newly inserted point the smallest possible olor thatmaintains the invariant of a unique maximum olor in eah interval. This makes the algorithmgreedy with respet to the unique maximum ondition.3



Speial insertion orders. Denote by C(P (t)) the sequene of olors assigned to the points ofP (t), in left-to-right order along the line. Let max(P (t)) denote the maximum olor in C(P (t)).The omplete binary tree sequene Sk of order k is de�ned reursively as S1 = (1) and Sk =Sk�1k(k)kSk�1, for k > 1, where k denotes onatenation. Clearly, jSkj = 2k � 1.For eah pair of integers a < b, denote by C0(a; b) the following speial sequene. Let kbe the integer satisfying 2k�1 � b < 2k. Then C0(a; b) is the subsequene of Sk from the a-thplae to the b-th plae (inlusive). For example, C0(5; 12) is the subsequene (1; 2; 1; 4; 1; 2; 1; 3) of(1; 2; 1; 3; 1; 2; 1; 4; 1; 2; 1; 3; 1; 2; 1).Lemma 2.1. (a) If eah point is inserted into P to the right of all preeding points, then C(P (t)) =C0(1; t).(b) If eah point is inserted into P to the left of all preeding points, then C(P (t)) = C0(2k�t; 2k�1),where k satis�es 2k�1 � t < 2k.() If eah point is inserted into P either from the left or from the right then C(P (t)) is somesubsequene of the form C0(a; b), where b � jP (t)j.Proof: Easy, and omitted. 22.1 Lower bound for the UniMax Greedy algorithmTheorem 2.2. The UniMax greedy algorithm may require 
(pn) olors in the worst ase for a setof n points.Proof: For eah integer k, de�ne the sequeneCk = (1; 2; 1; 3; 2; 1; : : : ; k � 1; k � 2; : : : ; 1; k; k � 1; : : : ; 1):Note that Ck is the onatenation of k sequenes D1kD2k � � � kDk, where Dj = (j; j � 1; : : : ; 2; 1).Put nk = k(k + 1)=2. We prove the following property, from whih the assertion of the theorem isan immediate orollary.(�) There exists an insertion order of nk points for whih the olor sequene produed by theUniMax greedy algorithm is Ck.The proof proeeds by indution on k. We note that the laim easily holds for k = 1; 2. Supposethat the UniMax greedy algorithm has produed a sequene Sk whose olor sequene is Ck. Weinsert the next point in between Dk�1 and Dk, and observe that it is assigned olor k+1. We theninsert a point between Dk�2 and Dk�1, whih is assigned olor k. Proeeding in this manner fromright to left, we insert k points between onseutive subsequenes Dj�1;Dj . The olor sequenenow beomes D2kD3kD4k � � � kDkkDk+1:To omplete the step, we insert one additional point to the left of the whole sequene, whih getsthe olor 1, thereby produing the olor sequene Ck+1. This ompletes the proof of (�), and thusof the theorem. 2Open problem: Obtain an upper bound for the maximum number of olors that the algorithmuses for n inserted points. We onjeture that the bound is lose to the 
(pn) lower bound.4



2.2 Related algorithmsThe First-Fit algorithm|another greedy algorithm. The UniMax greedy algorithm isgreedy for maintaining the unique-maximum invariant, namely, that in eah interval the maximumolor appears exatly one. Perhaps it is more natural to onsider a greedy approah in whih weonly want to enfore the standard CF property. That is, we want to assign to eah newly insertedpoint the smallest olor for whih the CF property ontinues to hold. There are ases wherethis First-Fit greedy algorithm uses fewer olors than the UniMax greedy algorithm: Consider aninsertion of �ve points in the order (1 3 2 4 5). The UniMax greedy algorithm produes the olorsequene (1 3 2 1 4), whereas the First-Fit algorithm produes the oloring (1 3 2 1 2). Thepreeding lower bound onstrution does not apply for the First-Fit algorithm, and at the presentwe have no nontrivial bounds on its performane.CF oloring for unit intervals. Consider the speial ase where we want the CF property tohold only for unit intervals. In this ase, O(log n) olors suÆe: Partition the line into the unitintervals Ji = [i; i + 1), for i 2 Z. Color the intervals Ji with even i as white, and those with oddi as blak. Note that any unit interval meets only one white and one blak interval. We olorthe points in eah Ji independently, using the same set of \light olors" for eah white interval,and the same set of \dark olors" for eah blak interval. For eah Ji, we olor the points that itontains using the UniMax greedy algorithm, exept that new points inserted into Ji in betweentwo previously inserted points get a speial olor, olor 0. It is easily heked that the resultingoloring is CF with respet to unit intervals. Sine we e�etively only insert points into any Ji tothe left or to the right of the previously inserted points, Lemma 2.1() implies that the algorithmuses only O(log n) (light and dark) olors. We remark that this algorithm for unit length intervalssatis�es the unique maximum olor property for suh intervals.We note that, in onstrast with the stati ase (whih an always be solved with O(1) olors),
(log n) olors may be needed in the worst ase. Indeed, onsider a left-to-right insertion of npoints into a suÆiently small interval. Eah ontiguous subsequene � of the points will be asuÆx of the whole sequene at the time the rightmost element of � is inserted. Sine suh a suÆxan be ut o� the urrent set by a unit interval, it must have a unique olor. Hene, at the endof insertion, every subsequene must have a unique olor, whih implies (see [5, 9℄) that 
(log n)olors are needed.3 A First Randomized EÆient Coloring AlgorithmIn this setion we present our �rst eÆient solution, whih is randomized, uses, with high proba-bility, O(log2 n) olors, and produes, again with high probability, a oloring that is onit-freeafter eah insertion.In this algorithm, we do not regard the olors as (ordered) integers, and do not insist that thelargest olor in an interval be unique.Let us assume that the total number n of points to be inserted is known in advane. Thealgorithm uses an in�nite number of olor lasses, whih we denote by A1; A2; : : :, where eah lassonsists of a log n olors, for some appropriate suÆiently large onstant a. We denote the j-tholor of lass Ai by �ij . 5



When a new point p is inserted, we �rst hoose randomly a olor lass that will be used to olorp, so that lass Ai is hosen with probability 1=2i. Suppose that we have hosen olor lass Ai forp. If Ai is not yet saturated, that is, not all olors of Ai have already been used, we hoose anyunused olor and olor p with it. If Ai is already saturated, we assign to p a olor in Ai aordingto the following rule: Consider all the points in the urrent set whose olors belong to Ai, and letCi denote the sequene of their olors, ordered from left to right. For eah olor �ij , let dj denotethe smallest number of elements of Ci that separate an element equal to �ij from the plae wherep is to be inserted. Then we assign to p a olor �ij for whih dj is maximal. (Note that there ouldbe two suh andidate olors, one on eah side of p; we then hoose an arbitrary one among them.)Theorem 3.1. With high probability, (i) the resulting oloring is onit-free after eah insertion,and (ii) only O(log2 n) olors are used.Proof: The seond statement follows from the fat that the probability of hoosing any lass Aiwith i � d, at any �xed insertion step, is 2�d. We turn to the proof of the �rst part.Consider an interval I at some insertion step t, and let m be the number of points of P (t) in I.Assume �rst that m � a4 log n. Let i be the index that satis�esa8 � 2i log n � m < a8 � 2i+1 log n:We laim that among the points of I whose olors belong to Ai there is (with high probability) apoint olored with a unique olor.The expeted number Ni of points in I with olors in Ai is � = m=2i, whih lies between a8 lognand a4 logn. By standard results on large deviations (see, e.g., Theorem A.1.14 in the appendix of[1℄), it follows that there exists a onstant  > 0 (may be taken to be minf1=8;� ln(e1=2(3=2)�3=2)g)suh that Pr[jNi � �j > �=2℄ � 2e�� � 2� 1n�a=8 :Hene, with high probability, 1 � �=2 � Ni � 3�=2 � 3a8 log n;provided we hoose a to be a suÆiently large onstant.Consider the time step t0 � t of the last insertion of a point q into I that has been olored by aolor in Ai. If at time t0 the lass Ai was not saturated, then q was assigned an unused olor of Ai,so its olor is unique in I. Suppose then that Ai was saturated prior to time t0. Then q reeiveda olor �ij for whih the distane to the nearest previously inserted point s with that olor is aslarge as possible (in the preise sense de�ned above). Clearly, there are at least a2 log n points with(other) olors of Ai between q and s, whih means, by what we have just shown, that, with highprobability, no point with olor �ij an appear in I.To omplete the proof, we still need to onsider the ase m < a4 log n. In this ase, let q be thelast point inserted into I (of any olor lass). If the lass of q was not saturated at the insertiontime, the olor of q is unique in I. If the lass was saturated, arguing as above, there are at leasta2 logn points with (other) olors of that lass between q and any other point with the olor assignedto q, so again the olor of q must be unique in I (this time with ertainty). As a matter of fat,the same argument implies that every point of I is uniquely olored in I.6



levelnew point gets level 4 312Figure 1: Illustrating the 2-stage deterministi algorithm. An insertion order that realizes thedepited assignment of levels to points is to �rst insert all level-1 points from left to right, theninsert the level-2 points from left to right, and then the level-3 points.Sine there are n insertions and at eah insertion there are at most n2=2 intervals to onsider,the total failure probability is at most n3 � 1n�a=8. This an be made smaller than n�d for any d byhoosing a = a(d) suÆiently large. 2We an modify the algorithm so that it does not need to know n in advane, and so that itstill uses O(log2 n) olors, with high probability, when n points are inserted. This is simply doneby oloring new points with a ompletely new set of olors, whenever n reahes the values 22i , fori � 0.4 An EÆient Deterministi AlgorithmIn this setion we modify the UniMax greedy algorithm into a deterministi 2-stage oloring sheme,and show that it uses only O(log2 n) olors. Here too the olors are not integers. We refer to thisalgorithm as the leveled UniMax greedy algorithm.Let x be the point whih we urrently insert. We assign a olor to x in two steps. First weassign x to a level , denoted by `(x). One x is assigned to level `(x) we give it an atual oloramong the set of olors dediated to `(x). We maintain the invariant that eah olor is used by atmost one level.Modifying the de�nition from the UniMax greedy algorithm, we say that point x sees pointy (or that point y is visible to x) i� for every point z between x and y, `(z) < `(y). When x isinserted we set `(x) to be the smallest level ` suh that either to the left of x or to the right of x(or in both diretions) there is no point y visible to x at level `.To give x a olor, we now onsider only the points of level `(x) that x an see. That is, wedisard every point y suh that `(y) 6= `(x), and every point y suh that `(y) = `(x) and there isa point z between x and y suh that `(z) > `(y). We apply the UniMax greedy algorithm so asto olor x with respet to the sequene Px of the remaining points, using the olors of level `(x)only. That is, those olors are ordered, and we give x the smallest olor so that the oloring of Pxmaintains the unique maximum olor ondition. This ompletes the desription of the algorithm.See Figure 1 for an illustration.We begin the analysis of the algorithm by making a few observations on its performane:(a) Suppose that a point x is inserted and is assigned to level i > 1. Sine x was not assigned toany level j < i, it must see a point `j at level j that lies to its left, and another suh point rj thatlies to its right. Let Ej(x) denote the interval [`j; rj ℄. Note that, by de�nition, these intervals arenested, that is, Ej(x) � Ek(x) for j < k < i. See Figure 1.7



(b) We de�ne a run at level i to be a maximal sequene of points x1 < x2 < � � � < xk at level i,suh that all points between x1 and xk that are distint from x2; x3; : : : ; xk�1 are assigned to levelssmaller than i. Whenever a new point x is assigned to level i and is inserted into a run of thatlevel, it is always inserted either to the left or to the right of all points in the run. Moreover, theatual olor that x gets is determined solely from the olors of the points already in the run. SeeFigure 1.() The runs keep evolving as new points are inserted. A run may either grow when a new pointof the same level is inserted at its left or right ends (note that other points at smaller levels mayseparate the new point from the former end of the run), or split into two runs when a point of ahigher level is inserted somewhere between its ends.(d) As in observation (a), the points at level i de�ne intervals, alled i-intervals. Any suh intervalE is a ontiguous subsequene [x; y℄ of P , so that x and y are both at level i, and all the pointsbetween x and y have smaller levels. E is formed when the seond of its endpoints, say x, isinserted. We say that x loses the interval E, and refer to it as a losing point. Note that, byonstrution, x annot lose another interval.(e) Continuing observation (a), when x is inserted, it destroys the intervals Ej(x), for j < i, thatit is inserted into, and only these intervals. That is, eah of these intervals now ontains a pointwith a level greater than that of its endpoints, so it is no longer a valid interval. We harge x tothe set of the losing endpoints of all these intervals. Clearly, none of these points will ever beharged again by another insertion (sine it is the losing endpoint of only one interval, whih isnow destroyed). We maintain a forest F , whose nodes are all the points of P . The leaves of F areall the points at level 1. When a new point x is inserted, we make it a new root of F , and theparent of all the losing points that it harges. Sine these points have smaller levels than x, andsine none of these points beomes a hild of another parent, it follows that F is indeed a forest.Note that the non-losing points an only be roots of trees of F . Note also that a node at leveli has exatly i� 1 hildren, exatly one at eah level j < i. Hene, eah tree of F is a binomial tree(see [3℄); if its root has level i then it has 2i nodes.This implies that if m is the maximal level assigned after n points have been inserted, then wemust have 2m � n, or m � logn. That is, the algorithm uses at most log n levels.We next prove that our algorithm uses only O(log n) olors at eah level. We reall the wayruns evolve: They grow by adding points at their right or left ends, and they split into a pre�x andsuÆx subruns, when a point with a larger level is inserted in their middle.Lemma 4.1. At any time during the insertion proess, the olors assigned to the points in a runform a sequene of the form C0(a; b) (as de�ned in Setion 2). Moreover, when the j-th smallestolor of level i is given to a point x, the run to whih x is appended has at least 2j�2 + 1 elements(inluding x).Proof: The proof proeeds by indution through the sequene of insertion steps, and is based onthe following observation. Let � be a ontiguous subsequene of the omplete binary tree sequeneSk�1, and let x be a point added, say, to the left of �. If we assign to x olor (x), using theUniMax greedy algorithm, then ((x))k� is a ontiguous subsequene of either Sk�1 or Sk. Thelatter happens only if � ontains Sk�2k(k � 1) as a pre�x. Symmetri properties hold when x isinserted to the right of �. We omit the straightforward proof of this observation. 2As a onsequene, we obtain the following result.8



Theorem 4.2. (a) The algorithm uses at most (2 + log n) logn olors.(b) At any time, the oloring is onit-free.() In the worst ase the algorithm may be fored to use 
(log2 n) olors after n points are inserted.Proof: (a) We have already argued that the number of levels is at most logn. Within a level i,the k-th smallest olor is assigned when a run ontains at least 2k�2 points. Hene 2k�2 � n, ork � 2 + log n, and (a) follows.To show (b), onsider an arbitrary interval I. Let ` be the highest level of a point in I. Let� = (y1; y2; : : : ; yj) be the sequene of the points in I of level `. Sine ` is the highest level in I,� is a ontiguous subsequene of some run, and, by Lemma 4.1, the sequene of the olors of itspoints is also of the form C0(a0; b0). Hene, there is a point yi 2 � whih is uniquely olored amongy1; y2; : : : ; yj by a olor of level `.To show (), we onstrut a sequene P so as to fore its oloring to proeed level by level. We�rst insert 2k�1 points from left to right, thereby making them all be assigned to level 1, and to beolored with k di�erent olors of that level. Let P1 denote the set of these points. We next inserta seond bath of 2k�2 points from left to right. The �rst point is inserted between the �rst andseond points of P1, the seond point between the third and fourth points of P1, and so on, wherethe j-th new point is inserted between the (2j�1)-th and (2j)-th points of P1. By onstrution, allpoints in the seond bath are assigned to level 2, and they are olored with k � 1 di�erent olorsof that level. Let P2 denote the set of all points inserted so far. P2 is the onatenation of 2k�2triples, where the levels in eah triple are (1; 2; 1). We now insert a third bath of 2k�3 points fromleft to right. The �rst point is inserted between the �rst and seond triples of P2, the seond pointbetween the third and fourth triples of P2, and so on, where the j-th new point is inserted betweenthe (2j� 1)-th and (2j)-th triples of P2. By onstrution, all points in the third bath are assignedto level 3, and they are olored with k � 2 di�erent olors of that level.The onstrution is ontinued in this manner. Just before inserting the i-th bath of 2k�i points,we have a set Pi�1 of 2k�1+ � � �+2k�i+1 points, whih is the onatenation of 2k�i+1 tuples, wherethe sequenes of levels in eah of these tuples are all idential, and are equal to the \ompletebinary tree sequene" C0(1; 2i�1 � 1), as de�ned in Setion 2 (whose elements now enode levelsrather than olors) The points of the i-th bath are inserted from left to right, where the j-th pointis inserted between the (2j � 1)-th and (2j)-th tuples of Pi�1. By onstrution, all points in thei-th bath are assigned to level i, and they are olored with k � i+ 1 di�erent olors of that level.Proeeding in this manner, we end the onstrution by inserting the (k�1)-th bath, whih onsistsof a single point that is assigned to level k. Altogether we have inserted n = 2k � 1 points, andfored the algorithm to use k + (k � 1) + � � � + 1 = k(k + 1)=2 = 
(log2 n) di�erent olors. 2Remark: One an modify the algorithm so that the set of olors that it uses an be identi�ed with(a subset of a pre�x of) the integers, and so that it maintains the property of the UniMax greedyalgorithm: At any time t and for any interval I, there is a unique point in I with maximum olor.The modi�ed algorithm also uses O(log2 n) olors.Spei�ally, we proeed as follows. Suppose �rst that n is known in advane. Order the pairs(k; i) 2 f1; : : : ; log ng � f1; : : : ; 2 + log ng lexiographially, i.e., (k; i) < (k0; i0) if k < k0 or (k = k0and i < i0). Let f(k; i) be the rank of the pair (k; i) in this lexiographi order. Then the set ofnumbers f(k(p); i(p)), where p 2 P is assigned level k(p) and the i(p)-th olor within that level, is(a subset of) a pre�x of the integers, and the unique maximum olor property is satis�ed.If n is not known in advane, we apply the same strategy as the one disussed at the end of9



the preeding setion. That is, when the number of inserted points reahes one of the values 22i ,for i � 0, we start oloring new points with a ompletely new set of olors, whih are mappedlexiographially onto integer values that are larger than the largest integer olor used so far.5 A Better Randomized EÆient AlgorithmWe next modify the leveled UniMax greedy deterministi algorithm into the following randomizedalgorithm, to whih we refer as the randomized leveled UniMax greedy algorithm. When a newpoint x is inserted, its level is assigned as follows. Let I(x) denote the set of all levels i suh that xlies in an i-interval Ei(x) of the urrent sequene (see observation () in the preeding setion fordetails), and let M(x) denote the omplementary set (within the integers N). That is,M(x) = fi 2 N j x does not lie in an i-interval at the time of insertiong:Enumerate M(x) as m1 < m2 < � � � . In the randomized version, we assign x to level m1 withprobability 1=2, to level m2 with probability 1=4, and in general to level mj with probability 1=2j ,for j � 1. (In ontrast, the deterministi algorithm assigns x to level m1.) One the level of x hasbeen assigned, the olor that it gets within that level is determined exatly as in the deterministialgorithm.The expeted number of levels. To analyze the performane of the randomized algorithm,we �rst estimate the number of levels that the algorithm uses. We run the following aountingsheme. When x is inserted and assigned to level i, it gets weight w(x) = 1:5i. The soures fromwhih this weight is alloated are: (i) the entire weight of some points in P (t) (whih pass theirweight to x), and (ii) three new units that are added to the pool for eah inserted point. We startwith an initial pool of 0. The points that ontribute their weights to x are the losing endpointsof the j-intervals that ontain x, for all j < i in I(x). This aounting proess is managed by abanker, who makes sure that eah newly inserted point gets the weight it is entitled to, using theresoures (i) and (ii). In doing so, she may either run into de�it, or have surplus. We will showthat the expeted net gain of the banker is 0.Note that if a losing endpoint y ontributes its weight to a newly inserted point x, then theinterval that has y as its losing endpoint is destroyed when x is inserted. Consequently, y willnever have to ontribute any weight (whih it does not possess any more) to points inserted afterx. The expeted weight of x is E[w(x)℄ =Xj�1 12j 1:5mj :The expeted weight that the banker an ollet from the losing endpoints isd(x) =Xj�1 12j 0� Xk2I(x); k<mj 1:5k1A :We an rewrite this as follows. Set Ij(x) := fmj�1+1; : : : ;mj � 1g, for j � 1 (with m0 = 0). Thend(x) =Xj�1 12j�1 0� Xk2Ij(x) 1:5k1A :10



Indeed, a losing endpoint y at level k 2 Ij(x) that partiipates in this insertion step will be asked toontribute its weight when x is assigned to level m`, for any ` � j, whih happens with probability12j + 12j+1 + � � � = 12j�1 . Therefore,d(x) =Xj�1 12j�1 �1:5mj � 1:5mj�1+11:5� 1 � =Xj�1 42j �1:5mj � 1:5mj�1+1� :By rearranging its terms, the last sum is equal to�3 +Xj�1� 42j � 4 � 1:52j+1 � 1:5mj = �3 +Xj�1 12j 1:5mj = E[w(x)℄ � 3:Sine 3 new units are added to the pool, the expeted net gain of the banker when x is inserted is0. Using linearity of expetation, the overall expeted net gain of the banker is 0.The proess starts with 0 and aumulates 3n units. If the highest level assigned to a point is` then the �nal weight of eah point at level ` is 1:5`. If we regard ` as a random variable, then wehave E[1:5`℄ � 3n:Using a variant of Markov's inequality, we have, for any integer t,3n � E[1:5`℄ =Xk�1 1:5k �Pr[` = k℄ � 1:5t �Pr[` � t℄:Hene, the probability that the �nal bound is at least t is at most 3n=1:5t. This implies that, withhigh probability, the number of levels used by the algorithm is O(log n).The expeted number of olors per level. We next show that, with high probability, themaximum length of a run of any level, at any time during the insertion proess, is O(log n). ByLemma 4.1, the maximum number of olors used at any level is only O(log log n). Hene, with highprobability, the algorithm uses only O(log n log log n) olors. The intuition behind the analysis isthat runs annot beome too long: When a newly inserted point x an join a run, it does so onlywith (onditional) probability 1=2, and thus runs that are substantially longer than �(logn) arevery unlikely to be formed.Fix a level m. Let P+ denote the subset of P onsisting of points that have been assigned tolevels � m. P+ is a random variable that depends on some of the oin ips made by the algorithm.Let us simplify the insertion proess, and ondition it on the event that P+ is equal to some �xedsubset E. We insert the points of P in order. Let p be the point urrently being inserted. If p isin P nE, we ignore it. Otherwise, we olor it either 0 (assign it to level m) or 1 (assign it to somelevel > m), as follows. Consider only the 0=1 olors of the subset E(t) of the urrent set of pointsin E. If p is inserted between two 0's, we olor it 1. Otherwise, we ip a oin and olor it either bya 0 or by a 1, eah with probability 1=2. Note that for any p 2 E, the probability that p is olored0, onditioned on P+ = E, is always at most 1=2.We need to estimate the probability that we get a sequene of j onseutive 0's at some pointduring the proess. Let X(i; j) be an indiator random variable, for 1 � j � i � jEj. The variableX(i; j) is 1 i� the i-th insertion of a point of E ends (i.e., is the rightmost point of) a sequene of atleast j onseutive 0's right after we insert and olor it. Similarly, de�ne Y (i; j) to be an indiator11



random variable, for 1 � j � i � n, whih is equal to 1 i� the i-th insertion of a point of E starts(is the leftmost point of) a sequene of at least j onseutive 0's.In what follows, all probabilities are onditioned on the event P+ = E. The ruial propertythat we need is provided by the following laim:Claim: Pr(X(i; j) = 1) � 1=2j and Pr(Y (i; j) = 1) � 1=2j .The proof of the laim proeeds by indution on j. The ase j = 1 is easy: The probabilities inquestion are of the event that the i-th inserted point is olored 0, and, as noted, the probability ofthis event is at most 1=2. Consider then the general ase j > 1.Consider the i-th inserted point z. Let k < i be the hronologial index in E of the pointinserted last among (i) the point y 2 E immediately to the left of z (within E) at the time whenz is inserted, and (ii) the point x 2 E to the left of z suh that between x and z there are j � 2other points of E when z is inserted. (If both x and y are unde�ned, then X(i; j) = 0 for j > 1, sothis ase only dereases Pr(X(i; j) = 1).) See Figure 2.j � 2 y zxFigure 2: The points x; y; z in the proof of the laim.First suppose that k is the index of y. If X(i; j) = 1 then when y is inserted it must (be partof and) end a run of at least j � 1 onseutive 0's right after we insert and olor it. Indeed, if thiswere not the ase, the run of 0's that z �nds to its left when it is inserted has to grow to its urrentsize after y is inserted, and it an do so only from its left side, whih implies that the point x mustbe inserted after y, ontrary to assumption. Hene we must also have X(k; j � 1) = 1 and thusPr(X(i; j) = 1) � Pr(X(k; j � 1) = 1 and z is olored 0) =Pr(X(k; j � 1) = 1) �Pr(z is olored 0 j X(k; j � 1) = 1) � 1=2j :The last inequality follows from the indution hypothesis and from the fat that Pr(z is olored 0 jX(k; j�1) = 1) � 1=2: Similar to what we have argued above, we either olor z by 1 with ertainty,or olor it with 0 with probability 1=2. (This is true also when onditioning on P+ = E, as longas z is in E.)Suppose next that k is the index of x. Then, arguing in a fully symmetri manner, we havePr(X(i; j) = 1) = Pr(Y (k; j � 1) = 1) �Pr(z is olored 0 j Y (k; j � 1) = 1) � 1=2j :The bound for Pr(Y (i; j) = 1) is obtained in a fully symmetri manner. This ompletes the proofof the laim. 2We sum the inequalities in the laim over all i, with j =  log n, for some suÆiently largeonstant , and onlude that the probability that any point of E starts or ends a run of at least log n onseutive 0's when it is inserted, onditioned on P+ = E, is at most 2jEj=n � 2=n�1.Sine this holds for any set E, Bayes' formula implies that, with probability at least 1 � 2=n�1,the maximum size of a run of points at level m, at any time during the insertion proess, is  log n.Repeating this for all levels m, and using the fat that the maximum level is O(log n), with highprobability, we onlude that, with high probability, no run of any level ever beomes longer than log n. 12



In summary, we have:Theorem 5.1. The randomized leveled UniMax greedy algorithm uses, with high probability, onlyO(log n log log n) olors.Open problem: This is the losest we have managed to get to the known lower bound 
(log n),and the gap is still wider for deterministi algorithms. An obvious open problem is to lose thesegaps. (The lower bound in Theorem 4.2() is only for the spei� algorithm, and not for the problemat large.)6 Random Insertion OrderIn this setion we onsider the speial ase where the points are inserted in a random order, andwhere we olor them by the UniMax greedy algorithm of Setion 2. We have simulated the exeutionof the UniMax greedy algorithm under suh an insertion order. The results of the simulationstrongly suggest the following onjeture:Conjeture 6.1. For eah integer k � 1, the expeted frequeny of the olor k in C(P (t)), asgenerated by the UniMax greedy algorithm, onverges to 13 �23�k�1, as t!1.Assuming Conjeture 6.1, the following is an easy onsequene.Corollary 6.2. If eah point is inserted into P at a random plae, the expeted value of max(P (t)),under the UniMax greedy algorithm, is O(log t). This also holds with high probability, if the onstantof proportionality is hosen suÆiently large.Proof. Let P (n) be a set of n points inserted in a random order. Let Xk be a random variableounting the number of points in P (n) that were olored with k by the UniMax greedy algorithm.Let Ik be the indiator variable for the olor k to appear at all.We are interested in the number of olors used, that is Y :=Pk Ik.Assume that E(Xk) = 13(23)k�1n. Then, using Markov's Inequality, E(Ik) = Pr(Ik = 1) =Pr(Xk � 1) � E(Xk). Hene,E(Y ) = E(X1�k Ik) = E( X1�k<1+log3=2 n Ik) +E( Xk�1+log3=2 n Ik)� 1 + log3=2 n+ Xk�1+log3=2 n 13 �23�k n� 1 + log3=2 n+Xi�0 13 �23�i= log3=2 n+ 2 :Next, we also havePr(more than  log3=2 n olors are used) = Pr(Id log3=2 ne = 1) � 13 �23�d log3=2 ne�1 n � 12 � 1n�1 :13



At this stage, we do not have a omplete proof of Conjeture 6.1. We do have some partialresults that we now present. In partiular, they show that Conjeture 6.1 holds for k = 1; 2; 3.Completing the proof is one of the major open problems raised in this paper.Lemma 6.3. The expeted number of points assigned the olor 1, after a random insertion of tpoints, is t+13 , for t � 2.Proof: Denote by Xi the random variable whose value is the number of 1's after the insertion ofthe �rst i points. Then Xi+1 = Xi+Yi, where Yi is an indiator variable, equal to 1 if the (i+1)-stpoint pi+1 is olored by 1, and to 0 otherwise. Note that pi+1 is olored by 1 if and only if it isinserted at a plae that is not adjaent to any point olored 1. Eah of the urrent Xi 1-oloredpoints has two adjaent insertion plaes, and all these plaes are distint, beause P (i) does notontain two adjaent points olored 1. Hene, out of the i+1 available insertion plaes, i+1� 2Xiwill ause pi+1 to be olored 1. Taking expetations, we obtainE(Xi+1) = E(Xi)+E(Yi) = E(Xi)+E(E(Yi j Xi)) = E(Xi)+E( i+ 1� 2Xii+ 1 ) = E(Xi)+ i+ 1� 2E(Xi)i+ 1 ;or E(Xi+1) = i�1i+1E(Xi) + 1, for i � 2. The solution of this reurrene, with the initial valueE(X2) = 1, is easily seen to be E(Xt) = t+13 , for t � 2. 2Analysis for k � 2. We next present a framework for estimating the expeted number of pointsthat are assigned the olor k, for k � 2. We apply this framework to get a omplete solution fork = 2; 3. We �x k, and de�ne a k-state to be any valid ontiguous sequene of olors in f1; : : : ; kgthat may show up in C(P (t)), delimited on both sides by �, whih designates a olor greater than k.The validity of a state means that it satis�es the unique-maximum olor invariant: Any ontiguousnonempty subsequene of s has a unique largest element. We refer to the portion of a state thatexludes the �'s as its ore.Denote by Sk the set of all k-states. For example, the set S2 onsists of the following states:s1 = h��i; s2 = h�1�i; s3 = h�2�i; s4 = h�12�i; s5 = h�21�i; s6 = h�121�i: (1)For example, the following sequene C(P (t)) = (1 2 1 3 2 4 2 1 3 5 1 2 3) is deomposed into thefollowing sequene of 2-states:�h�121�i; h�2�i; h�21�i; h��i; h�12�i; h��i�We denote by S+k the subset of Sk onsisting of those k-states that ontain the olor k (neessarilyat a unique loation), and by S�k the subset of those states that do not ontain k. We refer tostates in S+k (resp., S�k ) as major k-states (resp., minor k-states). The size jsj of a k-state s isthe length of its ore plus 1; it designates the number of plaes in s at whih a new point an beinserted. For example, for 2-states we have S�2 = fs1; s2g, S+2 = fs3; s4; s5; s6g. Also, we havejs1j = 1, js2j = js3j = 2, js4j = js5j = 3, and js6j = 4.Let s 2 S+k . It has the form (�ukv�), where u and v an be regarded as the ores of tworespetive (k � 1)-states sL and sR. We refer to sL and sR as the left wing and the right wing ofs, respetively. We have jsj = jsLj+ jsRj. Care should be exerised in the treatment of sL and sR.Spei�ally, we will onsider the atual sequene of olors C(P (t)) as a onatenation of states,14



whih depends on the hoie of k. We denote by C(k)(t) the (unique) partition of C(P (t)) into theonatenation of k-states, and refer to it as the k-senario. Then, for a major state s 2 S+k , its leftand right wings are not ounted as separate states in the k-senario, but they are ounted as statesin the (k � 1)-senario.We need one more notion. When we insert a new point into a k-state s, there are two possibleoutomes: (i) The point gets a olor smaller than or equal to k, in whih ase s is transformed toanother, single state in Sk. (ii) The point gets a olor greater than k, in whih ase s is split intotwo new k-states. Note that, for ase (ii) to our, s must be a major state (if s were minor, weould have assigned the olor k to the new point). Moreover, in this ase one of the two new states,s0, must be a major state, and the other, s00 must be minor. We refer to this ase by saying that sspawns s00 and is transformed into s0. (Note that not every insertion into a major state neessarilyauses a spawning.)It is easy to show that the size jSkj of Sk satis�es jSk+1j = jSkj + jSkj2, so jSkj is doublyexponential in k. We have jS1j = 2, jS2j = 6, jS3j = 42, and jS4j = 1806.Let k be �xed. For states s; r 2 Sk, we denote by asr the expeted hange in the number ofstates r that are generated by an insertion of a new point, onditioned on having hosen an insertionplae at a state s (within C(k)). For example, for k = 2, we have (see (1) for the notation)as4s1 = as4s2 = as4s3 = as4s6 = 13 ; and as4s4 = �23(in two of the three possible insertion plaes, s4 is destroyed by the insertion, and in the thirdinsertion it survives, so the net expeted inrease in the number of s4-states is 0 � 13+(�1) � 23 = �23).Put wsr = jsjasr, and let W denote the resulting matrix (wsr).We �rst provide some intuitive and informal derivation of the equations that we will rigorouslyderive shortly. Let M (t)s denote the random variable equal to the number of k-states s in C(P (t)).De�ne the frequeny of state s at time t to be X(t)s =M (t)s =(t+1). Note that jsjX(t)s is the frequenyof the insertion plaes that belong to ourrenes of s in C(P (t)). In partiular,Ps2Sk jsjX(t)s = 1,for eah t. We also have(t+ 2)E(X(t+1)r ) = (t+ 1)E(X(t)r ) + Xs2Sk jsjasrE(X(t)s ): (2)Indeed, jsjX(t)s is the probability that the next insertion plae belongs to an ourrene of state sin C(P (t)), and asr is the orresponding onditional expeted hange in the number of ourrenesof state r. Sine M (t)r = (t+1)X(t)r (resp., M (t+1)r = (t+2)X(t+1)r ) is the number of ourrenes ofstate r at time t (resp., t+ 1), the equality follows.Letting t!1, applying an informal limit proess to (2), and denoting the limit of E(X(t)s ) asXs, for s 2 Sk, we arrive at the equationsXr = Xs2Sk jsjasrXs = Xs2Sk wsrXs:We now proeed to justify this proess rigorously.Existene of limiting frequenies. The random insertion order de�nes in a natural way amulti-type branhing proess (see [2℄). We briey review the ingredients of the theory of branhing15



proesses that we need to apply. A (disrete) branhing proess of this kind manipulates objets(referred to as \partiles") that an have a �nite number m of types. Eah type i is assoiated withweights (�i;J), where J is a multi-set of types. The weight �i;J should be thought of as the relativefrequeny at whih a partile of type i gives birth to the multi-set J (for eah type j that appears� times in J , the partile generates � new partiles of type j). Eah partile giving birth diesimmediately after doing so. Set �i =PJ �i;J . The proess may then be formally de�ned as follows.Let S(t) be the population at time t. Choose x 2 S(t) with probability �i(x)=Py2S(t) �i(y), wherei(u) is the type of partile u. Then x gives birth to the multiset J with probability �i(x);J=�i(x) andthen dies.In our ase, the di�erent partile types orrespond to di�erent state types in Sk. A state s oflength ` has total weight `. If some insertions into s produe the single state s0 (without spawning),then �s;fs0g = j, where j is the number of plaes at whih this ours. If some j insertions produetwo states s0; s00 (by spawning) then �s;fs0;s00g = j. The entries of our transition matrix W are thende�ned as wsr = Pr2J �s;J , for r 6= s, and wss = �Pr2J �s;J� � jsj. See pp. 200{202 in [2℄ for asimilar onstrution of a transition matrix for general multi-type proesses (where the matrix isalled the in�nitesimal generator of a orresponding semigroup of mean matries).A standard trik in the theory of branhing proesses is to embed disrete branhing proessesof the kind desribed above into ontinuous-time branhing proesses, in whih partiles give birthin ontinuous time. More spei�ally, S(t) evolves in ontinuous time. For any �xed time t, weassoiate, with eah x 2 S(t) and eah multi-set J , an exponenetial random variable with ratewi(x);J . We then take the one with the smallest atual value|suppose this is the variable wi(x0);J 0 ,and it has the value h. Now the population at time t+ h is obtained from the population at timet by killing x0 and replaing it by J 0. We now obtain a new population S(t+ h), a new olletionof exponential random variables, and the proess ontinues.If we extrat from the ontinuous branhing proess only those times at whih new partiles areborn, we obtain exatly the same disrete proess that we started with (see [2℄ for details). In theterminology of the theory of branhing proesses, the disrete and ontinuous proesses are the same,up to a time hange. The reason for this round-about reasoning is that the theory of ontinuous-time branhing proess is better developed, and provides mahinery for proving the existene oflimit frequenies and for analyzing their properties. In partiular, the limiting frequenies for thenew ontinuous proess (whose existene is established next) are idential to those of the originaldisrete proess.It is easy to see that the (ontinuous) branhing proess just de�ned is superritial, and satis�esthe Z logZ moment ondition (see, e.g., [2℄ for bakground and details). It therefore follows (see,e.g., Theorem 2, p. 206, in [2℄) that the limiting frequenies exist almost surely. We let Xs denotethe expeted limit relative frequeny of state s in C(P (t)), when t ! 1, where the non-limitfrequenies are as de�ned above.In addition, Theorem 2, p. 206, in [2℄, just ited, asserts that the limiting distribution X =(Xs)s2Sk is given by the eigenvetor of W T orresponding to the largest eigenvalue. In our ase,this does indeed oinide with our informal derivation, and means that X satis�es the linear system(W TX)r = Xs2SkwsrXs = Xr; r 2 Sk: (3)For example, for k = 2, the transition weights asr between the six states listed in (1) are given16



in the following matrix A, where Aij = asisj . (The fourth row of A has already been disussed.)A = 0BBBBBB� �1 1 0 0 0 00 �1 0 12 12 00 0 �1 12 12 013 13 13 �23 0 1313 13 13 0 �23 1312 12 0 14 14 �12
1CCCCCCA ;and W = 0BBBBBB� �1 1 0 0 0 00 �2 0 1 1 00 0 �2 1 1 01 1 1 �2 0 11 1 1 0 �2 12 2 0 1 1 �2
1CCCCCCA :The system of equations for the limit distribution is W TX = X. To normalize X, we extend it bythe equation Xi jsijXi = X1 + 2X2 + 2X3 + 3X4 + 3X5 + 4X6 = 1;whih expresses the fat that the sum of lengths of the 2-states that ompose C(P (t)) is equal tojC(P (t))j (see above for a similar equation for the non-limit frequenies X(t)s ). The solution of theextended system is X = �19 ; 19 ; 245 ; 115 ; 115 ; 245� :In partiular, the expeted limit frequeny of olor 1 is X2 +X4 +X5 + 2X6 = 13 (in aordanewith Lemma 6.3), and the expeted limit frequeny of olor 2 is X3+X4+X5+X6 = 29 . We havethus veri�ed Conjeture 6.1 for k = 2:Lemma 6.4. The limit frequeny of olor 2 is 2=9.Analysis of 3-states. The same mahinery an be applied to the 42 states in S3. The solutionof (3) for k = 3 is presented in Table 1.By adding up the frequenies of all major 3-states (those that ontain the olor 3), we verifyConjeture 6.1 for k = 3:Lemma 6.5. The limit frequeny of olor 3 is 4=27.Open problem: Find losed-form expressions for the state frequenies for k = 3 (using the datain Table 1), and for k > 3. This may lead to a simple indutive proof of Conjeture 6.1.Further analysis of k-states. The system (3) beomes onsiderably harder to solve expliitlyfor larger values of k, so we look for simpler relationships. PutNk = Xs2S+k Xs; Zk = Xs2S�k Xs:Note that Nk is the expeted frequeny of olor k. Reall that Conjeture 6.1 says that Nk =13 �23�k�1. 17



Lemma 6.6. For eah k � 2 we have 2Nk + Zk = Nk�1 + Zk�1.Proof: Let s be a state in S+k , and let sL (resp., sR) denote the state obtained by taking theportion of s to the left (resp., right) of (the unique) k, and appending � at the right (resp., left). Ifwe repeat this splitting proess to eah state of S+k in C(P (t)), and add to the output all states inS�k (whih we leave intat), we obtain the set of all states of Sk�1 that appear in C(P (t)). The sumof the frequenies of these states is learly Nk�1 + Zk�1. On the other hand, by our onstrution,this sum is 2Nk + Zk, so the lemma follows. 2The following onjeture is equivalent to Conjeture 6.1.Conjeture 6.7. Nk = Zk for eah k � 1.We verify the onjeture for k = 1, where N1 = Z1 = 13 , for k = 2, where N2 = Z2 = 29 , and fork = 3, where N3 = Z3 = 427 (see Table 1).Assuming that Conjeture 6.7 holds, and ombining it with Lemma 6.6, we obtain 3Nk = 2Nk�1,for k � 2, and N1 = 13 . Hene Nk = 13 �23�k�1 :The onverse diretion is established in a similar manner: Conjeture 6.1 and Lemma 6.6 implyZk = Zk�1 +Nk�1 � 2Nk = Zk�1 � 19 �23�k�2 ;for k � 2, and Z1 = 13 . The solution of this reurrene is Zk = 13 �23�k�1 = Nk, thus showing thatthe two onjetures are indeed equivalent.7 Lower Bound for Online CF-Coloring in the PlaneWe �nally show that online onit-free oloring of points in the plane, with respet to disks(of arbitrary radii), may require n olors in the worst ase, and is therefore quite impratial.(Nevertheless, as mentioned in the introdution, the problem an be solved with muh fewer olorsfor other kinds of ranges; see [6℄.)Theorem 7.1. There exists a sequene P of n points in the plane, so that when these points areinserted aording to their order in P , any online onit-free oloring sheme with respet to diskshas to use n di�erent olors.Proof: We onstrut a sequene P = (p1; p2; : : : ; pn) with the following property(*) For every t = 2; 3; : : : ; n, the edges of the Delaunay triangulation of the set fp1; p2; : : : ; ptginlude all the edges fpi; ptg, i = 1; 2; : : : ; t� 1.We prove the following stronger statement by indution on n:For every n, every hoie of distint points q1; q2; : : : ; qn on the unit irle S1, andevery " > 0 there exists a sequene (p1; p2; : : : ; pn) with the property (*) suh thatkpi � qik � ", and pi lies on the radius oqi, for every i.18



For the indution step, given q1; : : : ; qn and " < 12 , let pn be obtained by moving qn by "towards the enter o of S1. We note that the Delaunay graph of fq1; q2; : : : ; qn�1; png ontains alledges fqi; png, i = 1; 2; : : : ; n. Indeed, there is a irle i tangent to S1 from the inside at qi andpassing through pn, and the losed disk Di bounded by i ontains qi, pn, and no other qj. LetÆi > 0 denote the minimum distane from any qj, j 6= i, to Di.We apply the indution hypothesis with q1; : : : ; qn�1 and with "� = minf"; Æ1; : : : ; Æn�1g, obtain-ing a sequene (p1; : : : ; pn�1). We an now verify that, by onstrution, for every i = 1; 2; : : : ; n�1,the disk Di ontains pi and pn but no other pj . 2Open problems: Theorem 7.1, and the initial enouraging results of Kaplan and Sharir [6℄, as re-viewed in the introdution, raise many interesting open problems, suh as: (i) Obtain deterministialgorithms with good performane for the ases studied in [6℄, viz. where the ranges are halfplanes,ongruent disks, and nearly equal axis-parallel retangles. (ii) Improve further the performane ofthe algorithms of [6℄. (iii) Find solutions with good performane for other ranges, suh as unit slabsor arbitrary axis-parallel retangles. (iv) Extend the results to d � 3 dimensions.It is likely that the bound in Theorem 7.1 improves signi�antly if the points are hosen fromsome random distribution, extending our onjeured bounds of Setion 6.2 to two (and higher?)dimensions.Finally, an one obtain better upper bounds for online k-CF-oloring (k � 2) of points in theplane with respet to disks? Namely, online olor the points so that, at any given time t and forany disk D, there is at least one olor that is assigned to at least one but at most k points ofP (t) \D. For k = 1, this is the CF-oloring problem, where we have just shown a lower bound ofn, but perhaps this an be improved when k � 2. See [9℄ for results onerning k-CF-oloring inthe stati ase.Referenes[1℄ N. Alon and J. Spener, The Probabilisti Method, J. Wiley and Sons, New York, NY, 1992.[2℄ K. B. Athreya and P. E. Ney, Branhing Proesses, Die Grundlehren der mathematishen Wis-senshaften, Band 196, Springer-Verlag, New York, 1972.[3℄ T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introdution to Algorithms, MIT Press, Cam-bridge, MA, 1990.[4℄ J.S. Deogun, T. Kloks, D. Kratsh, and H. M�uller, On vertex ranking for permutations andother graphs, Pro. 11th Annu. Sympos. Theoretial Aspets of Computer Siene, P. Enjalbert,E.W. Mayr, K.W. Wagner, (eds.), Leture Notes in Computer Siene 775, Springer-Verlag,Berlin, pp. 747{758, 1994.[5℄ G. Even, Z. Lotker, D. Ron and S. Smorodinsky, Conit-free olorings of simple geomet-ri regions with appliations to frequeny assignment in ellular networks, SIAM J. Comput.33(1):94{136 (2003).[6℄ H. Kaplan and M. Sharir, Online CF oloring for halfplanes, ongruent disks, and axis-parallelretangles, Manusript, 2004. 19
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State Frequeny Numerator As a fration With fatored denominator0 0:03704 1764000 1=27 1=331 0:03704 1764000 1=27 1=3312 0:02222 1058400 1=45 1=325121 0:02222 1058400 1=45 1=32512 0:01481 705600 2=135 2=3351121 0:01481 705600 2=135 2=335113 0:00800 381024 1=125 1=5331 0:00800 381024 1=125 1=5312321 0:00388 184800 11=2835 11=3451713 0:00948 451584 32=3375 32=3353131 0:00652 310464 22=3375 22=3353123 0:00366 174440 89=24300 89=223552321 0:00366 174440 89=24300 89=2235521231 0:00737 350840 179=24300 179=2235521321 0:00737 350840 179=24300 179=22355232 0:00167 79576 203=121500 203=22355323 0:00167 79576 203=121500 203=223553132 0:00686 326536 833=121500 833=223553231 0:00686 326536 833=121500 833=223553213121 0:00156 74466 197=126000 197=24325371121312 0:00156 74466 197=126000 197=243253712321 0:00233 111160 397=170100 397=223552711232 0:00233 111160 397=170100 397=22355271232 0:00093 44464 397=425250 397=21355371121321 0:00191 90755 2593=1360800 2593=25355271123121 0:00191 90755 2593=1360800 2593=2535527112312 0:00307 146405 4183=1360800 4183=2535527121321 0:00307 146405 4183=1360800 4183=2535527112131 0:00344 163928 20491=5953500 20491=2235537213121 0:00344 163928 20491=5953500 20491=223553721312 0:00485 231208 28901=5953500 28901=223553722131 0:00485 231208 28901=5953500 28901=223553721213 0:00588 279848 34981=5953500 34981=223553723121 0:00588 279848 34981=5953500 34981=22355372213 0:00835 397528 49691=5953500 49691=22355372312 0:00835 397528 49691=5953500 49691=223553722132 0:00198 94467 31489=15876000 31489=253453722312 0:00198 94467 31489=15876000 31489=2534537221312 0:00240 114326 57163=23814000 57163=243553721213121 0:00099 47206 23603=23814000 23603=2435537212132 0:00104 49397 49397=47628000 49397=2535537223121 0:00104 49397 49397=47628000 49397=25355372Table 1: The frequenies of 3-states. The seond olumn is the numerator of the frequeny underthe ommon denominator 47628000 = 25355372.21


