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Abstract

Let F be a family of pairwise disjoint compact convex sets in the plane such that
none of them is contained in the convex hull of two others, and let r be a positive integer.
We show that F has r disjoint |¢,n|-membered subfamilies 7; (1 <4 < r) such that no
matter how we pick one element F; from each F;, they are in convex position, i.e., every
F; appears on the boundary of the convex hull of Ul_, F;. (Here ¢, is a positive constant
depending only on r.) This generalizes and sharpens some results of Erdds—Szekeres,
Bisztriczky—Fejes Téth, Barany—Valtr, and others.

1 Introduction

In their classical paper written in 1935, Erdés and Szekeres [ES1], [E] proved that for every
r > 3, there exists an integer f(r) such that any set of at least f(r) points in the plane has
r elements in convex position. This result has inspired a lot of research in combinatorial
geometry and in Ramsey theory (see e.g. [BDV], [GRS], [H], [PA], [TV], [V]).

It follows that if n is much larger than f(r), then every n-element point set P contains
many r-tuples in convex position. For instance, Solymosi [S] showed that for a suitable
constant ¢, > 0, one can select a sequence of ¢,.n distinct elements from P, whose any r
consecutive members are in convex position. In the case r = 4, Nielsen [N] and, in general,
Béarany and Valtr [BV] proved the following stronger result.

Theorem A. For any fixed r > 4, there is a constant ¢, > 2-2% satisfying the following
condition.

FEvery n-element point set P in general position in the plane has r pairwise disjoint
subsets P; (1 < i < r) such that |P;| > |[c,n]| and no matter how we pick one point from
each P;, they are in conver position.
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This result provides a canonical way to find many convex r-gons in a sufficiently large
point set in the plane.

Bisztriczky and Fejes Téth [BF] found the following generalization of the Erd§s-Szekeres
theorem to families of pairwise disjoint compact convex sets in the plane. We say that such
a family F is in general position if none of its members is contained in the convex hull of the
union of two others. F is said to be in convex position if none of its members is contained
in the convex hull of the union of the others.

Theorem B. For every r > 3, there exists an integer g(r) such that any family of at least
g(r) pairwise disjoint compact convez sets in general position in the plane has r members
in convex position.

In Section 3 of this note, we apply a straightforward counting argument suggested in [S]
to establish the following common generalization of Theorems A and B.

Theorem 1. For every r > 4, there is a positive constant ¢, = 2-0(*) with the following
property.

Every family F of n pairwise disjoint compact convex sets in general position in the
plane has r disjoint |c,n|-membered subfamilies F; (1 <14 < r) such that no matter how we
pick one set from each F;, they are always in convex position.

It is worth mentioning that in the special case when all members of F are single points,
our proof shows that the statement of Theorem A is true with a much better constant c,
than the one given in [BV].

The proofs of the next three theorems follow the same scheme.

A polygonal path pips ... p, in the plane or in space, is called e-straight if /p;—1p;pi+1 >
m—eg, 1 <i<r(cf. [ES2], [P]). The length of a polygonal path is the number of its vertices.

d

Theorem 2. For every d > 2,7 > 3 and € > 0, there exists a positive constant ¢ = c;,

with the following property.

Every n-element point set P in general position in FEuclidean d-space has r pairwise
disjoint subsets P; (1 <14 <) with at least |cn| elements such that no matter how we pick
a point from each P;, they always form an e-straight polygonal path.

Theorem 3. For every r,s > 2, there exists a positive constant ¢ = ¢, 3 = (rs)_o(r) with
the following property.

Let F be a family of n compact convez sets in the plane, no s of which are pairwise
intersecting. Then F has r disjoint |cn|-membered subfamilies F; (1 <14 <r) such that no
two sets belonging to distinct subfamilies have a point in common.

Let G be a graph with vertex set V(G) and edge set E(G). For any positive integer r,
let G(r) denote the graph obtained from G by replacing each vertex v € V(G) by r vertices,
v; (1 <4 <), and connecting v; and u; by an edge if and only if vu € E(G) (1 <14,5 <r).



Theorem 4. For every ¢ > 0,7 > 1, there exists a constant ¢, > 0 with the following
property.

Let T be any tree of at most c,n vertices. Then every graph G with n vertices and at
least cn? edges has a subgraph isomorphic to T(r).

The letters c,c,,cr¢, etc. appearing in different theorems denote unrelated positive
constants depending on r, ¢, etc.

2 Proofs of Theorems 2-3

To establish Theorem 2, we need the following straightforward generalization of a result
from [ES2].

Lemma 2.1 There exists a constant ¢ > 0 such that any set of at least k(e/e)t points in

Euclidean d-space has k elements that form an e-straight polygonal path of length k.

Proof of Theorem 2. Let ¢,d, and r be fixed, and set k = 2r — 1. By Lemma 2.1, there
exists an integer K = K (e, d, r) such that any set of K points in d-space contains k elements
that form the vertex set of an e/3-straight polygonal path II. Notice that if we skip every
other vertex of II, then we obtain a polygonal path II' with r vertices, which is e-straight.
The sequence formed by the r — 1 vertices we skipped is called the support of II.

Consider now any set P of n points in the plane. Clearly, P contains at least
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different ¢/3-straight polygonal paths of length &, and at least
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n!/(n—r+1)! > K1

of them must share the same support S.

Let P; denote the set of all elements of P that occur as the (2i — 1)-st vertex in some
¢/3-straight polygonal path of length &k, whose support is S (1 <4 < r). These sets meet
the requirements of the theorem. In particular, for every ¢, we have

n’" n
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The proof of Theorem 3 uses the same idea. We need a little preparation.



Let F be a family of n compact convex sets in the plane. Assume without loss of
generality that no two members of F have a common vertical tangent line. For C € F, let
7 (C) denote the projection of C onto the z-axis. Following [LMPT], we define four partial
orders, <1, <2, <3 and <4, on F. For any two disjoint sets A, B € F,

1. A<y Bif 7(A) C n(B) and A lies below B (“below” means in the y-axis direction).
2. A<y Bifw(A) C w(B) and A lies above B.

3. A <3 B if the left endpoint of 7(B) is to the right of the left endpoint of w(A), the
right endpoint of m(B) is to the right of the right endpoint of 7(A4) and in the part
where 7(A) and 7(B) overlap (if any), A lies above B.

4. A <4 B if the left endpoint of 7(B) is to the right of the left endpoint of 7(A), the
right endpoint of m(B) is to the right of the right endpoint of 7(A4) and in the part
where w(A) and 7 (B) overlap (if any), A lies below B.

Lemma 2.2 [LMPT]. Any family of more than (k — 1)*(s — 1) compact convez sets in the
plane, no s of which have pairwise nonempty intersections, contains k members that form
a chain with respect to one the relations <1, <2, <3, <4.

Proof of Theorem 3. Setting K = (k—1)*(s — 1) + 1 and k = 2r — 1, we obtain just like
in the previous proof that there exists 1 < j < 4 such that F has at least 1(})/(X) chains
C of length k with respect to <;. If we skip every other element of C, we obtain a chain C’
of length r. The chain C \ C' is called the support of C. It follows that at least
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chains C share the same support S.

For every ¢ (1 < i < r), let F; denote the set of all members of F that occur as the
(2i — 1)-st smallest element of a chain in (F, <;) with length k and support S. It is clear
that no two sets belonging to distinct F;’s have a point in common. The same estimation
as at the end of the proof of Theorem 2 gives that |F;| > ==y for every i. O

It is possible that the following far-reaching generalization of Theorem 3 is also true.
For every s > 2, there exists a constant ¢ = ¢; > 0 with the property that any family of n
compact connected sets in the plane, no s of which have pairwise nonempty intersections,
has at least cn pairwise disjoint members. We have been unable to decide whether this
statement holds for families of straight-line segments.



3 Proof of Theorem 1

We follow the same approach as in the previous section. The proof is based on a stronger
version of Theorem B.

Lemma 3.1 [PT]. For every k > 3, any family of 2** pairwise disjoint compact convez sets
in general position in the plane has k members in convex position.

Let F be a family of n pairwise disjoint compact convex sets in general position in
the plane. Assume without loss of generality that no three members of F have a common
tangent line and no two have a common vertical tangent.

Applying first Lemma 2.2 and then Lemma 3.1, we obtain that for every k, any
membered subfamily of F contains k sets in convex position that form a chain with respect
to one of the relations <; (1 <j <4).

Set k = 4r—2, K = 216%_ Just like in the proof of Theorem 3, it follows that there exists
1 < j < 4 such that F has at least i(Z)/(Ik{) chains B = (By <j By <j ... <; By), whose
members are in convex position. We distinguish two substantially different cases according
to the value of j.

216k‘_

Case 1: 7 = 1. Let B be any chain of length k = 4r — 2 with respect to <1, whose members

are in convex position. Then B has a subchain C = (C1,Cs,...,Cs—1) with the following
property. Each C; contributes to the boundary of the convex hull conv U?;Il C; at least

one point to the left of C, or each C; contributes to bd conv U?LIl C; at least one point

to the right of C;. In the former case we call C a left-conver chain and in the latter one a
right-convez chain. Thus, there are at least
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different chains C = (C; <1 Co <1 ... <1 Co,_1) of the same type, say, left-convex. Define
the support of C as the subchain C* C C formed by the even-numbered elements, i.e., let

Cr = (027 C4a 067 RN 027"72)-

Clearly, there are at least
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different left-convex chains C = (C1,Cy,...,Co_1) which have the same support. These
chains are called standard. Let

(C2,C4,Cs, ..., Cop_s)



denote the common support of the standard chains. We will refer to this sequence as the
standard support.

For any ¢t (1 <t <), let F; denote the family of all members of F that occur as the
(2t — 1)-st element Co;—1 € C for some standard chain C. We have
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Figure

It remains to show that for every choice D, € F; (1 <t <r), the sets D1, D, ..., D, are
in convex position (cf. Figure). To see this, consider the left-hand side 9 of the boundary
of the union of all members of the standard support. O consists of nonempty portions of
the boundaries of the sets Cy (1 < ¢t < r), separated by straight-line segments. For any
1 <t < r, let l; denote the the common tangent line of the sets Coi—o and Cy with the
property that every other member of the standard support is on its right-hand side. To
finish the proof in Case 1, it is sufficient to notice that every D; € F; has at least one point



to the left of I;, while all members of Us4;F; lie on the right-hand side of /;. Therefore,
D1,D5,...,D, are in convex position.

Case 2: 3 = 3. Let B be any chain of length k = 4r — 2 with respect to <3, whose members
are in convex position. Then B has a subchain C = (C1,Cy,...,Cs_1) with the following
property. Each C; contributes at least one point to the upper portion of bd conv U?L{l C;,
or each C; contributes at least one point to the lower portion of bd conv U?L{l C;. In the
former case, C is called a upper-convez chain, and in the latter one, a lower-convez chain.
Thus, there are at least
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different chains C = (C1 <3 C <3 ... <3 Cy,_1) of the same type, say, upper-convex. The
rest of the argument is exactly the same as in Case 1, with the only difference that in place
of the left-hand side 0 of the boundary of the union of all members of the standard support,
we have to consider its upper side.

The cases j = 2 and j = 4 are symmetric counterparts of the above two cases, so they
do not have to be treated separately.

4 Proof of Theorem 4

Let G be a graph with vertex set V(G) and edge set E(G). Assume that |[V(G)| = n and
|E(G)| > cn? for some constant ¢ > 0, and let r be a fixed positive integer.

First, we would like to show that G' contains many complete bipartite subgraphs K, ,
with r vertices in its classes. The proof is based on the following simple statement, discovered
by Erdés, which is a weak version of a result of [KST].

Lemma 4.1 For every r > 1 and every v > 0, there exists a positive integer ng = ng(r,y)
with the following property.

Every graph Go with ng vertices and at least yn3 edges contains a complete bipartite
subgraph K., with r vertices in each of its classes.

Let z denote the number of ng-element subsets of V(G) which induce a subgraph of G
with at least ynZ edges. Then we have

(3] ((2) <)o (22) oo (22)

which yields
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Thus, for v = ¢/2,n9 > 2, we obtain z > %(:0)

Set ng = no(r,y) = no(r,c/2). By Lemma 4.1, every subgraph of G with ng vertices and
at least (c/2)n3 edges contains at least one copy of K, ,. Thus, the number y of complete
bipartite subgraphs K, , of G satisfies

c(n 2r
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Suppose for simplicity that n is divisible by r, and consider all possible partitions of
V(QG) into classes of size r. The number of these partitions is

OO0

pln,) = (n/r)!

For every partition P, construct a graph G(P) whose vertices are the classes V; (1 < i < n/r)
of the partition, and two vertices V; and V; are connected by an edge of G(P) if and only if
G contains all edges running between them. By averaging over all partitions, we find that
there exists a P such that the number of edges of G(P) is at least

yp(n —2r,r) _ en® (3) (“_;:)) =, (5)2’"_ (n>2

p(n,r) 2nd" () (" e r
We can now finish the proof of the theorem by applying to G(P) the following simple
assertion, whose proof is left to the reader.

Lemma 4.2 For any C > 0, every graph with N vertices and at least CN? edges contains
every tree of at most CN/2 vertices as a subgraph.

Hence, Theorem 4 is true with ¢, = § (£
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