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Summary A geometric graph is a graph drawn in the plane such that its vertices
are points in general position and its edges are straight-line segments. The study of
geometric graphs is a fairly new discipline abounding in open problems, but it has
already yielded some striking results that have proved to be instrumental for the
solution of various problems in combinatorial and computational geometry. These
include the k-set problem, proximity questions, bounding the number of incidences
between points and lines, designing various efficient graph drawing algorithms, etc.
This paper surveys some Turidn-type and Ramsey-type extremal problems for geo-
metric graphs, and discusses their generalizations and applications.

1 Introduction, basic definitions

Let GG be a finite graph with no loops or multiple edges, whose vertex set
and edge set are denoted by V(G) and E(G), respectively. By a drawing of G,
we mean a representation of G in the plane such that each vertex is represented
by a distinct point and each edge by a simple (non-self-intersecting) continuous
arc connecting the corresponding two points. If it is clear that we are referring
to a drawing, and not to the underlying “abstract” graph, these points and
arcs will also be called vertices and edges, respectively.

Two edges (arcs) cross each other if they have an interior point in common.
This point is called a crossing. A crossing p is called proper if in a small
neighbourhood of p one edge passes from one side of the other edge to the
other side. We assume throughout that in a drawing

1. no edge passes through any vertex other than its endpoints,

2. no two edges touch each other (i.e., if two edges cross, then they properly
cross),

3. no three edges cross at the same point.

A drawing in which every edge is represented by a straight-line segment is
called a straight-line drawing or a geometric graph. Two geometric graphs are
tsomorphic if and only if one of them can be carried into the other using a
rigid motion of the plane. We always assume that the vertices of a geometric
graph are in general position, i.e. no three of them are collinear. If the vertices
of a geometric graph are in convex position, i.e. they form the vertex set of a
convex polygon, then the graph is called a convexr geometric graph.

We emphasize that two edges of a geometric graph GG may cross each other.
The number of crossings in G is denoted by CR(G). Two edges of G are disjoint
if they do not cross and do not even share an endpoint.
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A geometric graph G is said to be complete if its edge set consists of all
(VD) segments between its vertices. If V(G) = V; U Vs, and E(G) consists
of all segments between V) and V5, then G is a complete bipartite geometric
graph. A geometric graph G is said to be a geometric tree if the underlying
abstract graph is a tree. A geometric graph G is a geometric subgraph of
another geometric graph H if V(G) C V(H) and E(G) C E(H).

The systematic study of geometric graphs was initiated by S. Avital and
H. Hanani [7], P. Erdés, Y. Kupitz [48], and M. Perles. They realized that
many classical questions in extremal graph theory [10] have natural analogues
for geometric graphs. Some of these questions turned out to be surprisingly
difficult and required new techniques combining geometric and combinatorial
tools. In this paper we survey some recent results of this type and some
tantalizing open problems.

Section 2 focuses on crossing-free geometric graphs. Section 3 describes
some conditions which guarantee that a geometric graph determines many
crossings. Sections 4,5 and 6 concentrate on Turdn-type and Ramsey-type
problems for geometric graphs, respectively. In Section 7 we present a few
applications of our results, while Section 8 is devoted to geometric hypergraphs.

As usual, for any positive integer-valued functions, f(n) and g(n), we use
the notations f(n) = o(g(n)), f(n) = O(g(n)), and f(n) = Q(g(n)) to indi-
cate that lim, ., f(n)/g(n) = 0, sup f(n)/g(n) < oo, and inf f(n)/g(n) > 0,
respectively. We write f(n) = O(g(n)) if f(n) = O(g(n)) and f(n) = Q(g(n)).

For many other problems and results in this area, see [56] and Chapter 14
of [57].

2 Crossing-free geometric graphs

Let G = (V(G), E(QG)) be a geometric graph which has no crossing. Clearly,
the underlying abstract graph, Gy, whose vertex set is V(G) and whose edge
set consists of those pairs of vertices which are connected in G by a segment,
is planar. Of course, the reverse is not true: the fact that G is planar does
not imply that G must be crossing-free. However, by Fary’s theorem, for
every abstract planar graph H, there is a crossing-free geometric graph G
whose underlying graph G| is isomorphic to H. In simpler terms, we have the
following

Theorem 2.1 [24], [78], [71]. Every planar graph admits a crossing-free
straight-line drawing.

We can modify the problem by putting certain restrictions on the drawing.
For instance, given an abstract planar graph H with n vertices and a set P
of n points in general position in the plane, we can ask whether there exists a
crossing-free geometric graph G with V(G) = P, whose underlying graph Gy is
isomorphic to H. To see that the answer is not necessarily in the affirmative,
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choose H to be a complete graph with 4 vertices, and let P consist of 4 points
in convex position.

An abstract graph H is called outerplanar if it can be drawn in the plane
without crossing so that all points representing the vertices of H lie on the
boundary of the outer face of the resulting subdivision of the plane. Clearly,
every tree is outerplanar. It follows from Theorem 2.1 that a graph is outerpla-
nar if and only if it is the underlying graph of a crossing-free conver geometric
graph (a triangulated cycle). However, these graphs also satisfy a stronger
condition.

Theorem 2.2 [30]. For any outerplanar graph H with n vertices and for
any set P of n points in the plane in general position, there is a crossing-free
geometric graph G with V(G) = P, whose underlying graph is isomorphic to
H.

In other words, every outerplanar graph H admits a straight-line drawing
without crossing such that its vertex set is mapped into an arbitrarily pre-
specified |V(H)|-element set. Often we do not have much freedom in how to
select this mapping. But sometimes we do. Perles conjectured that if H is a
tree, then we have at least one degree of freedom. More precisely, the following
assertion is true.

Theorem 2.3 [63], [37]. Let T be a rooted tree, and let P be a set of |V (T)|
points in the plane in general position with a specified element p € P.

Then T admits a crossing-free straight-line drawing such that every vertex
of T is represented by an element of P, and the root is represented by p.

It may be conjectured that for any forest F' consisting of £ rooted trees
Ty, T, ..., Ty with roots 1,79, ..., 7%, and for any set P = {p1, po,...,px} of
K= Zle |Ty| points in general position in the plane, F' admits a crossing-free
straight-line drawing such that every vertex of F' is represented by a point of
P, and r; is represented by p; (1 = 1,2,...,k). A. Kaneko and M. Kano [39],
[40], [41] verified this conjecture in several special cases, including when

1. k=2

2. every tree T; is a rooted star, i.e., all of its vertices are adjacent to the
root r;;

3. all trees T; are of the same size.

However, Kaneko and Kano believe that the above conjecture, in general, is
false.

In some special cases, we may impose further restrictions on the drawings.
For instance, colour the vertices of the tree 7" with red and blue such that no
two vertices of the same colour are adjacent. Let n; and ny denote the number
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of red and blue vertices, respectively. Given an ni-element set P, and an ns-
element set P, in general position in the plane, we wish to decide whether there
is a crossing-free straight-line drawing of 7', whose red and blue vertices are
represented by the elements of P; and P,, respectively. In the case when P
and P, are separated by a straight-line, n; = ny, and 7' is a path, the answer
is in the affirmative [35].

Abellanas, Garcia, Herndndez, Noy and Ramos studied the following re-
laxation of this question: what happens if, instead of embedding a fixed tree
T, we want to find a drawing of at least one member of a given class of trees?

Problem 2.4 [1]. Let P, U P, be a point set in general position in the plane,
|Pi| > |P2| > 0. Is it true that there always exists a crossing-free geometric
tree on the vertex set P, U P, whose every edge runs between P, and P,

and in which the degree of every vertex is at most an absolute constant times
|PL|/ 1P| ?

Abellanas et al. showed that the answer is in the affirmative if
1. P, U P, is in convex position, or
2. P, and P, are separated by a straight line.

We close this section with a related question.

Problem 2.5 [25]. What is the size of the smallest point set P in the plane
with the property that for every abstract planar graph H of n vertices, there
is a crossing-free geometric graph G, whose vertex set is a subset of P and
whose underlying graph is isomorphic to H?

The next theorem shows that this minimum is O(n?) (see also [68]).

Theorem 2.6 [25]. For every planar graph H, there is a crossing-free geo-
metric graph whose vertex set is a subset of an n by 2n piece of the integer
grid, and whose underlying graph is isomorphic to H.

3 Unavoidable crossings

The number of crossings in a geometric graph G is denoted by Cr (G). It
follows from Euler’s Polyhedral Formula that a geometric graph with n vertices
and more than 3n —6 edges cannot be crossing-free (n > 3). In fact, this easily
implies the following quantitative statement.

Lemma 3.1 Any geometric graph G with n > 3 vertices and e edges has at
least e — 3n + 6 crossings.
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Proof By induction on e. If e < 3n—6 then the statement is void. Assume e >
3n — 6. Then G has at least one crossing. Applying the induction hypothesis
to the graph G’ obtained from G by deleting an edge which participates in at
least one crossing, we obtain that

CR(G)=14+cr(G)<1+[(e—1)—3n+6)]=e—3n+6. =

It is easy to see that Lemma 3.1 cannot be improved if 3n—6 < e < 4n—8.
However, as was shown by R. Eggleton and R. Guy [20], if e > 4n — 8 then we
can also find an edge which participates in at least {wo crossings. Using this
fact, the above inductional argument yields that G has at least

[e—(Bn—16)]+[e—(4n—8)] =2e—Tn+ 14

crossings.
This argument can be pushed a little further. Pach and G. Téth proved
the following.

Theorem 3.2 [65]. Let G be a geometric graph with n > 3 vertices and e
edges such that every edge crosses at most k others. Then, for 0 < k < 4, we
have

e < (k+3)(n—2).

For 0 < k < 2, this bound cannot be improved.
As before, this leads to a further improvement of Lemma 3.1.

Corollary 3.3 [65]. Any geometric graph G with n > 3 vertices and e edges
has at least

> e — (k+3)(n —2)] = 5e — 250 + 50

k=0

crossings. That is, we have CR (G) > be — 25 + 50.

Ajtai, Chvatal, Newborn and Szemerédi [3] and independently T. Leighton
[61] discovered that from Lemma 3.1 (or from the slightly stronger Corol-
lary 3.3), by a simple trick, one can deduce a much better lower bound for the
number of crossings in ‘dense’ graphs.

Theorem 3.4 [3], [51], [65]. Let G be a geometric graph with n vertices and
e edges. Then CR (), the number of crossings in G, satisfies
1 é e

CR(G)> —— % —0.9n>0020% — 0.9n.
R(G)Z g30sa n> n2 "
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Proof Suppose first that e > 7.5n. Construct a random geometric subgraph
G' C G by selecting each vertex of G independently with probability p =
7.5n/e < 1, and letting G’ be the geometric subgraph induced by the selected
vertices. The expected number of vertices of G', F[n'] = pn. Similarly, the
expected number of edges and the expected number of crossings in G’ satisfy
E[€¢'] = p?e and E[cRr (G')] = p* cR (G), respectively.

Applying Corollary 3.3 to G' and taking expectations, we obtain

p* CR(G) = E[cr(G")] > 5E[¢'] — 25E[n'] = 5p*e — 25pn.

This implies that
CR(G) > Lé
~ 33.75n%’
whenever e > 7.5n. In fact, using Corollary 3.3 in the range e < 7.5n, it is
easy to check that the slightly weaker inequality in Theorem 3.4 is valid for
every geometric graph G. =

Theorem 3.4 does not remain true if we replace the constant 1/33.75 ~
0.029 by 0.06. To see this, let n < e < n?, and consider a geometric graph
whose vertex set can be obtained by a slight perturbation of a |v/n] by |v/n]
piece of the integer grid, and connect two gridpoints, p and ¢, by an edge if
and only if their distance satisfies

2
p—al<y/-
T

iR

It is not hard to show that the number of crossings in this geometric graph is
at most 0.06e3/n?

One may believe that extending Theorem 3.2 to larger values of £ would
result in a further improvement of the constant factor in Theorem 3.4. How-
ever, this is not the so. Although the estimate in Theorem 3.2 is tight for small
values of k, it becomes weak as k increases. It follows from Theorem 3.4 that
if every edge of a geometric graph with n vertices and e edges participates in
at most k > 1 crossings, then

e < V16.875kn ~ 4.108Vkn, (1)

and this bound is tight apart from the value of the constant.

Although Theorem 3.4 is tight up to a constant factor, somewhat stronger
estimates can be obtained for some special classes of geometric graphs. Let
Kr.s denote the class of geometric graphs consisting of all s segments between
some r-element set and some s-element set in the plane. In other words, K,
is the family of all complete bipartite geometric graphs with r and s vertices
in their vertex classes.
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Theorem 3.5 [61]. Let G be a geometric graph with n vertices and e >
4dn edges, which does not contain a complete bipartite geometric subgraph
belonging to K, .

Then the number of crossings in G satisfies

e3—|—1/('r—1)
CR(G) Z CT’SW’
where ¢, s > 0 is a suitable constant. These bounds are tight up to a constant
factor, whenever s > (r — 1)L

We close this section with another useful lower bound on the number of
crossings in a geometric graphs. To state this result, we need a definition.

Definition Let Gy be an abstract graph with vertex set V(Gy) and edge set
E(Gy). The bisection width, b(Gy), of Gy is defined as the minimum number of
edges, whose removal splits the graph into two roughly equal subgraphs. More
precisely, b(Gy) is the minimum number of edges running between Vi and V5,
over all partitions of the vertex set of GGy into two disjoint parts V; U V5 such
that Vi, [V2| > [V(Go)l/3.

The bisection width of a geometric graph G is defined as the bisection width
of the underlying abstract graph Gy, and is denoted by b(G).

Leighton observed that there is an intimate relationship between the bi-
section width and the number of crossings in a geometric graph [51], which
is based on the Lipton-Tarjan separator theorem for planar graphs [52]. The
following version of this relationship was obtained by Pach, F. Shahrokhi, and
M. Szegedy.

Theorem 3.6 [58]. Let G be a geometric graph of n vertices with degrees
dl, d2, P ,dn- Then

1 n
> 2(G) — — 2.
cr (G) > ;50°(6) - 1 ;_l:d,

4 Forbidden geometric subgraphs
— Multiple crossings

In the spirit of Turén’s classical theorem for abstract graphs [77], one can
raise the following general question. Given a class H of so-called forbidden
geometric subgraphs, what is the maximum number of edges that a geometric
graph (resp. a convex geometric graph) of n vertices can have without con-
taining a geometric subgraph which belongs to H? Denote this maximum by
ex (H,n) (resp. by ex.(H,n)).

For any k > 2, let C;, denote the class of all geometric graphs consisting of
k pairwise crossing edges.
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The simple fact that a crossing-free geometric graph of n vertices has at
most 3n — 6 edges, can now be expressed by

ex (Ca,m) = 3n — 6,
for every n > 3. Similarly, inequality (1) can be rewritten as
ex (X1 g, n) < 4.108Vkn,

where X ;, denotes the class of all geometric graphs consisting of k + 1 edges
such that one of them crosses the other k. (Note that A} ; = C,.)

The order of magnitude of the function ex (C3,n) has been determined by
Agarwal, Aronov, Pach, Pollack and Sharir.

Theorem 4.1 [2]. The maximum number of edges that a geometric graph of
n vertices can have without containing 3 pairwise crossing edges satisfies

ex (C3,n) = O(n).

For k > 4, we do not know whether ex (Cy, n) is linear in n. However, as was
shown by Pach, Shahrokhi and Szegedy, one can apply Theorems 3.6 and 4.1
to deduce that ex (Cg,n) is bounded from above by n times a polylogarithmic
factor.

Corollary 4.2 [58]. For every k > 3, we have
ex (C,n) = O(nlog®*~%n).

Proof The assertion is true for £ = 3. We sketch the proof only for £ = 4.
The other cases can be treated similarly.

Let G be a geometric graph of n vertices with degrees di, ds, . .., d,. Sup-
pose that G has no 4 pairwise crossing edges and |E(G)| = ex (Cy4, n). For every
e € F(G), the edges crossed by e form a geometric graph with no 3 pairwise
crossing edges. Therefore, by Theorem 4.1, every edge crosses at most O(n)
other edges, and CR (G) = O(|E(G)|n). Since

2 - .
;di < (; d,) (11;1%611) < 2|E(Q)|n,

it follows from Theorem 3.6 that b(G) = O (\/ |E(G)|n)

Consider a partition of V(G) into two parts, Vi and V3, such that [V;| =
ny > n/3, |Vo| = ny > n/3, and the number of edges connecting them is b(QG).
Let G; and G5 denote the geometric subgraphs of G induced by V; and V5,
respectively. Since neither G; nor GG, contains 4 pairwise crossing edges, we
obtain

[E(G)| = |E(G1)| + |E(G2)| + b(G) < ex(Cs,m1) + ex (Ca,n2) + O(|E(G)|n),
which yields by an easy induction argument that

|E(G)| = ex (C4,n) = O(nlog’n). =m
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Using the theory of generalized Davenport—Schinzel sequences [45], P. Valtr
proved the following.

Theorem 4.3 [79]. Let G be a geometric graph with n vertices, all of whose
edges can be intersected by a line. If G has no k pairwise crossing edges, then
its number of edges is at most cyn, where ¢y, is a suitable constant depending
only on k.

This result immediately implies that for every k& > 4, the exponent 2k — 6
of the logarithmic factor in Corollary 4.2 can be reduced to 1.

Corollary 4.4 [79]. For every k > 4, we have
ex (Cx,n) = O(nlogn).

Proof Let G be a geometric graph with n vertices, with no k pairwise crossing
edges, and suppose that |E(G)| = ex (Cgx, n). Take a vertical line [ which does
not pass through any of the vertices and which partitions the vertex set of G
into two roughly equal parts, Vi and Vs, with |Vi| = |n/2] and |V5| = [n/2].
Let Gy and G5 denote the geometric subgraphs of G induced by G and G,
respectively, and let G’ be the geometric graph formed by the edges of G
intersecting [. Clearly, the number of edges of GG is equal to

ex (Cg,n) = |E(G1)|+|E(Gs) |+ |E(G")| < ex(Ck, [n/2]) +ex (Ck, [n/2]) + ckn,
where we used Theorem 4.3 to estimate |E(G’)|. The result follows. =

It is conjectured that, for every fixed k, ex (Cg,n) is linear in n. One can
also make the following stronger conjecture.

Conjecture 4.5 For any k > 3, there exists an integer C) with the property
that the edges of every geometric graph which has no k pairwise crossing edges
can be coloured by CY}, colours so that no two edges of the same colour cross
each other.

A somewhat weaker conjecture which would also imply the linearity of
ex (Cx,n) is the following. For any k > 3, there exists a positive constant
v such that every geometric graph without £ pairwise crossing edges has a
crossing-free geometric subgraph which has at least | E(G)| edges.

Unfortunately, we do not even know if Conjecture 4.5 is true for £ = 3.
S. McGuinness [54] settled the case k = 3 for every geometric graph whose
edges can be intersected by a straight line. Conjecture 4.5 is also known to be
true for convex geometric graphs. The following theorem of A. Kostochka and
J. Kratochvil slightly improves an old bound of A. Gyarfas [31],[32] (see also
[33]) and Kostochka [46].
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Theorem 4.6 [47]. Let G be a convex geometric graph which has no k pair-
wise crossing edges. Then one can colour the edges of G with 2¥*5 colours in
such a way that no two edges of the same colour cross each other.

Kostochka [46] constructed a series of convex geometric graphs with no &
pairwise crossing edges, which cannot be coloured with fewer than a constant
times k log k colours.

Theorem 4.6 plays an important role in the proof of Theorem 4.1. It also
implies that ex.(Cy,n)< 2875(2n — 3)= O(n) for every fixed k. However, V.
Capoyleas and Pach determined the exact value of ex.(Cg,n), which is one of
the few non-trivial precise results in the area.

Theorem 4.7 [13]. Let n > 2k. The maximum number of edges that a
convex geometric graph of n vertices can have without containing k pairwise
crossing edges satisfies

ex,(Cesm) = 2(k — 1)n — (2’“2_ 1).

All of the results presented in this section can be rephrased in the following
way. If a geometric graph G with n vertices has sufficiently many edges, then
it must have a k-tuple of pairwise crossing edges. In fact, if |[E(G)| is very
large, there are many such k-tuples. In the previous section we described this
phenomenon for £ = 2 by a fairly tight quantitative formula. The proof of
Theorem 3.4 may serve as a prototype of how to obtain many similar results.

Theorem 4.8 [55]. For any k > 2 there exists a constant c¢(k) > 0 such that
every convex geometric graph with n vertices and e > (2k — 1)n edges has at
least c(k)e**~1 /n?k=2 k-tuples of pairwise crossing edges.

For k = 2 and 3, the last statement can be extended to all (not necessar-
ily convex) geometric graphs. The same is true for every fixed k such that
ex (Cx,n) = O(n). By Theorem 4.8, if G has constant times n? edges, then
the total number of k-tuples of edges in G is at least ¢'n?*, for some ¢’ > 0. A
positive per cent of them are pairwise crossing.

5 Forbidden geometric subgraphs
— Non-crossing configurations

In the previous section we discussed how many edges guarantee the exis-
tence of k pairwise crossing edges in a geometric graph. Here we address the
‘dual’ question where, in place of pairwise crossing edges we look for pairwise
disjoint edges. Recall that two disjoint edges cannot share even an endpoint.

For any k > 2, let Dy denote the class of all geometric graphs consisting of
k pairwise disjoint edges.

The following observation of Kupitz settles the question for convex geo-
metric graphs.
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Theorem 5.1 [49]. Let ex.(Dy,n) denote the maximum number of edges that
a convex geometric graph of n vertices can have without containing k pairwise
disjoint edges. Then for every k and n > 2k, we have

ex¢(Dg,n) = (kK — 1)n.

Proof Let G' be a convex geometric graph with n vertices. Assume without
loss of generality that V' (G) is the vertex set of a regular n-gon. Partition E(G)
into n classes so that two segments belong to the same class if and only if they
are parallel. If G has no k pairwise crossing edges then each class contains
at most £ — 1 elements. Hence, |E(G)| < (k — 1)n, and this bound can be
attained. m

The case of non-convex geometric graphs is more difficult. Hopf and Pan-
nwitz [?] and (independently) Erdés proved a long time ago the following

Theorem 5.2 [36]. Let ex (D3, n) denote the maximum number of edges that
a geometric graph with n vertices can have without containing two disjoint
edges. Then, for every n > 3,

ex (Da,n) = n.

Proof (M. Perles) We say that an edge zy is to the left of xz if the ray zz
can be obtained from the ray zy by a clockwise turn of less than 7. A vertex
x is called pointed if all edges incident to it lie in a half-plane whose boundary
contains .

For every pointed vertex of GG, delete the leftmost edge incident with it. If
G had no two disjoint edges then the resulting graph is empty. Indeed, if there
were at least one remaining edge, xz, then we could find an edge xy to the left
of xz and another edge zv to the left of zx = zz, and these two edges would be
disjoint. Since we deleted at most one edge for each vertex, |[E(G)| < |[V(G)|,
and this bound can be attained. =

Alon and Erdés [5] were the first to show the linearity of ex (D3, n). The
best known lower and upper bounds,

2.5n —4 <ex(Ds,n) < 3n

are due to Perles (unpublished) and Goddard, Katchalski and Kleitman [28],
respectively. Recently, Téth and Valtr [76] showed that

dn — 9 < ex (D4, n) < 8.5n.

Pach and To6récsik proved that ex (Dg,n) = O(n), for every fixed k.
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Figure 1: A geometric graph with no 4 pairwise disjoint edges.

Theorem 5.3 [64]. Let ex (Dy,n) denote the maximum number of edges that
a geometric graph of n vertices can have without containing k pairwise disjoint
edges. Then, for every k and n, we have

ex (Dy,n) < (k—1)*n.

Proof Let G be a geometric graph with n vertices, containing no k pairwise
disjoint edges. For any vertex v, let z(v) and y(v) denote the z-coordinate and
the y-coordinate of v, respectively. Assume without loss of generality that no
two vertices have the same z-coordinate.

An edge e € E(Q) is said to lie below another edge €' € E(QG) if there is
no vertical line which intersects both e and €', and whose intersection with e’
is strictly below its intersection with e. (According to this definition, if the
projections of e and €’ onto the z-axis do not overlap, then we say that e lies
below ¢’ and also €’ lies below e.)

Define four binary relations <1, <», <3, and <4 on E(G), as follows. One
necessary condition for two edges to be in any of these relations is that they
must be disjoint. Let e = v1vy and €' = vjv} be two disjoint edges of G with
z(v1) < z(ve) and z(v}) < x(vh). Then

o ¢ <y eifx(v) <z(v), x(v2) < z(vh) and e lies below €';
o ¢ <y e if x(v1) > z(v]), x(v2) > z(vh) and e lies below €';

o ¢ <3 ifx(v) <z(v]), x(v2) > z(vh) and e lies below €';
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Figure 2: The relations <;.

o e<ye ifx(vy) > z(v)), x(ve) < z(vy) and e lies below €'.

Obviously, each of the relations <; defines a partial order on F(G), and
any pair of disjoint edges is comparable by at least one of them. Since G
has no k pairwise disjoint edges, there is no chain of length £ in the partially
ordered set (F(G),<;) (1 < i < 4). This implies that, for each i, E(G)
can be partitioned into at most k£ — 1 classes (antichains) such that no two
edges belonging to the same class are comparable by <;. Overlaying these four
partitions, we obtain a decomposition of F(Q) into at most (k—1)* classes E
(1 <7 < (k—1)* such that no two elements of E; are comparable by any of
the relations <;. Thus, none of the graphs G, := (V(G), E;) has two disjoint
edges. In view of Theorem 5.2, |[E(G;)| = |E;| <n (1 <j < (k—1)*), and
the result follows. =

Recently, Téth improved the above result by showing that the dependence
of ex (Dg,n) on k is at most quadratic. Indeed, he proved a somewhat stronger
result.

The length of a path is the number of its edges. Let P denote the class of
all non-crossing paths of length k. Clearly, every non-crossing path of length
2k — 1 has k pairwise disjoint edges.
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Theorem 5.4 [75]. Let ex (Py,n) denote the maximum number of edges that
a geometric graph of n vertices can have without containing a non-crossing
path of length k. Then for every k and n, we have

ex (Pg,n) < Ck*n,
for a suitable constant C.

It is possible, however, that the true order of magnitude of ex (Py,n) is
O(kn). According to a result of Perles, this holds for convex geometric graphs.

Theorem 5.5 [44]. Let ex.(Py,n) denote the maximum number of edges
that a convex geometric graph of n vertices can have without containing a
non-crossing path of length k. Then for every n > k + 1, we have

(k—l)nJ.

2
A graph that can be obtained by attaching some edges to the vertices of
a path is called a caterpillar. In other words, a caterpillar is a tree which
contains no three paths of length 2 meeting at a common endpoint. We say
that two geometric graphs are of the same type if their underlying abstract
graphs are isomorphic. In its most general form, Perles’ (unpublished) result
is the following.

exe(Pg,n) = |

Theorem 5.6 Let CP, denote the class of all non-crossing caterpillars of a
fixed type, consisting of k edges. Then for every n > k + 1, we have

(k—1)n

ex.(CPk,n) = | 5 |.

We mention a related result for (not necessarily convex) geometric graphs,
which can easily be deduced from Theorem 2.2 and from Turan’s theorem
quoted at the beginning of this section.

Corollary 5.7 Let OPy, denote the class of all non-crossing outerplanar graphs
of a fixed type, which can be obtained from a cycle of length k by adding some
(or no) diagonals. Then for every n > k + 1, we have

ex (OPy,n) = ex.,(OPg,n) = %(rf )+ (g),

where r is the remainder of n upon division by k — 1.

As we pointed out at the end of the preceding section, whenever ex (H,n) =
O(n) holds for a class of forbidden geometric subgraphs , we can use the idea
of the proof of Theorem 3.4 to show that, if |F(G)| = e > ex (H,n), then G
has many subgraphs belonging to H. In particular, Theorem 5.3 can be used
to establish the following.
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Theorem 5.8 [55]. For any k > 2 there exists a constant c(k) > 0 such
that every geometric graph with n vertices and e > kn edges has at least
c(k)e**=1 /n?*=2 k_tuples of pairwise disjoint edges.

Theorem 5.4 implies that the last statement also holds with the weaker
assumption e > Ck?n.

6 Ramsey-type results

In classical Ramsey—theory, one wants to find large monochromatic sub-
graphs in a complete graph whose edges are coloured with several colours
[12],]29]. Most questions of this type can be generalized to complete geometric
graphs, where the monochromatic subgraphs are required to satisfy certain
geometric conditions.

The next two statements were conjectured by Bialostocki and Dierker and
proved by Karolyi, Pach and Téth.

Theorem 6.1 [42],[43]. If the edges of a finite complete geometric graph are
coloured by two colours, there exists a non-crossing spanning tree, all of whose
edges are of the same colour.

Proof Let V = {v,vs,...,v,} denote the vertex set of a complete geometric
graph K, whose edges are coloured with red and blue. Suppose without loss
of generality that no two vertices have the same x-coordinate and that the
vertices are listed in increasing order of their z-coordinates. The assertion is
trivial for n < 2. Thus, we can assume that n > 3 and the theorem has already
been proved for all complete geometric graphs having fewer than n vertices.
We can also assume that all edges along the boundary of the convex hull of
V are of the same colour (say, red). Indeed, if two consecutive edges of the
convex hull have different colours, then remove their common endpoint from
K,,. By the induction hypothesis, the remaining graph has a monochromatic
non-crossing spanning tree. Depending on its colour, this spanning tree can be
completed to a monochromatic non-crossing spanning tree of K,, by putting
back one of the two previously deleted edges of the convex hull of V.

For every i, 1 < i < n, let K! and KT denote the subgraphs of K, induced
by the points {vq,...,v;} and {v;,...,v,}, respectively. By the induction
hypothesis, both K! and K! have a monochromatic non-crossing spanning
tree, T! resp. T!. We can assume that these two trees have different colours,
otherwise their union will meet the requirements of the theorem. We can also
assume that 7% is red and T4 is blue. Otherwise, T3 would be red, and it could
be completed to a non-crossing red spanning tree of K,, by the addition of any
edge of the convex hull of V incident to v;. Similarly, we can suppose that
T! ,is blue and T, is red. Hence, there exists an i, 1 <4 < n— 1, such that

e T!isted and T is blue,
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e 7!, is blue and 717, is red.

Connecting T} and T}, , by any edge of the convex hull of V' which intersects
a vertical line separating v; and v;;1, we obtain a non-crossing red spanning
tree of K,,, as required. m

Theorem 6.2 [42],[43]. If the edges of a complete geometric graph with 3n—1
vertices are coloured by two colours, there exist n pairwise disjoint edges of
the same colour. This result is best possible.

The analogues of Theorems 6.1 and 6.2 for abstract graphs, i. e., when
the geometric constraints are ignored, were found by Erdés-Rado (see [22])
and Gerencsér and Gyarfas [27], respectively. In fact, Gerencsér and Gyarfas
proved the stronger result that for any 2-colouring of the edges of a complete
graph with 3n — 1 vertices, there exists a monochromatic path of length 2n—1.
This statement, as well as Theorem 6.2, is best possible, as is shown by the
following example. Take the disjoint union of a complete graph of n—1 vertices
and a complete graph of 2n — 1 vertices, all of whose edges are red and blue,
respectively, and colour all edges between the two parts red.

Theorem 6.2 also has an “asymmetric” version.

Theorem 6.3 [42],[43]. Let k and [ be positive integers, n = k+l+max{k,[}—
1. If the edges of a complete geometric graph with n vertices are coloured by
red and blue, one can find either k disjoint red edges or | disjoint blue edges.
This result cannot be improved.

To formulate some further results of this type, it is convenient to introduce
some notation.

Let G; and G, be not necessarily different classes of geometric graphs. Let
R (G, Gsy) denote the smallest positive number R with the property that any
complete geometric graph of R vertices, whose edges are coloured with red and
blue, contains a geometric subgraph which is either totally red and belongs to
Gy or totally blue and belongs to Gy. If G; = Go = G, we write R (G) instead
of R(G1,Go). If we restrict our attention to conver geometric graphs, then the
corresponding function is denoted by R, (G). Clearly, R. (G) < R(G).

There is an obvious relationship between R(G) and the function ex(G,n)
discussed in the preceding sections:

ex(G,n) < %(Z) = R(G) <n.

Indeed, if we colour the edges of a complete geometric graph with two colours,

one of the colour classes will contain at least 1 (3) elements. If ex(G,n) < £ (3),

then there is a geometric graph belonging to G, all of whose edges are in this
colour class. Similarly, we have

ex.(G,n) < %(’;) — R(G)<n. @)
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In the special case when G is the class 7, of all non-crossing geometric
trees of n vertices and the class D, of all geometric graphs consisting of n
disjoint edges, respectively, the values of R (G) are given in Theorems 6.1 and
6.2. Theorem 6.3 provides the exact value of R (G;,Gy), when G; = Dy and
Gy =D

R(T,) =R.(T,)=n, R(D,)=R.(D,)=3n—1,

R(Dk,Dl) = Rc (Dk;Dl) =k+1+ max{k,l} —1.

Next we show

Theorem 6.4 [44]. Let CC,, and CC,, denote, respectively, the class of all non-
crossing cycles of length n and the class of all non-crossing cycles of length n
triangulated from a vertex. Then we have

(n—1)%> < R.(CC,) < R(CC.) <2(n—1)(n—2)+2.

Proof First we prove that R.(CC,) > (n — 1)%. Take (n — 1)? points on a
circle and partition them into n — 1 groups, each containing n — 1 consecutive
points. Color red all edges between points in different groups, and colour blue
all edges between points belonging to the same group.

Any non-crossing red cycle contains at most one point from each group;
hence it cannot have more than n — 1 points. On the other hand, all vertices
of a blue cycle are from the same group, so there is no blue cycle with more
than n — 1 points.

Next we show that R(CC!) < 2(n—1)(n—2)+2. Let V denote the vertex
set of a complete geometric graph K of 2(n—1)(n—2)+2 vertices, whose edges
are coloured with red and blue. Let v be a vertex of the convex hull of V. Since
there are 2(n — 1)(n — 2) + 1 edges incident to v, at least (n — 1)(n — 2) + 1
of them are of the same colour, say, red. Let vy, vs,...,v(n-1)(n-2)+1 be the
vertices of K, listed in clockwise order of visibility from v, such that each edge
vv; is red. A path v;,v;, ... v;; is said to be monotone if 13 <19 < ... <.

Define a partial ordering of the vertices vy, vs, ..., Vn-1)(n-2)+1, as follows.
Let v; < v; if 4+ < j and there is a monotone red path connecting v; to v;.
As in the proof of Theorem 5.3, there are either n — 1 elements that form
a chain (totally ordered subset), or n elements that form an antichain (i.e.
they are pairwise incomparable). In the former case, there is a monotone

red path wuy,us,...,u, 1, and we can complete it to a non-crossing red cycle
U, U1, Ug, - - -, Uy 1 Of size n, together with the corresponding diagonals from v.
In the latter case, there is a complete blue subgraph of n vertices, uy, us, . .., up,

because any two incomparable elements are connected by a blue edge. By
Theorem 2.2, this complete blue subgraph contains a non-crossing cycle of
length n, triangulated from a vertex. m
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Corollary 6.5 [44]. For any 2-colouring of the edges of a complete geometric
graph with n vertices, there exist monochromatic non-crossing cycles of length
3,4,...,|v/n/2|, having the same colour. The order of magnitude of this
bound cannot be improved.

Let P, denote the class of all non-crossing paths of length n. It is an
immediate consequence of the above results that

R(P,) < R(CCpys1) <2n(n-—1)+2.
However, we have a better upper bound on R(P,).

Theorem 6.6 [44]. For any 2-colouring of the edges of a complete geometric
graph with n vertices, there exists monochromatic non-crossing path whose
length is at least a constant times n%*®. Equivalently,

R(P,) = O(n*?).

It is very likely that R(P,) is linear in n. For convex geometric graphs we
can verify this conjecture.

Theorem 6.7 [44]. For any 2-colouring of the edges of a convex complete
geometric graph with n > 3 vertices, there exists monochromatic non-crossing
path of length ["T“J This bound cannot be improved. Consequently, for every
n, we have

R.(P,) =2n — 1. (3)

Proof We prove only the easy part of (3): if n is even then R.(P,) < 2n — 1.
In view of (2) and Theorem 5.6, it is enough to verify that

(n—1)2n-1), 1 (Qn— 1>’

L 2 F<3{ s
which is trivially true. m

Some other Ramsey numbers for convex geometric graphs were studied by
H. Harborth and H. Lefmann [34].

For any positive integer n, let nG denote the class of all geometric graphs
that can be obtained by taking the union of n pairwise disjoint members of G,
any two of which can be separated by a straight line.

Theorem 6.8 [44]. Let G be any class of geometric graphs, each of which has
at least two vertices.

1. If n is a power of 2 then

R(nG) < (R(G) +1)n — 1.
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2. For any n > 0,

3. For any n > 0,
R.(nG) < (R.(G)+1)n—1.

In particular, if G = D; is the class of all geometric graphs consisting of a
single edge, then R(D;) = 2, and part 1 of Theorem 6.8 implies that

R(nD1) = R(Dy) <3n—1,

provided that n is a power of 2. Theorem 6.2 shows that this inequality holds
for every n, and it is best possible.

Suppose next that G = A(= CCs) is the class of all triangles. Then we have
R(A) = 6, so, by part 1 of Theorem 6.8, now we obtain

R(nA) <'Tn—1,

provided that n is a power of 2. The following theorem shows that this result
cannot be improved.

Theorem 6.9 [44] Let A denote the class of triangles and let n be a positive
integer. Then
R(nA) > (R(A)+1)n—1=Tn—-1.

7 Applications

This section outlines a few fairly direct applications of the results presented
before. L. Székely [72] discovered that the the following celebrated result of
Szemerédi and Trotter readily follows from Theorem 3.4.

Corollary 7.1 [73], [74]. The maximum number of incidences between m
distinct lines and n distinct points in the plane is at most

O (m*Pn*3 + m+n).
This bound is tight up to a constant factor.

Proof Assume without loss of generality that every line is incident to at least
one point. Let I denote the number of incidences between our points and lines.
Define a geometric graph GG whose vertex set is the given set of n points, and
whose two vertices are connected by a segment if they are consecutive vertices
along one of the lines. Clearly, |E(G)| =1 —m.

On the other hand, by Theorem 3.4, either |[E(G)| < 4n or

1 (I—-m)d
> .
OR(G) > s

The result follows by comparing this bound with the trivial relation CR(G) <

(3)- =
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The same idea was explored by T. Dey [16] to achieve a breakthrough in the
so-called k-set problem mentioned in the abstract, which plays an important
role in the analysis of many algorithms in computational geometry.

Given a set P of n points in the plane in general position (no 3 on a line), a
k-element subset P’ C P is said to be a k-set, if there is an open half-plane H
such that H N P = P'. It was shown by Erdés, Lovasz, Simmons and Straus
[23], [53] that the number of k-sets of an n-element set is O(n/2), and this was
slightly improved by Pach, Steiger and Szemerédi [62]. The order of magnitude
of the best known lower bound is n logn.

Theorem 7.2 [16]. For every 0 < k < n, the number of k-sets of an n-element
point set in general position in the plane is at most 6.5(k + 1)'/3n.

Proof Let P be a fixed set of n points in the plane in general position. Let Hy
be a geometric graph defined on the vertex set P such that two points u,v € P
are connected by a segment if and only if there are precisely k£ — 1 points of P
strictly on one side of the line uv. It is easy to see that the number of edges
of Hy, is equal to the number of k-sets of P. Orient every edge of Hj from left
to right, and assume without loss of generality that at least |E(Hy)|/2 edges
have precisely £ — 1 points on their left-hand side. Let G denote the graph
formed by these edges.

Let the successor of an edge ut € E(Gy) be the edge v with minimum
slope among all edges vw' whose slopes exceed that of u. This relation ar-
ranges the edges of Gy into pairwise disjoint convex chains. It is not hard
to verify that there is precisely one chain starting (ending) at each of the &
leftmost (rightmost) points of P, and no chain starts (ends) anywhere else.

Assign to each crossing p ¢ V(G) of two chains, y; and 7, the uniquely
determined segment u,v, below p, whose supporting line is a common tangent
to 71 and ;. (We say that a segment is below p if it intersects the half-line
starting at p and pointing to the direction of the negative y-axis.) Clearly,
Up, Vp € P, and no segment is assigned to two different crossings. The number
of tangent segments assigned to crossings is at most kn, because each vertex
occurs at most once as the left endpoint of a tangent segment, whose other
endpoint lies on a chain not passing through p. Thus, the total number of
crossings,

CR(Gy) < nk.

On the other hand, by Theorem 3.4, either |E(Gy)| < 4n or

1 |E(Gy)?
>
OR(GE) 2 35

Comparing these two bounds, we obtain

|E(Hy)| < 2|E(Gy)| < 6.5(k+1)Y3n. =
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The proofs of Theorems 3.4 and 3.6 easily generalize to arbitrary graph
drawings, where the arcs representing the edges are not necessarily straight-
line segments. Using these generalizations, the next two theorems, due to
Clarkson, Edelsbrunner, Guibas, Sharir and Welzl [15] and Spencer, Szemerédi
and Trotter [70], can be established by minor modifications of the proof of
Corollary 7.1.

Corollary 7.3 [15], [18]. The total number of sides of m distinct cells in an
arrangement of n lines in the plane is at most O(m?*3n?/ + m).

Corollary 7.4 [70].The number of unit distances determined by n points in
the plane is O(n*/3).

A family ' of curves in the plane is said to have d degrees of freedom if
there exists an integer s such that

e no two curves in I have more than s points in common, and

e for any d points, there are at most s curves in I' passing through all of
them.

Pach and Sharir applied the above mentioned (straightforward) extension
of Theorem 3.4 to obtain the following common generalization of Corollaries 7.1
and 7.4.

Theorem 7.5 [60], [59]. Let T be a family of curves in the plane with d degrees
of freedom. Then the maximum number of incidences between n points in the
plane and m elements of T is

O(nd/(Qd—l)m(Qd—Z)/(Qd—l) +n+m).

Using the same technique, Székely slightly improved a well-known result of
Chung, Szemerédi and Trotter [14].

Theorem 7.6 [72]. Any set of n points in the plane has an element, from
which there are at least cn*/® distinct distances to the remaining points. (Here
¢ > 0 is an absolute constant.)

Next we present some easy consequences of Theorem 3.6 and its extension
to arbitrary graph drawings. The proof of Corollary 4.2 was also based on this
result.

Corollary 7.7 The number of crossings in an arbitrary drawing of a random
graph with n vertices and e > 4n edges is at least Ce?, where C > 0 is a
suitable constant. This bound is evidently tight, apart from the constant.
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Proof It is sufficient to verify that the bisection width of such a random graph
is almost surely at least constant times e. =

A drawing of a graph is called polygonal if every edge is represented by a
non-crossing polygonal path. In Section 2, we saw that every outerplanar graph
of n vertices admits a straight-line drawing without crossing such that its vertex
set is mapped into an arbitrarily prespecified n-element set (Theorem 2.2). If
we also want to specify the location of each vertex, then usually we cannot
insist on straight-line edges. Of course, even in this case we can always find
a crossing-free polygonal drawing. We want to minimize the total length (i.e.
the total number of segments) of the polygonal paths representing the edges.

Corollary 7.8 [66]. For every n, there exist an abstract outerplanar graph G,
of n vertices and an assignment of locations (distinct points) for the vertices
such that in any planar drawing of GG,, with the property that each vertex
is mapped into the point assigned to it and each edge is represented by a
polygonal path, there are at least n/100 edges consisting of at least n/100
segments.

Proof We show only the weaker assertion that there exist a (G, and an assign-
ment of locations such that the total number of segments forming the edges of
G\, in any polygonal drawing of G,, with the given point locations, is at least
constant times n?.

Let G,, be a matching of size |n/2], and let the set of locations be the
vertex set P of a regular n-gon. Randomly assign to each vertex of G, a
distinct element of P. Assume that with this assignment the matching can be
realized with pairwise disjoint polygonal paths of total length L. Add to this
drawing the edges of the convex hull of P. In this way, we produce a polygonal
drawing of a graph G}, obtained from a cycle by adding a random set of |n/2]
vertex-disjoint diagonals. As every edge of a polygonal path crosses at most
two convex hull edges, the number of crossings in this drawing is at most
2L. On the other hand, it is easy to see that, almost surely, the bisection
width of G), is at least C'n, for a suitable positive constant C'. By the obvious
generalization of Theorem 3.6 to polygonal drawings, we have that the number
of crossings is at least

1 1 — 1
_02 2 = 32 > _02 2
40 16; 500

provided that n is large enough. Thus, with probability tending to 1 as n — o0,
we have L > nC?/100. =

Pach and Wenger [66] also designed a drawing algorithm for arbitrary pla-
nar graphs, with the property that every edge is represented by a polygonal
path of length O(n).

The proof of the following result is almost identical to the last argument.
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Corollary 7.9 [58]. There exist two point sets {pi,...,Pn},{q1,---,qn} in
the plane with the property that any piecewise linear homeomorphism from
the plane to the itself, for which f(p;) =¢; (i =1,...,n), consists of at least
constant times n? linear pieces.

D. Souvaine and R. Wenger [69] showed that there always exists a home-
omorphism meeting the requirements of the last corollary, which consists of
O(n?) linear pieces.

Finally, we mention an old application of Theorem 5.2.

Corollary 7.10 [36]. The maximum number of point pairs realizing the di-
ameter of a n-element set in the plane is equal to n.

Proof It is enough to notice that connecting two elements of a set P by a
segment, if their distance is equal to the diameter of P, we obtain a geometric
graph with no two disjoint edges. The result follows from Theorem 5.2. =

In view of this statement, there is always a point whose degree in the graph
of diameters is at most 2. Thus, the chromatic number of this graph is at most
3, and the diameter of each colour class is smaller than 1. This is a very special
case of Borsuk’s famous conjecture [11], which turned out to be false in high
dimensions [38].

Corollary 7.11 Every finite point set in the plane can be partitioned into
three subsets of smaller diameter.

Z. Fiiredi [26] applied a Turdn-type result with a class of forbidden 5-point
geometric subgraphs to prove that the maximum number of times that the
same distance can occur among n vertices of a convex polygon is O(nlogn).
The best known lower bound, 2n — 7, is due to Edelsbrunner and Hajnal
[19]. Erdés and L. Moser conjectured that the true order of magnitude of this
function is O(n).

8 Geometric hypergraphs

It seems plausible that to extend the incidence results to higher dimen-
sions, to improve the upper bound for the number of times the unit distance
can occur among n points in 3-space, or to make progress concerning the higher
dimensional analogue of the k-set problem, one has to find the right generaliza-
tions of the results discussed in the preceding sections to systems of surfaces or
surface patches in d-space. For simplicity, we will discuss only the case when
these surface patches are flat (simplices).

Definition A d-dimensional geometric r-hypergraph H¢ is a pair (V, E), where
V is a set of points in general position in R?, and E is a set of closed (r — 1)-
dimensional simplices induced by some r-tuples of V. The sets V and E are
called the verter set and edge set of HY, respectively.



24 Jénos Pach

Clearly, a geometric graph is a 2-dimensional geometric 2-hypergraph.

Given any class F of forbidden geometric hypergraphs, let ex?(F,n) denote
the maximum number of edges that a d-dimensional geometric r-hypergraph
H? of n vertices can have without containing a geometric subhypergraph which
belongs to . Most bounds in this section are asymptotic: d and r are thought
to be fixed, while n tends to infinity.

Akiyama and Alon proved the following theorem.

Theorem 8.1 [4]. Let V = Vi U...UVy (V3] = ... = |V4l = n) be a
dn-element set in general position in R¢, and let E consist of all (d — 1)-
dimensional simplices having exactly one vertex in each V;. Then E contains
n disjoint simplices.

According to a well-known result of Erdés [21], any abstract d-uniform
hypergraph with n vertices and at least n~ (/""" hyperedges contains a com-
plete d-partite subhypergraph with k elements in each of its classes. Combining
this with the previous result, we obtain

Theorem 8.2 [4] Let D¢ denote the class of all d-dimensional geometric d-
hypergraphs consisting of k pairwise disjoint edges. Then the maximum num-
ber of hyperedges that a d-dimensional geometric d-hypergraph of n vertices
can have without containing k pairwise disjoint hyperedges, satisfies

ex (Df,n) < pd-(/R*

However, it is conjectured that the true order of magnitude of ex (D, n)
is O(n?™!). Theorems 5.3 and 5.4 show that this is the case when d = 2.

If we want to exclude crossings rather than disjoint edges, or want to gen-
eralize Theorem 3.4 to geometric hypergraphs, we face the following prob-
lem. Even if we restrict our attention to systems of triangles induced by
3-dimensional point sets in general position, it is not completely clear how
a “crossing” should be defined. If two segments cross, they do not share an
endpoint. Should this remain true for triangles? We have to clarify the termi-
nology.

Definition Two simplices are said to have a non-trivial intersection, if their
relative interiors have a point in common. If, in addition, the two simplices
are vertex disjoint, then they are said to cross.

More generally, k£ simplices are said to have a non-trivial intersection, if
their relative interiors have a point in common. If, in addition, all simplices
are vertex disjoint, then they are said to cross.

Consider k simplices. The fact that every pair of them has a non-trivial in-
tersection does not imply that all of them do. To emphasize that this stronger
condition is satisfied, we often say that the simplices have a non-trivial inter-
section in the strong sense, or simply that they strongly intersect. Similarly,
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a set of pairwise crossing simplices is not necessarily crossing. If we want to
emphasize that they all cross, we say that they cross in the strong sense, or,
in brief, that they strongly cross.

Definition Let Z] (respectively, ST}) denote the class of all geometric hy-
pergraphs consisting of k (r — 1)-dimensional simplices, any two of which
have a non-trivial intersection (respectively, all of which are strongly inter-
secting). Similarly, let C}, (respectively, SC}) denote the class of all geometric
hypergraphs consisting of k£ pairwise crossing (respectively, strongly crossing)
(r — 1)-simplices.

Theorem 8.3 [8],[18]. For any fixed k > 1, one can select at most O(nl%/?1)
d-dimensional simplices induced by n points in d-space with the property that

no k of them share a common interior point. This bound cannot be improved.
That is,

exgi (ZEH n) = 0m*?),  exiy (STEH,n) = ©(nl*).

Proof Clearly, we have
Q(n[d/ﬂ) < eXZH (I;cﬂ—lvn) < 6X3+1(51z+1, n),

where the first inequality follows from the fact that there are triangulations
of size Q(n!%?1) with n vertices in RY. Consider, for example, the vertical
projection of the lower part of any cyclic polytope of n vertices in R4+,

To see that ex?, (ST{',n) < O(nl¥?1), we set up a charging scheme.
Let us regard R%"! as the coordinate hyperplane in R? spanned by the first
d — 1 axes, and let X; denote the last coordinate axis. Suppose that X, is
vertical. Fix a geometric hypergraph HJ,, = (V, E') which has no k edges with
a common interior point and whose n vertices are in general position. For any
[-dimensional simplex A induced by V, where | < |(d —1)/2], let En C E
denote the set of all edges of Hj,, that contain A on their boundaries. It
follows from the condition on HJ , that the infinite vertical cylinder A + X,
based on A intersects the interior of at most 2(k — 1) elements of En. Let us
charge A one unit for each of these edges. Since the total number of [-simplices
with [ < |(d—1)/2] is at most [d/2]n[4/?], it remains to show that every edge
e € E has been charged for. Indeed, by Radon’s theorem [67], the vertex set
of the orthogonal projection of e into R¢~! can be partitioned into two parts,
S and Sy, such that their convex hulls cross each other and |S;|+ |S2| = d+1.
Suppose without loss of generality that |S;| < |(d + 1)/2]. Then the convex
hull of S is an [-dimensional simplex A; for some [ < |(d—1)/2], and we had
to charge A, for e.
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Theorem 8.4 [18]. Let E be any set of d-dimensional simplices induced by
an n-element point set V. C R¢. If E has no two crossing elements, then
|E| = O(n%), and this bound is asymptotically tight. In notation,

exy,, (CS, n) = O(n).

The last two theorems were about d-dimensional geometric d+1-hypergraphs,
i.e., systems of full-dimensional simplices induced by a set of points.

Next we present a few statements on d-dimensional geometric d-hypergraphs.
They can be viewed as natural extensions of the corresponding results for ge-
ometric graphs (the case d = 2) discussed in the preceding sections.

Theorem 8.5 [18],[79]. Let E be a family of (d — 1)-dimensional simplices
induced by an mn-element point set V' C R? such that E has no k members
with pairwise non-trivial intersections (d,k > 1). Then, for k = 2 and 3, we
have |E| = O(n®™!). Otherwise, |E| = O(n®'logn). In notation,

ex$(Z¢, n) = O(n%) ifk =2,3;

ex4(Z¢, n) = O(n%'logn) otherwise.

This result is asymptotically tight if d, k < 3.

Proof For d = 2, the assertion is true, by Theorem 4.1 and by Corollary 4.4.
Assume that d > 3. For any (d — 3)-simplex A induced by V, let Ex denote
the family of all members of E that contain A as a face. Pick any point pa in
the relative interior of A, and let F,A denote the 3-dimensional flat orthogonal
to A and passing through pa.

Every e € EA meets Fa in a polygon, whose two sides incident to pa are
the intersections of F with the two (d — 2)-faces of e containing A. Thus,
the total number of sides incident to pa that occur in some e N Fa (e € Ea) is
at most n — d + 2 < n. Take a small 2-dimensional sphere S? C Fa centered
at pa. The intersections of S? with the elements of Ea form the edge set of
a graph with at most n vertices. It follows from the properties of E that this
graph has no k pairwise crossing edges, so, by the planar results, its number
of edges, |EA|, satisfies

|Eal =0(n) if k=2,3;

|EA| = O(nlogn) otherwise.

Summing over all (d — 3)-simplices A induced by V, we obtain ()|E| =
> A |Eal, and hence the upper bound.

To show that the result is tight for d = 3, k = 2, consider a nested sequence
of n/2 pyramids based on the same 2-dimensional convex n/2-gon. These
pyramids have a total of n?/4 triangular faces, no two of which have a non-
trivial intersection. m
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It is an outstanding open problem to decide whether the order of magnitude
of the above bound can be improved, e.g., for d = 4, k = 2. However, we have
the following related result.

Theorem 8.6 [18]. Let E be a family of (d—1)-dimensional simplices induced
by an n-element point set V C R¢. If E has no two crossing members, then
|E| = O(n®™"), and this bound cannot be improved. In notation,

exg(Cg,n) = O(n'").
This can be generalized as follows.

Theorem 8.7 Let E be a family of (d — 1)-dimensional simplices induced by
an n-element point set V. C R?, where d, k > 1. If E has no k pairwise crossing
members, then |E| = O(n~ (/") In notation,

exd(C% n) = O(n® D7),

The proof of this result is based on a natural extension of Theorem 4.8,
which provides us with a recipe for giving a lower bound on the number of
crossing k-tuples of edges, if we know how many edges are necessary to guar-
antee the existence of one such k-tuple.

Theorem 8.8 [18]. Assume that, for suitable constants ¢; and 0 < § <1, we
have ex(S8C},n) < ¢ (1) /n® and e > (c1 +1)(7) /n’.

Then there exists co > 0 such that the minimum number of strongly cross-
ing k-tuples of edges in a d-dimensional r-hypergraph with n vertices and e

edges is at least
gl
ny\ ., (n
()

As Theorem 3.4 can be applied to the planar k-set problem (compare Theo-
rem 7.2), the last result, which is a far-reaching generalization of Theorem 3.4,
is relevant to its higher dimensional analogues.

Given a set P of n points in 3-space, in general position, a k-element subset
P' C Piscalled a k-set, if there is a half-space H such that HNP = P'. Barény,
Fiiredi and Lovéasz [9] gave the first non-trivial (subcubic) upper bound for the
number of |n/2]-sets of an n-element set in 3-space. The best known bound
is given by the following theorem.

where v = 1+@.

Theorem 8.9 [17], [6]. The number of |n/2|-sets of an n-element set in
general position in 3-space is O(n®/?).
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Proof Let P be a set of n points in general position in 3-space. Similarly to
the 2-dimensional case, it is sufficient to bound the number of edges in the 3-
dimensional geometric 3-hypergraph H = (V, E'), where V = P and FE consists
of all triangles whose supporting planes pass through 3 elements of P, and
which have precisely |n/2| points on one of their sides. Let e := |E]|.

In view of Theorem 8.6, we can apply Theorem 8.8 withd =r =3, k = 2,
and 0 = 1 to obtain that the number of (strongly) crossing pairs of edges of
H is at least Q(e*/n®), provided that e > cn? for a suitable constant ¢ > 0.
Notice that if two triangles cross each other, then one of them must have an
edge that crosses the other triangle. Thus, there is an edge crossing at least
Q(e®/n) triangles. On the other hand, by an old (and easy) observation of
Lovész, every straight line crosses at most n? edges of H. We have

n? = Q(e*/nb),
and the result follows. =
We close this section with a generalization of Theorem 6.2.

Theorem 8.10 [18]. Let us colour with two colours all (d — 1)-dimensional
simplices induced by (d + 1)n — 1 points in general position in R?. Then one
can always find n disjoint simplices of the same colour. This result cannot be
improved.
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