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Abstract

Let H be a fixed graph with k vertices. It is proved that every
graph G with n vertices, which does not contain an induced sub-
graph isomorphic to H , has two disjoint sets of vertices, V1, V2 ∈
V (G), such that |V1|, |V2| ≥ b(n/k)1/(k−1)c and either all edges be-
tween V1 and V2 belong to G or none of them does. Some related
geometric questions are also discussed.

1 Introduction

According to Ramsey’s theorem [ES35], every graph G with n vertices has
either a complete or an empty subgraph with at least 1

2 log2 n vertices. Erdős
and Hajnal [EH89] showed that a much stronger statement is true if we
assume that G is H-free, i.e., it contains no induced subgraph isomorphic to
a fixed graph H . In this case, one can guarantee the existence of a complete
or an empty subgraph with ec

√
log n vertices, where c = c(H) > 0 is a

constant. They raised the possibility that this bound can be further improved
to nc. For some partial results is direction, see [G97], [APS99].

Although there is no strong evidence supporting the last conjecture, it is
not hard to verify the following weaker statement.
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Theorem 1. Let H be a fixed graph with k vertices.
Any H-free graph with n vertices or its complement has a complete bi-

partite subgraph with b(n/k)1/(k−1)c vertices in its classes.

The proof of Theorem 1 is presented in Section 2. Essentially the same
argument yields

Theorem 2. Let H be a bipartite graph with vertex classes U1 and U2,
|U1| = k ≤ |U2| = l, and let n > lk+1.

Then in any bipartite graph G with vertex classes V1 and V2, |V1| =
|V2| = n, which contains no two subsets U ′

1 ⊆ V1, U
′
2 ⊆ V2 that induce

an isomorphic copy of H , there exist V ′
1 ⊆ V1, V

′
2 ⊆ V2, |V ′

1 | = |V ′
2 | =

b(n/l)1/kc such that either all edges between V ′
1 and V ′

2 belong to G or
none of them does.

Given two tournaments, S and T , we say that T is S-free if S is not a
subtournament of T .

Theorem 3. Let S be a fixed tournament with k vertices.
Any S-free tournament T with n vertices has two disjoint b(n/k)1/(k−1)c-

element subsets, V1, V2 ⊆ V (T ), such that every edge running between them
is oriented towards its endpoint in V2.

In Section 3, we discuss some related geometric problems.

2 Proof of Theorem 1

We prove a slightly stronger statement.

Theorem 2.1 Let H be a graph with vertex set V (G) = {v1, v2, . . . , vk}, and
let G be a k-partite graph with tk−1-element vertex classes, V1, V2, . . . , Vk,
for some t, k ≥ 2. Suppose that no two different classes, Vi and Vj , contain
two t-element subsets such that either all edges between them belong to G
or none of them does.

Then G has an induced subgraph isomorphic to H , whose vertex corre-
sponding to vi is in Vi, for every i = 1, 2, . . . , k.

Note that it is sufficient to prove Theorem 2.1 in the special case when H

is a complete graph. Otherwise, for every i 6= j with vivj 6∈ E(H), replace
in G the bipartite graph between Vi and Vj by its complement.
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Thus, Theorem 2.1 follows by repeated application of the following

Lemma 2.2 Let G be a k-partite graph with vertex classes, V1, V2, . . . , Vk

of the same size, tk−1 (t, k ≥ 2). Suppose that no two different classes, Vi

and Vj , contain two t-element subsets such that none of the edges between
them belong to G.

Then there is a vertex v1 ∈ V1 which has at least tk−2 neighbors in each
Vi, i > 1.

Proof: Suppose, to obtain a contradiction, that for every v ∈ V1 there exists
i(v), 1 < i(v) ≤ k, such that v has at most tk−2 − 1 neighbors in Vi(v).
Since tk−1/(k − 1) ≥ t, we can find an index i > 1 and a t-element subset
V ′

1 ⊆ V1 such that i(v) = i for all v ∈ V ′
1 .

Let V ′
i denote the set of all vertices in Vi not connected to any element in

V ′
1 . Clearly, we have

|V ′
i | ≥ |Vi| − t(tk−2 − 1) = t.

Thus, V ′
1 and V ′

i induce an empty subgraph in G, contradicting our assump-
tion. �

Let v1 ∈ V1 satisfy the conditions in Lemma 2.2. For every i > 1,
choose a tk−2-element subset V ∗

i ⊆ Vi, all of whose vertices are connected
to v1. Applying Lemma 2.2 to the (k− 1)-partite subgraph of G induced by
V ∗

2 ∪ V ∗
3 ∪ . . . ∪ V ∗

k , we find a point v2 ∈ V ∗
2 with at least tk−3 neighbors

in each V ∗
i , i > 2, etc. The resulting sequence of vertices, v1, v2, . . . , vk,

induces a complete subgraph in G. This completes the proof of Theorem
2.1 in the special case when H is a complete graph.

3 Geometric consequences and problems

Given a family F of arcwise connected sets in the plane, define its inter-
section graph G(F) as a graph whose vertex set is F and in which two
vertices are connected by an edge if and only if the corresponding sets have
a nonempty intersection.

It is well known and easy to see [EET76], [PS00] that, as k tends to
infinity, almost all graphs with k vertices cannot be obtained as (an induced
subgraph of) the intersection graph of a family F of arcwise connected sets
in the plane. Therefore, Theorem 1 immediately implies
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Corollary 3.1. There exists a constant ε > 0 such that every family F
of arcwise connected sets in the plane has two subfamilies F1,F2 ⊆ F
with at least nε members such that either every member of F1 intersects all
members of F2 or no member of F1 intersects any member of F2.

Note that in the special case when F consists of straight-line segments,
the expression nε in the last statement can be replaced by εn (see [PS00]).

Fix an orthogonal (x, y, z) coordinate system in 3-space. A straight line
is called vertical if it is parallel to the z-axis. Given two non-vertical skew
lines, whose projections to the (x, y)-plane are not parallel, we can deter-
mine which one passes above the other. A family of pairwise skew, non-
vertical lines is said to be in general position if among their projections to
the (x, y)-plane no two are parallel.

Problem 3.2. Does there exist a positive constant ε such that every family
L of n straight lines in general position in 3-space has k ≥ nε members,
l1, l2, . . . , lk, such that li passes above lj for all i < j?

Theorem 3 implies a somewhat weaker result.

Corollary 3.3. There exists a positive constant ε such that every family
L of n straight lines in general position in 3-space has two subfamilies
L1,L2 ⊆ L with at least nε members such that every member of L1 passes
above all members of L2.

Proof (sketch): Letting L = {l1, l2, . . . , ln}, construct a tournament T on
the vertex set L by drawing a directed edge from li to lj if and only if li
passes above lj . It follows from a theorem of Erdős and Szekeres [ES35],
[HM94] that there exists a function f(k) tending to infinity such that any
set of k lines in general position in the plane has an f(k)-element subset
forming a convex chain (i.e., bounding an infinite convex polygon).

It is shown in [PPW93] that there exists no weaving pattern of 5 lines.
That is, if e.g. the projections of l1, l2, . . . , l5 to the (x, y)-plane form a
convex chain in this order, then they cannot induce an ordered tournament
S1 corresponding to the situation where each line passes alternately above
and below the other 4 lines. Now we can apply a result of [APS99] to find
another tournament, S2, with the property that no matter how we order its
vertices, it always has an ordered subtournament isomorphic to S1. Finally,
using a probabilistic argument, we can construct a tournament S with the
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property that every f(|V (S)|)-element subtournament of S contains a sub-
subtournament isomorphic to S2.

It follows from the definitions that T is S-free. Therefore, we can apply
Theorem 3 to finish the proof. �

Problem 3.4. Does Corollary 3.3 remain true if we replace nε by εn?
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