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Abstract

Let H be a fixed graph with & vertices. It is proved that every
graph G with n vertices, which does not contain an induced sub-
graph isomorphic to H, has two disjoint sets of vertices, V1, V5, €
V(G), such that |V3|, [Va| > [ (n/k)Y/*=1] and either all edges be-
tween V4 and V5 belong to G or none of them does. Some related
geometric questions are also discussed.

1 Introduction

According to Ramsey’s theorem [ES35], every graph G with n vertices has
either a complete or an empty subgraph with at least % log, n vertices. Erd6s
and Hajnal [EH89] showed that a much stronger statement is true if we
assume that G is H-free, i.e., it contains no induced subgraph isomorphic to
a fixed graph H. In this case, one can guarantee the existence of a complete
or an empty subgraph with e°Vs” vertices, where ¢ = ¢(H) > 0 is a
constant. They raised the possibility that this bound can be further improved
to n¢. For some partial results is direction, see [G97], [APS99].

Although there is no strong evidence supporting the last conjecture, it is
not hard to verify the following weaker statement.
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Theorem 1. Let H be a fixed graph with & vertices.
Any H-free graph with n vertices or its complement has a complete bi-
partite subgraph with | (n/k)"/®* =1 | vertices in its classes.

The proof of Theorem 1 is presented in Section 2. Essentially the same
argument yields

Theorem 2. Let H be a bipartite graph with vertex classes U; and Us,
\Ui| = k < |Us| =1,and let n > [F*+1,

Then in any bipartite graph G with vertex classes V4 and V5, |V;| =
|Va| = n, which contains no two subsets U; C V;,U; C V; that induce
an isomorphic copy of H, there exist V/ C Vi, Vi C Vo, |V/| = |VJ| =
|(n/1)"/*] such that either all edges between V/ and V; belong to G or
none of them does.

Given two tournaments, S and 7', we say that 7" is S-free if .S is not a
subtournament of 7.

Theorem 3. Let S be a fixed tournament with £ vertices.

Any S-free tournament 7" with n vertices has two disjoint | (n/k)/*=1) |-
element subsets, V1, Vo, C V(T'), such that every edge running between them
Is oriented towards its endpoint in V5.

In Section 3, we discuss some related geometric problems.

2 Proof of Theorem 1

We prove a slightly stronger statement.

Theorem 2.1 Let H be a graph with vertexset V(G) = {vy,vs, ..., v}, and
let G be a k-partite graph with t*~'-element vertex classes, Vi, Vs, . ..., Vi,
for some ¢, k > 2. Suppose that no two different classes, V; and V;, contain
two t-element subsets such that either all edges between them belong to G
or none of them does.

Then G has an induced subgraph isomorphic to H, whose vertex corre-
spondingto v; isin V;, foreveryi =1,2,... k.

Note that it is sufficient to prove Theorem 2.1 in the special case when H
is a complete graph. Otherwise, for every i # j with v,u; & E(H), replace
in G the bipartite graph between V; and V; by its complement.
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Thus, Theorem 2.1 follows by repeated application of the following

Lemma 2.2 Let G be a k-partite graph with vertex classes, Vi, Vs, ..., Vi
of the same size, t*~1 (¢, k > 2). Suppose that no two different classes, V;
and Vj;, contain two ¢-element subsets such that none of the edges between
them belong to G.

Then there is a vertex v; € V4 which has at least ¢*~2 neighbors in each
Vi, 1> 1.

Proof: Suppose, to obtain a contradiction, that for every v € V; there exists
i(v), 1 < i(v) < Fk, such that v has at most t*~2 — 1 neighbors in V.
Since t*~1/(k — 1) > t, we can find an index ¢ > 1 and a ¢-element subset
V{ C Vi such that i(v) = ¢ forall v € V7.

Let V.’ denote the set of all vertices in V; not connected to any element in
V{. Clearly, we have

Vi 2 Vi = t(t* 2 - 1) =t.

Thus, V/ and V/ induce an empty subgraph in GG, contradicting our assump-
tion. [J

Let v; € V; satisfy the conditions in Lemma 2.2. For every i > 1,
choose a t*~2-element subset V. C 'V, all of whose vertices are connected
to v;. Applying Lemma 2.2 to the (k£ — 1)-partite subgraph of GG induced by
Vo UVE U ... UV, we find a point vy € V5* with at least t*~3 neighbors
in each V*, ¢ > 2, etc. The resulting sequence of vertices, vy, vo, . .., vy,
Induces a complete subgraph in G. This completes the proof of Theorem
2.1 in the special case when H is a complete graph.

3 Geometric consequences and problems

Given a family F of arcwise connected sets in the plane, define its inter-
section graph G(F) as a graph whose vertex set is F and in which two
vertices are connected by an edge if and only if the corresponding sets have
a nonempty intersection.

It is well known and easy to see [EET76], [PS00] that, as £ tends to
infinity, almost all graphs with & vertices cannot be obtained as (an induced
subgraph of) the intersection graph of a family F of arcwise connected sets
in the plane. Therefore, Theorem 1 immediately implies



Corollary 3.1. There exists a constant £ > 0 such that every family F
of arcwise connected sets in the plane has two subfamilies 7, 7 C F
with at least n° members such that either every member of F; intersects all
members of 7, or no member of F; intersects any member of 7.

Note that in the special case when F consists of straight-line segments,
the expression n° in the last statement can be replaced by en (see [PS00]).

Fix an orthogonal (x,y, z) coordinate system in 3-space. A straight line
Is called vertical if it is parallel to the z-axis. Given two non-vertical skew
lines, whose projections to the (x, y)-plane are not parallel, we can deter-
mine which one passes above the other. A family of pairwise skew, non-
vertical lines is said to be in general position if among their projections to
the (z, y)-plane no two are parallel.

Problem 3.2. Does there exist a positive constant £ such that every family
L of n straight lines in general position in 3-space has £ > n® members,
l1,1s, ..., 1, such that [; passes above [, for all ¢ < ;?

Theorem 3 implies a somewhat weaker result.

Corollary 3.3. There exists a positive constant £ such that every family
L of n straight lines in general position in 3-space has two subfamilies
L1, Ly C L with at least n° members such that every member of £, passes
above all members of L,.

Proof (sketch): Letting £ = {l4,1s,...,[,}, construct a tournament 7" on
the vertex set £ by drawing a directed edge from [; to {; if and only if [,
passes above ;. It follows from a theorem of ErdGs and Szekeres [ES35],
[HM94] that there exists a function f(k) tending to infinity such that any
set of & lines in general position in the plane has an f(k)-element subset
forming a convex chain (i.e., bounding an infinite convex polygon).

It is shown in [PPW93] that there exists no weaving pattern of 5 lines.
That is, if e.g. the projections of [y,1ls,...,1l; to the (z,y)-plane form a
convex chain in this order, then they cannot induce an ordered tournament
Sp corresponding to the situation where each line passes alternately above
and below the other 4 lines. Now we can apply a result of [APS99] to find
another tournament, S,, with the property that no matter how we order its
vertices, it always has an ordered subtournament isomorphic to S;. Finally,
using a probabilistic argument, we can construct a tournament S with the



property that every f(|V(S)|)-element subtournament of S contains a sub-
subtournament isomorphic to Ss.

It follows from the definitions that 7" is S-free. Therefore, we can apply
Theorem 3 to finish the proof. [J

Problem 3.4. Does Corollary 3.3 remain true if we replace n° by en?
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