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Abstract

Given a set of n blue and n red points in the plane, not all on a
line, it is shown that there exists a bichromatic line passing through
at most two blue points and at most two red points. There does
not necessarily exist a line passing through precisely one blue and
one red point. This result is extended to the case when the number
of blue and red points are not the same.

1 Introduction

According to a celebrated result of Sylvester [S93] and Gallai [G44], any
set P of non-collinear points in the plane determines a so-called ordinary
line, i.e., a line passing through precisely two elements of P. Recently,
Fukuda [F96, DSF98] conjectured that this result can be generalized as
follows. Let R be a set of red points and let B be a set of blue points in
the plane, not all on a straight line. Assume that

(i) R and B are separated by a straight line, and

(ii) |R| and |B]| differ by at most one.
Then there exists a bichromatic ordinary line, i.e., a line passing through
precisely one red and one blue point. It is not hard to see that this
statement does not remain true if we drop any of the above assumptions.
(See Remarks 4.1-2.) The aim of the present note is to show that without
making any special assumption it is still true that there always exist
bichromatic lines containing relatively few points of R U B.
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Theorem 1. Given n blue points and N = cn (¢ > 1) red points in the
plane, not all on a line, the number of bichromatic lines passing through
at most 8c points is at least 1/(25¢%) times the total number of connecting
lines. In particular, there exists at least one such line.

In the special case N = n, we establish a somewhat stronger result.

Theorem 2. Given n red and n blue points in the plane, not all on a
line,

(i) there exist more than n/2 bichromatic lines that pass through at most
two red points and at most two blue points;

(7i) the number of bichromatic lines passing through at most siz points is
at least one tenth of the total number of connecting lines.

The proofs are based on the following simple consequence of Euler’s
Polyhedral Formula (see e.g. [AZ98]), which immediately implies the
Sylvester-Gallai theorem.

Lemma. Let P be a finite non-collinear point set in the plane, and let
l; (i = 2,3,...) denote the number of lines passing through precisely i
elements of P. Then we have

n—1
Y (-3 <-3. O
=2

We start with the proof of Theorem 2, because it uses similar tricks
but requires less tedious computations than the proof of Theorem 1. The
proof of Theorems 2 and 1 are presented in Sections 2 and 3, respectively,
while the last section contains some constructions and remarks.

2 Proof of Theorem 2

Let R and B be two disjoint n-element point sets in the plane, and assume
that not all elements of R U B are on the same line. We will refer to the
elements of R and B, as red points and blue points, respectively.

For any ordered pair of non-negative integers (i,7), ¢+ j > 2, let
[;; denote the number of lines passing through precisely 7 red and j blue
points. In particular, the number of bichromatic lines is }°; ;> lij. Set
l;j := 0, whenever 7 + j < 1.

The number of monochromatic point pairs is equal to

1)+ () =l) =

4,520




The number of bichromatic point pairs is }; ;> 4jlij; = n?. Thus, we have

=, K?) ! @ ‘”] by = —n. M

it+j>2

The Lemma at the end of the previous section implies that

> (i+j—3)l; < -3 (2)
i,j>0
i+j>2

Adding up twice (1) and 1+¢ times (2), for some positive €, we obtain

S -0 +el+i-3) -3l <-2m-3(1+e).  (3)
1,j >0
itj>2

For any 4,5 > 0 (i +j > 2), let 7;; denote the coefficient of /;; in the
above inequality, so that 3, ; vi;lij <O0.

First, set € = 1. It is easy to verify that v11 = —4, v12 = 721 = y22 =
—2, and that all other coefficients +;; are non-negative. Therefore, (3)
yields that

—4111 - 2[12 - 2121 - 2122 S —2n — 6.

Consequently,
201 + lig +log + 1o > n 43,
which proves part (i) of Theorem 2.
To establish part (ii), set ¢ = 3/5. Then

18 12 4 6

o M2=2= 72 V2= T, =M= T M= Ty

and all other coefficients are at least 2/5. Hence,

Y11 = —

6 6 8 2

Z ’nglzg+4111+ 112-1- l21+ 122+ 123+ l32+ l33 > 5
1,5 >0 5,520
it]>2 itj>2

Comparing the last inequality with (3), we obtain

3 14 6 6 8
—n—3(1+ 4] l l l l l lag >
n 3( 5)+ 11-|-5 12+5 21+5 22+5 23+5 32+5 33 2
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That is,

3 3 7 3 3 2
E .. > _ — N —
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which completes the proof of part (ii) of the theorem.

3 Proof of Theorem 1

Throughout this section, let R and B denote fixed disjoint sets of N red
and n < N blue points in the plane, respectively. Assume that not all
elements of R U B are on the same line, and let ¢ := N/n > 1.

For any non-negative integers i, j, (i+j > 2), let /;; denote the number
of lines passing through precisely 4 red and j blue points. Let [;; := 0,
whenever ¢ + 7 < 1.

Assign a weight w to every unordered pair of points {p,q} € RU B,
as follows. Let

1 if p and ¢ are red,
w({p,q}) =< ¢ if p and q are blue,
—c otherwise.

Clearly, the total weight of monochromatic pairs is

N L n <N2+02n2
c — 4+ —
2 2 2 2

Writing the same quantity differently, we obtain

S0 ()

The total weight of bichromatic pairs is

—C Z ’le” = —cNn.
i,j>0

N?  Zn?
i<t




Summing up the last two relations, and multiplying by 2, we get

> [ ei)? —i— 2|l < (N —en)? =0. (4)
4,7>0

Suppose first that B is not collinear. It follows from the Lemma in
Section 1, applied to B and R U B, respectively, that

Y G-3)> l<o, (5)

§>2 i>0

S (i+j-3)l; <. (6)
i,j >0
i+j>2

Let 0 < € < 1 be a constant to be specified later. Adding up (4), 2¢2 — 2
times (5) and 2 — ¢ times (6), we obtain

> [PHi-2eij—eit+ (2-6)(—3)]ly— (2c—2+e)n
i>2
j=0,1

+ > (G- + (1 =e)i+ (2 —e)j - 32 — )|l <0.  (7)
i>0

Let ;; denote the coefficient of /;; in (7). It is easy to verify that
these numbers satisfy the following conditions.

1. 70,%v0; > € for every i > 2,5 > 2.
2. ;1 > ¢ for every i > 2¢c + 2.
e—1 2 .
3. 7i12—(0+7) + 2e — 4 for every 1 <1 < 2¢c+ 2.

4. Keeping k = ¢ + j fixed, 7;; attains its minimum when j = jo =
Zk—ctl We have

2c+2
Yi—jo.jo = (€ — €)k — q — 6¢% + 3.
Therefore, for any 7 > 1,7 > 2,
Yij > (c—€)(i +j) — (6_41)2 —6¢2 + 3¢ > ¢,



provided that ¢ + 7 is at least

25¢2 —2c+ 1 — 8¢
ko = } 8
0 4(0—5) ()

5. On the other hand, if 1 > 1,5 > 2 and 7 4+ 7 < kg, it follows that

c—1)2 25¢2 —14c+1
6 3=

’)’Z‘jZ(C—E)3— 4 4

Plugging these conditions into (7), we obtain

€ - Z lij + Z lij + Z lij + Z lij

i=0 i>2 i>2+2 i>1,5>2
jz2 j=0 i=1 i+j > ko
e—1\2 25c2 — 14c +1
—|lc+ 2 —2e 44| Z lij—f-. . l;j <O0.
1<i<2c+2 i>1,5>2
j=1 i+J <ko
Equivalently,

e—1\?
c+ 9 —e+ 4| - E lij
1<4<2¢c+2
i=1

25¢% — 14c + 1
+[%+8‘|' z l,’j>8- z lij.
12>0

i>1,52>2
i+3j <ko j20

It can be shown by straightforward computation that both coefficients
on the left-hand side of the last inequality can be estimated from above
by 25¢2 /4, so that

Z lij + Z l;j > 2?% . Z lj.
1<i<2+2 i>1,5>2 i>0
j=1 i+37 < ko j>0
Setting ¢ = 1/4, say, in view of (8), the result follows.
It remains to verify that Theorem 1 is also valid in the case when all
points of B are on a line £, i.e., when (5) does not hold. Let s denote the



number of points of R which belong to £. According to our assumption,
R U B is not collinear, so we have s < |R| = c¢n. For any p € B, let I(p)
denote the number of bichromatic lines through p, different from /¢, that
contain at most 2c red points. There are at least cn—s—2cl(p) red points
not belonging to £, whose connecting lines with p pass through more than
2c red points. Thus, there are at least

en—s—2c(p) [2c+1
2c+1 2

pairs of red points not on £ such that the line induced by them passes
through p. Since any such line can pass through at most one point of B,

we obtain
Z cn — s — 2cl(p) <2c+ 1) < (cn—s)
2B 2c+1 2 - 2
whence s 9 o
cn® — s
l(p) > ———.

pEB

The total number L of connecting lines of R U B is at most

(cn2— S) + (en—s)(n+s) + 1.

Hence, the proportion of those bichromatic connecting lines which contain
one blue point and at most 2c¢ red points is

ZpEB l(p) > 1
L 82’
This completes the proof of Theorem 1.

4 Concluding remarks

Recall Fukuda’s conjecture mentioned in the first paragraph of the In-
troduction. It states that if R is a set of red points and B is a set of
blue points in the plane, not all on a line, and conditions (i) and (ii) are
satisfied, then there is a straight line passing through precisely one red
and one blue point. In this section, we show that the above assumptions
are necessary.

4.1. First we prove that Fukuda’s conjecture is false if we drop condition

(i)-



Suppose that n is even, say, n = 2k. Let P be the vertex set of
a regular n-gon, and let () be the set of intersection points of the line
at infinity with all lines determined by two elements of P. Clearly, we
have |P| = |Q| = n. Color P U @ with two colors, red and blue, so that
the number of red points equals the number of blue points and every
ordinary line (i.e., every line passing through precisely two points) is
monochromatic.

Notice that every ordinary line determined by P U Q) passes through
one element of Q). Furthermore, for every pair of opposite vertices p1,ps €
P, there is a unique point ¢ € @), such that p;q and paq are ordinary lines.
Pick L%J pairs of opposite vertices of P and the corresponding points on
the line at infinity, and color them red. Color the remaining [%] pairs of
opposite vertices of P and the corresponding points on the line at infinity
blue. Finally, color the k& uncolored points of () so that to balance the
number of red and blue points. Obviously, all ordinary lines determined
by P U @ are monochromatic.

Figure 1: R and B are not separated, and there is no bichromatic ordinary
line

If we wish to avoid using points at infinity, we can modify this con-
struction by applying a suitable projective transformation (see Figure 1).
Similar constructions can be given in the case when n > 3 is odd.

Our constructions also imply that in a certain sense part (i) of Theo-
rem 2 is best possible. However, it is possible that even without assuming
(i) there always exists a bichromatic line passing through at most three
points.

4.2. As is illustrated by the 6-element set depicted in Figure 2, Fukuda’s
conjecture does not remain true if we drop condition (ii) guaranteeing



that the number of red points differ and the number of blue points fiffer

by at most one.

Figure 2: Unbalanced set of 6 points with no bichromatic ordinary line

To obtain some larger examples, let n = 2k and let R denote a regular
n-gon. Let B consist of all intersection points of the line at infinity with
the lines induced by the sides of R. Clearly, we have |B| = n/2 =
k. Coloring all points o R and B with red and blue, respectively, we
obtain an unbalanced example with twice as many red points as blue
points such that they are separated by a straight line, but there exists no
monochromatic ordinary line. Again, if we wish, we can apply a suitable
projective transformation to get rid of all points at infinity (see Figure
3).

= =

Figure 3: Twice as many red points as blue points, separated by a line

4.3. One may think that the following statement, which can be regarded
as a dual counterpart of Fukuda’s conjecture, is also true. Let R and B
non-collinear point sets in the plane satisfying conditions (i) and (ii) in



the first paragraph of the Introduction. Then there is a monochromatic
ordinary line, i.e., a line passing through precisely two points, which have
the same color.
However, the above statement is false. Let k& be a positive integer,

and let

R={(1,1) : [if <k}U{(c0,0)},

B={(=L1d) : [i| <k }U{(0,0)},
where (00, 0) denoted the intersection point of the z-axis with the line at
infinity. Obviously, R U B determines no monochromatic ordinary line.

If we apply a suitable projective transformation we get rid of the point
at infinity (see Figure 4).

Figure 4: Balanced and separated set with no monochromatic ordinary
line
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