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Abstract

Given a set of n black and n white points in general position in the plane, a line

l determined by them is said to be balanced if each open half-plane bounded by l

contains precisely the same number of black points as white points. It is proved

that the number of balanced lines is at least n. This settles a conjecture of George

Baloglou.

1 Introduction

Throughout this paper, let V be a set of 2n points in general position in the plane, i.e.,
assume that no three of them are on a line. Suppose that half of the points have weight
+1 and the other half weight −1. We say that a line passing through two elements of V
is determined by V .

Definition 1.1. A line l determined by V is called balanced if in each open half-plane
bounded by l the total weight of the points is 0.

The following observation is an immediate consequence of the definition.

Claim 1.2. If two points determine a balanced line l, then they have opposite weights.

Indeed, since the total weight of the points as well as the total weight of all points
not on l is 0, it follows that the sum of the weights of the two points on l must be 0, too.

In view of the claim, the number of balanced lines determined by V cannot exceed
n2. This bound is attained by many configurations, including every convex 2n-gon whose
vertices are of weight +1 and −1, alternately.

The aim of this paper is to prove the following conjecture of George Baloglou.
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Theorem 1.3. Every set V consisting of n points of weight +1 and n points of weight
−1 in general position in the plane determines at least n balanced lines. This bound
cannot be improved.

The tightness of the above theorem is shown e.g. by a convex 2n-gon, whose vertices
of weight +1 are separated from the vertices of weight −1 by a straight line. In fact, we
have

Theorem 1.4. Let V be a set of 2n points in general position in the plane, consisting
of n points of weight +1 and n points of weight −1 separated by a straight line.

Then V determines precisely n balanced lines.

It is sufficient to prove Theorem 1.3 in the special case when no two lines determined
by V are parallel, and in the sequel we assume that V satisfies this condition.

It is easy to verify

Claim 1.5. For any vertex v of the convex hull of V , there is a balanced line passing
through v.

Proof: Let u1, . . . , u2n−1 denote the elements of V \ {v} listed in clockwise order of
visibility from v. Suppose without loss of generality that the weight of v is positive. If
u1 or u2n−1 has negative weight, then we are done, because in this case vu1 resp. vu2n−1

is a balanced line. Take the line vu1, start rotating it clockwise around v, and keep track
of the total weight L of the elements of V in the open half-plane to the left of this line.
At the moment when the line passes through u2, we have L = 1. Finally, the line passes
through u2n−1 and L = −2. Every time the line passes through a new point the value
of L changes by 1, so there is a maximum index i > 2 such that the total weight of the
points on the left-hand side of vui is 0. By the maximality of i, the weight of ui must be
negative. Therefore, the total weight of the points on the right-hand side of vui is also
0, i.e., vui is a balanced line.

It may be tempting to believe that Claim 1.5 is also true for all points of V lying
in the interior of the convex hull of V , which would immediately imply Theorem 1.3.
However, as is illustrated by Figure 1, this is not necessarily the case.

For the proof of Theorem 1.3, we need the notion of a flip array associated with
V . (In the literature it is often called a circular sequence or an allowable sequence of
permutations [GP93].)

Fix an orthogonal coordinate system (x, y) in the plane so that no two elements of V
have the same x-coordinate. Let v1, . . . , v2n denote the elements of V in increasing order
of their x-coordinates. For notational convenience, in the sequel we identify vi with i,
and we write w(i) for the weight of vi. The flip array associated with V is a sequence of
(

2n

2

)

+ 1 permutations of the elements 1, . . . , 2n, denoted by Pt (0 ≤ t ≤
(

2n

2

)

). Start
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Figure 1: v2 is not incident to any balanced line

rotating a directed line l parallel to the x-axis in the clockwise direction, and consider the
permutations determined by the order, in which the elements of V fall on l. Originally,
this order is P0 = (1, . . . , 2n). Suppose that we have already defined the permutations
P0, . . . , Pt−1 for some t ≤

(

2n

2

)

, and continue rotating l. A new permutation arises
whenever l passes through a direction orthogonal to a line lt determined by two points
vi, vj ∈ V . Then i and j are consecutive elements in Pt−1, and Pt can be obtained from
Pt−1 by reversing their order. Such a move is called a flip or a swap. After rotating l
through a half turn π, we obtain P(2n

2
) = (2n, 2n − 1, . . . , 1), and then we stop. For any

0 ≤ t ≤
(

2n

2

)

and 1 ≤ i ≤ 2n, let pt,i denote the i-th element of Pt. That is, we have
Pt = (pt,1, . . . , pt,2n).

We have to introduce some further notations.

Definition 1.6. For any 0 ≤ t ≤
(

2n

2

)

and 1 ≤ i ≤ 2n, let Lt(i) denote the sum of the
weights of the first i − 1 elements of Pt. In other words, let

Lt(i) :=
∑

1≤j<i

w(pt,j).

Similarly, let

Rt(i) :=
∑

i<j≤2n

w(pt,j).

Definition 1.7. For every S ⊆ {1, 2, . . . , 2n} and 0 ≤ t ≤
(

2n

2

)

, let SL
t,1 < SL

t,2 < . . . <
SL

t,|S| denote the positions in Pt occupied by the elements of S, listed from left to right. In

other words, SL
t,i denotes the position of the i-th leftmost element of S in Pt. Similarly,

let SR
t,i denote the position of the i-th rightmost element of S in Pt. Clearly, we have

SR
t,i = SL

t,|S|−i+1.

In our notations, the letters L and R stand for Left and Right, respectively.
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2 A standard way to obtain balanced lines

Let A = {a1, . . . , an} ⊂ {1, . . . , 2n} denote the set of all elements of weight +1, listed in
increasing order.

Call a set F ⊂ A prefix if F = {a1, a2, . . . , a|F |}. Similarly, H ⊂ A is said to be a
suffix set if H = {an−|H|+1, an−|H|+2, . . . , an}.

We present a “standard” method for finding a balanced line passing through an
element of a prefix (suffix) set.

Lemma 2.1. Let F be a prefix set and let 1 ≤ t ≤
(

2n

2

)

, and let lt denote the line induced
by the two points flipped as we pass from Pt−1 to Pt.

Whenever we have Lt−1(F
L
t−1,k) ≥ 0 and Lt(F

L
t,k) < 0, then lt is a balanced line which

passes through a point of F , and there are exactly k−1 points of F in the open half-plane
to the left of lt.

Proof: Let x denote the element at position F L
t−1,k in Pt−1. Observe that x must swap

places with some other element, y, when going from Pt−1 to Pt, for otherwise we would
have Lt−1(F

L
t−1,k) = Lt(F

L
t,k).

Suppose y ∈ F . Then the elements of F occupy the same positions in Pt as they do
in Pt−1, except that their internal order is different. Moreover, every element, not in F ,
remains at the same place in Pt where it was in Pt−1. Thus, we would have F L

t,k = F L
t−1,k

and Lt−1(F
L
t−1,k) = Lt(F

L
t,k), a contradiction. Therefore, we may assume that y /∈ F .

Assume first that w(y) = +1. Since y /∈ F and F is prefix, y > x. Therefore, in Pt−1,
y is at the position F L

t−1,k + 1. In Pt, x is still the k-th leftmost element of F , and we
have Lt(F

L
t,k) = Lt−1(F

L
t−1,k) + w(y) = Lt−1(F

L
t−1,k) + 1, contradicting the assumptions in

the lemma.

We are, therefore, left with the case when w(y) = −1. If y is at the position F L
t−1,k −1

in Pt−1, then Lt(F
L
t,k) = Lt−1(F

L
t−1,k) − w(y) = Lt−1(F

L
t−1,k) + 1, and again we reach a

contradiction.

We conclude that y is at position F L
t−1,k+1 in Pt−1. Therefore, Lt(F

L
t,k) = Lt−1(F

L
t−1,k)+

w(y) = Lt−1(F
L
t−1,k)−1. It follows from the assumption Lt(F

L
t,k) < 0 and Lt−1(F

L
t−1,k) ≥ 0,

that Lt−1(F
L
t−1,k) = 0. In other words, the sum of the weights of the points lying in the

open half-plane to the left of lt is 0. Since lt is determined by two points of opposite
weights, it follows that lt is a balanced line. By the definition of F L

t−1,k, the line lt (which
passes through x) has exactly k − 1 points of F in the open half-plane to its left.

Similarly, we have

Lemma 2.2. Let H be a suffix set and let 1 ≤ t ≤
(

2n

2

)

, and let lt denote the line induced
by the two points flipped as we pass from Pt−1 to Pt.
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Whenever we have Rt−1(H
R
t−1,k) ≥ 0 and Rt(H

R
t,k) < 0, then lt is a balanced line which

passes through a point of H, and there are exactly k−1 points of H in the open half-plane
to the right of lt.

Before turning to the proof of Theorem 1.3, we establish Theorem 1.4.

Proof of Theorem 1.4: Since the points of weight +1 and −1 are separated by a
line, by a proper choice of the x-axis, we can attain that in the flip array of V the set of
points of positive weight is F = {1, 2, . . . , n}. Clearly, F is a prefix set. Using the fact
that P0 is the identity permutation, i.e., P0 = (1, 2, . . . , 2n), we obtain that for every
1 ≤ i ≤ |F | = n, F L

0,i = i and L0(F
L
0,i) = i − 1 ≥ 0.

On the other hand, P(2n

2
) = (2n, 2n − 1, . . . , 2, 1). Thus, for every 1 ≤ i ≤ |F | = n,

F L

(2n

2
),i

= n + i and L(2n

2
)(F

L

(2n

2
),i

) = −n − 1 + i < 0.

Fix 1 ≤ k ≤ n. F L
t,k is a continuous function of t, i.e., for every 0 < t ≤

(

2n

2

)

, we have
|F L

t,k − F L
t−1,k| ≤ 1. We claim that 0 ≤ Lt−1(F

L
t−1,k) − Lt(F

L
t,k) ≤ 1, whenever 1 ≤ t ≤ n.

That is, Lt(F
L
t,k) is a monotone non-increasing, continuous function of t.

Let x ∈ F denote the element at position F L
t−1,k in Pt−1, that is, x is the k-th leftmost

element of F in Pt−1. If lt does not pass through x, then x remains the k-th leftmost
element of F in Pt, and every element to the left (right) of x in Pt−1 is to the left (right)
of x in Pt. Therefore, we have Lt(F

L
t,k) = Lt−1(F

L
t−1,k).

Assume that lt passes through x. In other words, x changes places with another
element y, when going from Pt−1 to Pt. There are two possibilities:

Case 1. : y ∈ F .

In this case, the elements of F occupy the same positions in Pt as in Pt−1, except that
their internal order is different. Hence, F L

t,k = F L
t−1,k and Lt(F

L
t,k) = Lt−1(F

L
t−1,k).

Case 2. : y /∈ F .

Now y has weight −1. Since x and y are flipped when we pass from Pt−1 to Pt, the
point y is either at position F L

t−1,k − 1 or at position F L
t−1,k + 1 in Pt−1. The former

possibility cannot occur, for if y were at position F L
t−1,k − 1 in Pt−1, then x and y would

have been flipped earlier, which is impossible. Thus, we can assume that y is at position
F L

t−1,k +1 in Pt−1. Since y /∈ F and x is the k-th leftmost element of F in Pt−1, we obtain
that x remains the k-th leftmost element of F in Pt and F L

t,k = F L
t−1,k + 1. Furthermore,

we have Lt(F
L
t,k) = Lt−1(F

L
t−1,k) + w(y) = Lt−1(F

L
t−1,k) − 1.

This proves the claim that Lt(F
L
t,k) is monotone non-increasing, continuous function of

t. Since L0(F
L
0,k) ≥ 0 and L(2n

2
)(F

L

(2n

2
),k

) < 0, it follows that there is a unique 0 < tk ≤
(

2n

2

)

such that Ltk−1(F
L
tk−1,k) ≥ 0 and Ltk(F

L
tk,k) < 0. By Lemma 2.1, ltk is a balanced line

through an element of F, which has exactly k − 1 elements of F in the open half-plane
to its left. Obviously, lt1 , . . . , ltn are distinct balanced lines. Next we show that if lt is a
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balanced line, then t is one of t1, . . . , tn. By Claim 1.2, lt passes through an element x
with weight +1 and an element y with weight −1. Suppose that x is the k-th leftmost
element of F in Pt−1 (1 ≤ k ≤ n). Then x is at position F L

t−1,k in Pt−1. Since w(y) = −1,
we have x < y. Therefore, y is at position F L

t−1,k +1 in Pt−1. Since lt is a balanced line, it
follows that Lt−1(F

L
t−1,k) = 0. In Pt, x is still the k-th leftmost element of F , and we have

Lt(F
L
t,k) = Lt−1(F

L
t−1,k) + w(y) = −1. Since Ls(F

L
s,k) is monotone nonincreasing function

of s, we conclude that t = tk.

The rest of the paper is structured as follows. In section 3, we define a prefix set F
and a suffix set H with some special properties, and set G := A \ (F ∪ H). In sections
4 and 5, we show that for every 1 ≤ k ≤ |F |, Lt(F

L
t,k) changes (as a function of t) from

0 to −1 at least once, and, for every 1 ≤ k ≤ |H|, Rt(H
R
t,k) changes from 0 to −1 at

least once. Applying Lemmata 2.1 and 2.2, we will obtain that there exist |F | balanced
lines through the elements of F and |H| balanced lines through the elements of H. In
section 6, we prove that every element of G = A\ (F ∪H), gives rise either to a balanced
line through an element of G or to a balanced line through an element of F ∪ H. We
show that all of these lines are distinct, so that the number of balanced lines is at least
|F | + |G| + |H| = n. In section 7, we wrap up the proof of Theorem 1.3, while the last
section contains some concluding remarks and generalizations.

3 The definition of F ,G, and H

In this section, we continue developing the machinery needed for the proof of Theorem
1.3.

Definition 3.1. Let S ⊆ {1, 2, . . . , 2n} and 1 ≤ j ≤ d |S|
2
e. We say that S has a barrier

of order j if one of the following two conditions is satisfied:

1. every element in S has weight +1, and

(a) either Lt(S
L
t,j) ≥ 0 and Rt(S

R
t,j) ≥ 0, for every 0 ≤ t ≤

(

2n

2

)

,

(b) or Lt(S
L
t,j) < 0 and Rt(S

R
t,j) < 0, for every 0 ≤ t ≤

(

2n

2

)

;

2. every element in S has weight −1 and

(a) either Lt(S
L
t,j) ≤ 0 and Rt(S

R
t,j) ≤ 0, for every 0 ≤ t ≤

(

2n

2

)

,

(b) or Lt(S
L
t,j) > 0 and Rt(S

R
t,j) > 0, for every 0 ≤ t ≤

(

2n

2

)

.

We say that S has a barrier if it has a barrier of order j for some index j.

Consider all (non-empty) sets of the form

{1 ≤ i ≤ 2n|u ≤ i ≤ v, w(i) = ε},
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where 1 ≤ u < v ≤ 2n and ε ∈ {+1,−1}. If at least one of these sets has a barrier, pick
one for which v − u is minimum and denote it by A0. If there is no such set, then let
A0 = A.

If A0 has a barrier, we may assume without loss of generality that condition 1(a) or
2(b) holds in Definition 3.1 (for otherwise we multiply the weight of every element by

−1). In other words, there exists 1 ≤ j0 ≤ d |A0|
2
e such that

Case 1: every element in A0 has weight +1, and Lt((A0)
L
t,j0

) ≥ 0 and Rt((A0)
R
t,j0

) ≥ 0, for

every 0 ≤ t ≤
(

2n

2

)

; or

Case 2: every element in A0 has weight −1, and Lt((A0)
L
t,j0

) > 0 and Rt((A0)
R
t,j0

) > 0, for

every 0 ≤ t ≤
(

2n

2

)

.

In either case, we inductively define a decreasing sequence A1 ⊃ A2 ⊃ . . . of subsets of
A as follows.

For every 0 ≤ t ≤
(

2n

2

)

, let ct,0 := (A0)
L
t,j0

and dt,0 := (A0)
R
t,j0

(see Definition 1.7). If
Aµ, c0,µ, d0,µ have already been defined for all 0 ≤ µ < m, let

Am = {a ∈ A|c0,m−1 < a < d0,m−1}.

Assume that one of the following conditions is satisfied for some 1 ≤ j ≤ d |Am|
2

e.

Case i: For every 0 ≤ t ≤
(

2n

2

)

such that max0≤i<m ct,i ≤ (Am)L
t,j ≤ min0≤i<m dt,i, we have

Lt((Am)L
t,j) ≥ 0, and for every 0 ≤ t ≤

(

2n

2

)

such that max0≤i<m ct,i ≤ (Am)R
t,j ≤

min0≤i<m dt,i, we have Rt((Am)R
t,j) ≥ 0.

Case ii: For every 0 ≤ t ≤
(

2n

2

)

such that max0≤i<m ct,i ≤ (Am)L
t,j ≤ min0≤i<m dt,i, we have

Lt((Am)L
t,j) < 0, and for every 0 ≤ t ≤

(

2n

2

)

such that max0≤i<m ct,i ≤ (Am)R
t,j ≤

min0≤i<m dt,i, we have Rt((Am)R
t,j) < 0.

Fix such a number j, set jm := j, and for every 0 ≤ t ≤
(

2n

2

)

, let ct,m := (Am)L
t,jm

and
dt,m := (Am)R

t,jm
.

If no such j exists or if Am = ∅, stop. Let q be the index at which we stopped. That
is, the last set we define is Aq. (If A0 does not have a barrier, then q = 0). Note that all
elements of A1, A2, . . . , Aq have weight +1, while the elements of A0 are all of weight +1
or all of weight −1.

If q > 0, let

F := {a ∈ A|a ≤ c0,q−1},

G := Aq, (1)

H := A \ (F ∪ G) = {a ∈ A|a ≥ d0,q−1}.
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If q = 0, let F = H = ∅ and G = A0 = {a1, . . . , an}.

Clearly, F and H are prefix and suffix sets, respectively.

4 Useful facts about the sets Am

The following simple observation is crucial for our proposes.

Claim 4.1 (continuity). Let S ⊆ {1, 2, . . . , 2n} and 1 ≤ i ≤ |S|. Then for every
1 ≤ t ≤

(

2n

2

)

, we have

1. |SL
t,i − SL

t−1,i| ≤ 1;

2. |SR
t,i − SR

t−1,i| ≤ 1.

Corollary 4.2. Let 0 ≤ m < q. For every 1 ≤ t ≤
(

2n

2

)

, we have

1. |max0≤i≤m ct,i − max0≤i≤m ct−1,i| ≤ 1;

2. |min0≤i≤m dt,i − min0≤i≤m dt−1,i| ≤ 1.

The aim of this section is to prove the following claim, whose parts 1 and 2 roughly
express that in the definition of jm and Am at the end of the last section, only Case i can
occur. The proof is somewhat tedious but straightforward.

Claim 4.3. Let 0 ≤ m < q and 0 ≤ t ≤
(

2n

2

)

.

1. If max0≤i<m ct,i ≤ ct,m ≤ min0≤i<m dt,i, then Lt(ct,m) ≥ 0;

2. if max0≤i<m ct,i ≤ dt,m ≤ min0≤i<m dt,i, then Rt(dt,m) ≥ 0;

3. max0≤i≤m ct,i < min0≤i≤m dt,i.

Proof: We prove the claim by induction on m. Assume m = 0. Parts 1 and 2 follow
from the fact that A0 has a barrier and either 1(a) or 2(b) holds in Definition 3.1. Part
3 of the claim, stating that ct,0 < dt,0, follows from the definitions of those numbers.

Assume that all three parts of the claim have already been verified for all 0 ≤ i < m,
and we want to prove it for m.
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First we prove parts 1 and 2. If either 1 or 2 is not true, then in the definition of Am

Case ii occurs. That is, for every 0 ≤ t ≤
(

2n

2

)

,

max
0≤i<m

ct,i ≤ ct,m ≤ min
0≤i<m

dt,i =⇒ Lt(ct,m) < 0 (2)

max
0≤i<m

ct,i ≤ dt,m ≤ min
0≤i<m

dt,i =⇒ Rt(dt,m) < 0 (3)

By definition, ct,m < dt,m. Note that it cannot happen that

max
0≤i<m

ct,i ≤ ct,m < dt,m ≤ min
0≤i<m

dt,i

for every 0 ≤ t ≤
(

2n

2

)

. Indeed, this would imply that Lt((Am)L
t,jm

) = Lt(ct,m) < 0 and

Rt((Am)R
t,jm

) = Lt(ct,m) < 0, for every 0 ≤ t ≤
(

2n

2

)

. In other words, Am would have a
barrier of order jm. This would contradict the minimality of v − u in the definition of
A0, because u ≤ c0,0 < a < d0,0 ≤ v holds for every element a ∈ Am

Therefore, we may assume that there is a minimal t, 0 ≤ t ≤
(

2n

2

)

, such that ct+1,m <
max0≤i<m ct+1,i. (The other case when dt+1,m > min0≤i<m dt+1,i for some t can be treated
similarly.)

By Claim 4.1 and Corollary 4.2, it follows from the minimality of t that one of the
following two cases has to occur.

Case a: ct,m = max0≤i<m ct,i;

Case b: ct,m = max0≤i<m ct,i + 1.

Let 0 ≤ m′ < m be an index such that max0≤i<m ct,i = ct,m′ . Clearly, we have

max
0≤i<m′

ct,i ≤ max
0≤i<m

ct,i = ct,m′ , (4)

and, by the induction hypothesis,

ct,m′ = max
0≤i<m

ct,i < min
0≤i<m

dt,i ≤ min
0≤i<m′

dt,i. (5)

Combining (4) and (5), we obtain

max
0≤i<m′

ct,i ≤ ct,m′ ≤ min
0≤i<m′

dt,i. (6)
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By the minimality of t,

max
0≤i<m

ct,i ≤ ct,m ≤ min
0≤i<m

dt,i. (7)

We discuss Cases a and b separately. In Case a, we have ct,m = ct,m′ . Using (6) and
part 1 of the induction hypothesis for m′, we get Lt(ct,m) = Lt(ct,m′) ≥ 0. In view of (7),
this contradicts (2).

In Case b, we have ct,m = ct,m′ + 1. As before, we get Lt(ct,m′) ≥ 0. Let x ∈ Am′ be
the element of Pt at the position ct,m′ = ct,m − 1. If all elements of Am′ have weight +1,
then w(x) = +1. Therefore,

Lt(ct,m) = Lt(ct,m′) + w(x) = Lt(ct,m′) + 1 ≥ 1.

If m′ = 0 and all elements of A0 have weight −1, then, using the fact that A0 has a
barrier, we find that Lt(ct,m′) = Lt(ct,0) > 0. Thus,

Lt(ct,m) = Lt(ct,m′) + w(x) = Lt(ct,m′) − 1 ≥ 0.

Hence, in either case Lt(ct,m) ≥ 0, contradicting (2). This completes the proof of parts 1
and 2.

Next we prove part 3. Assume for a contradiction that there is a minimal t, 0 ≤
t <

(

2n

2

)

, such that max1≤i≤m ct+1,i ≥ min1≤i≤m dt+1,i. By the induction hypothesis,
max0≤i<m ct+1,i < min0≤i<m dt+1,i. Therefore, without loss of generality we may assume
that max0≤i<m ct+1,i < ct+1,m. (The other case when dt+1,m < min0≤i<m dt+1,i for some t
can be treated similarly).

By the minimality of t and by Corollary 4.2, again there are only two possibilities.

Case a: max0≤i≤m ct+1,i = min1≤i≤m dt+1,i,

Case b: max0≤i≤m ct+1,i = min1≤i≤m dt+1,i + 1.

In Case a,

max
0≤i<m

ct+1,i < ct+1,m = min
0≤i≤m

dt+1,i = min
0≤i<m

dt+1,i, (8)

where the last equality follows from the fact that ct+1,m < dt+1,m.

Let m′ < m be such that min0≤i<m dt+1,i = dt+1,m′ . Then we have

dt+1,m′ = min
0≤i<m

dt+1,i ≤ min
0≤i<m′

dt+1,i,
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and, by induction hypothesis,

max
0≤i<m′

ct+1,i ≤ max
0≤i<m

ct+1,i < min
0≤i<m

dt+1,i = dt+1,m′.

Combining the last two inequalities, we obtain

max
0≤i<m′

ct+1,i ≤ dt+1,m′ ≤ min
0≤i<m′

dt+1,i.

This, together with part 2 of the claim for m′, implies that Rt+1(dt+1,m′) ≥ 0. Let x be
the element in Pt+1 at the position dt+1,m′ = ct+1,m. By the definition of ct+1,m, x belongs
to Am, and therefore w(x) = +1. Then

Lt+1(ct+1,m) = Lt+1(dt+1,m′) = −(w(x) + Rt+1(dt+1,m′)) = −1 − Rt+1(dt+1,m′) ≤ −1

where the second equality follows from the fact that the sum of all weights is 0. This,
together with (8), contradicts part 1 of the claim.

In Case b, it follows from the minimality of t and Corollary 4.2 that

max
0≤i≤m

ct,i = min
0≤i≤m

dt,i − 1. (9)

Since ct+1,m < dt+1,m, we have

ct+1,m = max
0≤i≤m

ct+1,i = min
1≤i≤m

dt+1,i + 1 = min
1≤i<m

dt+1,i + 1,

and, by the induction hypothesis,

max
0≤i<m

ct+1,i + 1 < min
0≤i<m

dt+1,i + 1 = ct+1,m

Therefore, max0≤i<m ct+1,i +2 ≤ ct+1,m and, by Claim 4.1, we obtain max0≤i<m ct,i ≤ ct,m.
This, together with (9), implies that

ct,m = max
0≤i≤m

ct,i = min
0≤i≤m

dt,i − 1 = dt,m′ − 1, (10)

where m′ ≤ m is such that min0≤i≤m dt,i = dt,m′. Then we have

max
0≤i<m′

ct,i ≤ max
0≤i≤m

ct,i < dt,m′ = min
0≤i≤m

dt,i ≤ min
0≤i<m′

dt,i.

11



Here the second inequality follows from (10). So, by part 1 of the claim for m′,

Rt(dt,m′) ≥ 0.

Let x ∈ Am′ be the element in Pt at the position dt,m′. In view of (10),

Rt(ct,m) = Rt(dt,m′) + w(x).

If all elements of Am′ have weight +1, then w(x) = +1, and thus

Rt(ct,m) = Rt(dt,m′) + 1 ≥ 1.

If m′ = 0 and all elements of A0 have weight −1, then

Rt(ct,m) = Rt(dt,0) − 1 ≥ 0,

because Rt(dt,0) = Rt((A0)
R
t,j0

) > 0, by the definition of A0. In either case, Rt(ct,m) ≥ 0.
Let y ∈ Am be the element in Pt at the position ct,m. Then w(y) = +1, therefore

Lt(ct,m) = −(w(y) + Rt(ct,m)) = −(1 + Rt(ct,m)) < 0.

This, combined with (10), contradicts part 1 of the claim, completing the proof.

Notation 4.4. For every 0 ≤ t ≤
(

2n

2

)

, let Ct = max0≤i<q ct,i and Dt = min0≤i<q dt,i.

Corollary 4.5. For every 0 ≤ t ≤
(

2n

2

)

, we have

1. Lt(Ct) ≥ 0 and Rt(Dt) ≥ 0,

2. Lt(Ct + 1) ≥ 0 and Rt(Dt − 1) ≥ 0.

Proof: Fix 0 ≤ t ≤
(

2n

2

)

. We prove only the first assertion of part 1; the proof of the
second assertion is very similar. Choose 0 ≤ m < q so that Ct = ct,m. Then we have

max
0≤i<m

ct,i ≤ max
0≤i<q

ct,i = ct,m = max
0≤i<q

ct,i < min
0≤i<q

dt,i ≤ min
0≤i<m

dt,i,

where the second inequality follows from part 3 of Claim 4.3. Thus, part 1 of Claim 4.3
immediately implies that

Lt(Ct) = Lt(ct,m) ≥ 0.

Next we prove the first assertion of part 2. Again, choose 0 ≤ m < q so that Ct = ct,m.
By part 1, Lt(ct,m) ≥ 0. Let x ∈ Am be the element in Pt at the position ct,m. If m 6= 0
or m = 0 and all elements of A0 have weight +1, then w(x) = +1. Therefore,

Lt(Ct + 1) = Lt(ct,m + 1) = Lt(ct,m) + w(x) = Lt(ct,m) + 1 ≥ 1.

If m = 0 and all elements of A0 have weight −1, then w(x) = −1. Recall that, according
to the definition of A0 and ct,0, we have Lt(ct,0) > 0. Thus,

Lt(Ct + 1) = Lt(ct,0 + 1) = Lt(ct,0) + w(x) = Lt(ct,0) − 1 ≥ 0,

as required. The second assertion of part 2 can be verified analogously.
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5 Balanced lines through the points of F and H

Using Notation 4.4, we can rewrite the definition of F ,G, and H (at the end of section
3) as follows.

F = {i ∈ A|i ≤ C0},

G = Aq = A \ (F ∪ H), (11)

H = {i ∈ A|i ≥ D0}.

In this section we show that for every 1 ≤ k ≤ |F |, as t goes from 0 to
(

2n

2

)

, Lt(F
L
t,k)

changes from 0 to −1 at least once. Similarly, for every 1 ≤ k ≤ |H|, Rt(H
R
t,k) changes

from 0 to −1 at least once. Thus, Lemmata 2.1 and 2.2 imply that the number of
balanced lines passing through some element of F (and H) is at least |F | (at least |H|,
respectively).

Definition 5.1. For any 1 ≤ k ≤ |F |, let t(F, k) denote the minimal t such that F L
t,k ≥

Ct, and let T (F, k) denote the maximal t such that F L
t,k ≤ Dt.

Similarly, for any 1 ≤ k ≤ |H|, let t(H, k) (and T (H, k)) denote the minimal t such
that HR

t,k ≤ Dt (the maximal t such that HR
t,k ≥ Ct, respectively).

First we show that the above definition is correct.

Claim 5.2. The numbers t(F, k), T (F, k), t(H, k), T (H, k) exist.

Proof: We prove only the existence of t(F, k) and T (F, k). By (11), we have F L
0,k ≤ C0,

for every 1 ≤ k ≤ |F |. It follows from part 3 of Claim 4.3, that Ct < Dt, for every
0 ≤ t ≤

(

2n

2

)

. Therefore, it suffices to show that F L

(2n

2
),k

≥ D(2n

2
).

Assume 0 ≤ m < q, where q is the same as in (1). Denote by x the element at the
position c0,m = (Am)L

0,jm
in P0. Then x is the jm’th leftmost element of Am in P0. P(2n

2
)

is a reversed copy of P0, i.e., P(2n

2
) = (2n, 2n − 1, . . . , 2, 1). Therefore, in P(2n

2
), x is the

jm’th rightmost element of Am. In other words, x is at position d(2n

2
),m

= (Am)R

(2n

2
),jm

in

P(2n

2
).

For every 0 ≤ m < q, let xm denote the element at position c0,m in P0. By the
definition of the sets A0, A1, . . . , Aq−1, we have x0 < x1 < . . . < xq−1. Thus, for every
0 ≤ m < q, xm is at position d(2n

2
),m

in P(2n

2
). Since in P(2n

2
) the numbers x0, . . . , xq−1

are in reversed order, we may conclude that d(2n

2
),q−1 < d(2n

2
),q−2 < . . . < d(2n

2
),0.

Let y ∈ F . By the definition of F , we have y ≤ C0 = c0,q−1. Therefore, y ≤ xq−1

and hence y is at a position greater or equal to the position of xq−1 in P(2n

2 ), which is

d(2n

2
),q−1 = D(2n

2
). In particular, it follows that F L

(2n

2
),k

≥ D(2n

2
) for every 1 ≤ k ≤ |F |.
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Definition 5.3. For any 1 ≤ k ≤ |F |, let τ(F, k) denote the number of different values of
t for which t(F, k) < t ≤ T (F, k), and which satisfy Lt−1(F

L
t−1,k) = −1 and Lt(F

L
t,k) = 0.

Similarly, for any 1 ≤ k ≤ |H|, let τ(H, k) denote the number of different values of t
for which t(F, k) < t ≤ T (F, k), and which satisfy Rt−1(H

R
t−1,k) = −1 and Rt(H

R
t,k) = 0.

Lemma 5.4. For any 1 ≤ k ≤ |F |, there are at least 1+ τ(F, k) balanced lines l meeting
the following two requirements.

1. l passes through a point of F ,

2. there are exactly k − 1 points of F in the open half-plane which is to the left of l.

Proof: According to Lemma 2.1 (and using the continuity of Lt(F
L
t,k), as a function of

t), it is enough to show that Lt(F,k)(F
L
t(F,k),k) ≥ 0 and LT (F,k)(F

L
T (F,k),k) < 0.

Let t0 = t(F, k). By the definition of t(F, k) we have, F L
t0,k ≥ Ct0 . If t0 = 0, then

F L
t0,k = Ct0 (for F L

0,k ≤ C0). If t0 > 0 then, by the minimality of t(F, k), F L
t0−1,k < Ct0−1.

Therefore, by Corollary 4.2, either F L
t0,k = Ct0 or F L

t0,k = Ct0 + 1.

We conclude that in both cases either F L
t0,k = Ct0 or F L

t0,k = Ct0 + 1. In either case,
we use Corollary 4.5, to argue that Lt0(F

L
t0,k) ≥ 0.

Similarly, let t1 = T (F, k). Then, by the maximality of T (F, k), either F L
t1 ,k = Dt1 or

F L
t1,k = Dt1 − 1. In either case, Corollary 4.5 implies Rt1(F

L
t1,k) ≥ 0. Let x be the element

in Pt1 at the position F L
t1 ,k. Then x ∈ F and hence w(x) = 1. Therefore,

Lt1(F
L
t1,k) = −(w(x) + Rt1(F

L
t1,k)) = −1 − Rt1(F

L
t1,k) < 0.

Similarly, we have

Lemma 5.5. For any 1 ≤ k ≤ |H|, there are at least 1+τ(H, k) balanced lines l meeting
the following two requirements.

1. l passes through a point of H,

2. there are exactly k − 1 points of H in the open half-plane which is to the right of l.

6 The contribution of G

In this section, we estimate from below the contribution of G to the number of balanced
lines. We prove (Lemma 6.2) that there are at least |G| different values of t, for which
either Lt(G

L
t,k) or Rt(G

R
t,k) changes from −1 to 0 or vice versa (for some k, as we go from

t − 1 to t). Then we show (Claim 6.4) that for each such t, either lt is a balanced line
through an element of G or

∑

1≤k≤|F | τ(F, k)+
∑

1≤k≤|H| τ(H, k) increased by 1. However,
in the latter case we find a new balanced line through an element of F ∪ H.

We need an auxiliary lemma.
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Lemma 6.1. Let 1 ≤ k ≤ d |G|
2
e and t0 < t1. Suppose that Ct0 ≤ GL

t0,k ≤ Dt0 and
Ct1 ≤ GL

t1,k ≤ Dt1 .

(*) t0 < t ≤ t1, Ct−1 ≤ GL
t−1,k ≤ Dt−1, and Ct ≤ GL

t,k ≤ Dt.

(a) If Lt0(G
L
t0,k) ≥ 0 and Lt1(G

L
t1,k) < 0, then there is an integer t satisfying

t0 < t ≤ t1, Ct−1 ≤ GL
t−1,k ≤ Dt−1, andCt ≤ GL

t,k ≤ Dt (12)

such that Lt−1(G
L
t−1,k) = 0 and Lt(G

L
t,k) = −1;

(b) if Lt0(G
L
t0,k) < 0 and Lt1(G

L
t1,k) ≥ 0, then there is an integer t satisfying 12 such

that Lt−1(G
L
t−1,k) = −1 and Lt(G

L
t,k) = 0;

(c) if Rt0(G
R
t0,k) ≥ 0 and Rt1(G

R
t1,k) < 0, then there is an integer t satisfying 12 such

that Rt−1(G
R
t−1,k) = 0 and Rt(G

R
t,k) = −1;

(d) if Rt0(G
R
t0,k) < 0 and Rt1(G

R
t1,k) ≥ 0, then there is an integer t satisfying 12 such

that Rt−1(G
R
t−1,k) = −1 and Rt(G

R
t,k) = 0.

Proof: By symmetry, it is enough to discuss the case Lt0(G
L
t0,k) ≥ 0 and Lt1(G

L
t1,k) < 0.

(The other cases can be treated similarly.)

Let t be the minimum integer in (t0, t1], for which Lt(G
L
t,i) < 0 and Ct ≤ GL

t,k ≤ Dt.
We show that t meets the requirements of the lemma.

If Ct−1 ≤ GL
t−1,k ≤ Dt−1, then Lt−1(G

L
t−1,k) = 0, by the minimality of t, and we are

done.

Otherwise, we distinguish two cases.

Case 1: GL
t−1,k < Ct−1;

Case 2: GL
t−1,k > Dt−1.

Since Ct ≤ GL
t,k ≤ Dt, it follows from Corollary 4.2 that in Case 1 either GL

t,k = Ct or
GL

t,k = Ct + 1; and in Case 2 either GL
t,k = Dt or GL

t,k = Dt − 1.

Case 1 is impossible, because Lt(G
L
t,k) < 0, while, by Corollary 4.5, Lt(Ct) ≥ 0 and

Lt(Ct + 1) ≥ 0. Contradiction.

In Case 2, let t′ be the maximum integer in [t0, t − 1) such that GL
t′,k ≤ Dt′ . By

the maximality of t′ and by Corollary 4.2, GL
t′,k is either Dt′ or Dt′ − 1. In either case,

15



Corollary 4.5 implies that Rt′(G
L
t′,i) ≥ 0. Therefore, denoting by x the element in Pt′ at

position GL
t′,k, we have

Lt′(G
L
t′,k) = −(w(x) + Rt′(G

L
t′,k)) = −(1 + Rt′(G

L
t′,k)) < 0.

Moreover, we have Ct′ ≤ GL
t′,k ≤ Dt′ . Thus, t′ contradicts the minimality of t.

(Observe that t′ 6= t0, because Lt′(G
L
t′,k) < 0, while Lt0(G

L
t0,k) ≥ 0.)

Lemma 6.2. Let 1 ≤ k ≤ b |G|
2
c. Then there exist 0 < t1k, t

2
k ≤

(

2n

2

)

, t1k 6= t2k, such that
for t ∈ {t1k, t

2
k}, precisely one of the following two conditions is satisfied.

1. {Lt−1(G
L
t−1,k), Lt(G

L
t,k)} = {0,−1}, Ct−1 ≤ GL

t−1,k ≤ Dt−1, and Ct ≤ GL
t,k ≤ Dt;

2. {Rt−1(G
R
t−1,k), Rt(G

R
t,k)} = {0,−1}, Ct−1 ≤ GR

t−1,k ≤ Dt−1, and Ct ≤ GR
t,k ≤ Dt.

Furthermore, if |G| is odd and k = |G|+1
2

, then there exists at least one t = tk,

0 ≤ t ≤
(

2n

2

)

, satisfying condition 1 or 2.

All numbers t1k, t
2
k, tk having the above properties are different for different values of

k.

Proof: Suppose first that L0(G
L
0,k) ≥ 0 and R0(G

R
0,k) < 0. Since P(2n

2
) is a reversed copy

of P0, we have that L(2n

2
)(G

L

(2n

2
),k

) = R0(G
R
0,k) < 0. By the definition of G, for every

1 ≤ j ≤ |G|, C0 ≤ GL
0,j ≤ D0 so that C(2n

2 ) ≤ GL

(2n

2
),j

≤ D(2n

2 ). Therefore, Lemma 6.1

implies that there exists t1k for which condition 1 of Lemma 6.2 holds.

To prove the existence of t2k, note that R(2n

2 )(G
R

(2n

2
),k

) = L0(G
L
0,k) ≥ 0. Now Lemma

6.1 implies that there exists t2k satisfying condition 2 of Lemma 6.2.

Next, suppose that L0(G
L
0,k) ≥ 0 and R0(G

R
0,k) ≥ 0.

Then L(2n

2 )(G
L

(2n

2
),k

) = R0(G
R
0,k) ≥ 0 and R(2n

2 )(G
R

(2n

2
),k

) = L0(G
L
0,k) ≥ 0. By the

construction of G, at least one of the following two conditions is satisfied:

(i) there exist t0, t1 such that Lt0(G
L
t0,k) ≥ 0, Lt1(G

L
t1,k) < 0, Ct0 ≤ GL

t0,k ≤ Dt0 , and
Ct1 ≤ GL

t1,k ≤ Dt1 ;

(ii) there exist t0, t1 such that Rt0(G
R
t0,k) ≥ 0, Rt1(G

R
t1,k) < 0, Ct0 ≤ GR

t0,k ≤ Dt0 , and
Ct1 ≤ GR

t1,k ≤ Dt1 .
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If (i) holds, then part (a) and (b) of Lemma 6.1 imply that there exist t1k and t2k, 0 ≤
t1k < t1 < t2k ≤

(

2n

2

)

, for which condition 1 of Lemma 6.2 is satisfied.

If (ii) holds then, similarly, condition 2 of Lemma 6.2 can be derived from parts (c)
and (d) of Lemma 6.1.

The remaining cases can be settled in the same way. Note that the above argument
also applies when k = |G|+1

2
, but in this case t1k and t2k may coincide.

We prove the last statement of Lemma 6.2 by contradiction. Suppose, e.g., that
there are two integers 1 ≤ k 6= k′ ≤ d |G|

2
e such that tk ∈ {t1k, t

2
k}, tk′ ∈ {t1k′, t2k′}, and

tk = tk′ = t. If t satisfies condition 1 of the lemma, then Lt−1(G
L
t−1,k) 6= Lt(G

L
t,k). In this

case, lt passes through a unique element of G. Indeed, if lt passed through two elements of
G or no element of G, we would have GL

t−1,k = GL
t,k and hence also Lt−1(G

L
t−1,k) = Lt(G

L
t,k).

Moreover, this unique element of G is at position GL
t−1,k in Pt−1.

Similarly, if condition 2 is satisfied, then lt passes through a unique element of G,
which is at position GR

t−1,k in Pt−1. Therefore, if t = tk = tk′, we have {GL
t−1,k, G

R
t−1,k} ∩

{GL
t−1,k′, GR

t−1,k′} 6= ∅, which is a contradiction, as 1 ≤ k 6= k′ ≤ d |G|
2
e.

Notation 6.3. For any S ⊆ {1, 2, . . . , 2n}, let bal(S) denote the number of balanced
lines passing through at least one point of S.

Claim 6.4. |G| ≤
∑

1≤k≤|F | τ(F, k) +
∑

1≤k≤|H| τ(H, k) + bal(G)

Proof: Let 1 ≤ k ≤ d |G|
2
e, and let t be one of the values t1k, t

2
k, whose existence is

guaranteed by Lemma 6.2. (Note that in case k = |G|+1
2

there is only one such value.)

Then Ct−1 ≤ GL
t−1,k ≤ Dt−1, and Ct ≤ GL

t,k ≤ Dt. There are four possibilities:

1. (a) Lt−1(G
L
t−1,k) = 0 and Lt(G

L
t,k) = −1,

(b) Lt−1(G
L
t−1,k) = −1 and Lt(G

L
t,k) = 0,

2. (a) Rt−1(G
R
t−1,k) = 0 and Rt(G

R
t,k) = −1,

(b) Rt−1(G
R
t−1,k) = −1 and Rt(G

R
t,k) = 0.

For simplicity, we consider only case 1(a). Let x denote the element at position GL
t−1,k

in Pt−1. Since x ∈ G, we have w(x) = +1. Pt−1 and Pt differ in two consecutive places;
one of them is occupied by x. Let y denote the element at the other place. Obviously, lt
passes through x and y. We distinguish two cases.

Case 1: w(y) = −1.

Clearly, y /∈ G, so x is at position GL
t,k in Pt. Since Lt(G

L
t,k) < Lt−1(G

L
t−1,k), it follows

that y > x. That is, Lt(G
L
t,k) = Lt−1(G

L
t−1,k)+w(y). Consequently, the sum of the weights
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of the points of V in the open half-plane to the left of lt, is 0. Since w(x) + w(y) = 0, lt
must be a balanced line.

Case 2: w(y) = +1.

Now y /∈ G, for otherwise Lt(G
L
t,k) = Lt−1(G

L
t−1,k).

Using the fact that Lt(G
L
t,k) < Lt−1(G

L
t−1,k), we obtain that y < x. That is Lt(G

L
t,k) =

Lt−1(G
L
t−1,k)−w(y). Since y /∈ G and y < x, we have y ∈ F . Let 1 ≤ s ≤ |F | denote the

integer for which y is the s-th leftmost element of F in Pt−1 and hence also in Pt. Now
it follows that Lt−1(F

L
t−1,s) = −1 and Lt(F

L
t,s) = 0. We show that t(F, s) < t ≤ T (F, s),

which implies that when x and y are swapped, τ(F, s) increases by 1.

To see that t(F, s) < t, it is enough to prove that Ct−1 ≤ F L
t−1,s. Since Lt(G

L
t,k) = −1,

using Corrolary 4.5 and the fact that Ct ≤ GL
t,k we have Ct+2 ≤ GL

t,k. Now GL
t,k = F L

t,s−1,
so that Ct + 3 ≤ F L

t,s. It follows from Claim 4.1 and Corrolary 4.2 that Ct−1 < F L
t−1,s.

To see that t ≤ T (F, s), it is enough to prove that F L
t,s ≤ Dt. Now Rt−1(G

L
t−1,k) =

−(Lt−1(G
L
t−1,k) + w(x)) < 0. Since GL

t−1,k ≤ Dt−1, it follows from Corrolary 4.5 that
GL

t−1,k ≤ Dt−1 − 2. We have F L
t−1,s = GL

t−1,k − 1, so that F L
t−1,s ≤ Dt−1 − 3. It follows

from Claim 4.1 and Corrolary 4.2 that F L
t,s ≤ Dt − 1.

Summarizing, we have shown that for every value of t, whose existence is guaran-
teed by Lemma 6.2, either lt is a distinct balanced line through an element of G, or t
contributes 1 to the sum

∑

1≤k≤|F | τ(F, k) +
∑

1≤k≤|H| τ(H, k).

7 Proof of the Theorem 1.3

Now we are in a position to complete the proof of Theorem 1.3. Since F ∪ G ∪ H is the
set of all elements of weight +1, by Claim 1.2 we have that the number of balanced lines
is equal to bal(F ) + bal(H) + bal(G). By Lemmata 5.4 and 5.5, we have

bal(F ) ≥
∑

1≤k≤|F |

(1 + τ(F, k)), bal(H) ≥
∑

1≤k≤|H|

(1 + τ(H, k)).

Therefore, in view of Claim 6.4, the number of balanced lines is

bal(F ) + bal(H) + bal(G) ≥
∑

1≤k≤|F |

(1 + τ(F, k)) +
∑

1≤k≤|H|

(1 + τ(H, k)) + bal(G)

= |F | + |H| +





∑

1≤k≤|F |

τ(F, k) +
∑

1≤k≤|H|

τ(H, k) + bal(G)





≥ |F | + |H| + |G| = n.
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8 Concluding remarks

Theorem 1.3 does not remain true without assuming that the points are in general posi-
tion. It is not hard to construct sets of n points of weight +1 and n points of weight −1
which determine no balanced line.

Theorem 1.3 can be rephrased in the following dual form. Consider n lines of weight
+1 and n lines of weight −1 in general position in the plane, i.e., no three of them pass
through the same point, no two are parallel, and none of them is vertical (parallel to the
y-axis). Then they determine at least n intersection points p with the property that the
sum of the weights of all lines above p, as well as the sum of the weights of all lines below
p, is equal to zero. This statement can also be formulated for x-monotone pseudo-lines
instead of lines (a pseudo-line is called x-monotone if every vertical line intersects it in
precisely one point). This version remains valid, because as we sweep the plane by a
vertical line from left to right, the order in which it meets the pseudo-lines determines a
flip array, and our proof applies.

Let V be a set of points in general position in the plane, having an even number of
elements. A line l connecting two points of V is called a halving line, if it cuts V into
two equal halves, i.e., if both open half-planes bounded by l contain precisely |V |/2 − 1
elements of V .

The following simple fact is an easy consequence of the Ham-sandwich Theorem (for
a similar argument, see [AA89]).

Claim 8.1. Let V consist of n points of weight +1 and n points of weight −1 in general
position in the plane. If n is odd, then V permits a balanced halving line l.

Proof: Replace each point v ∈ V by a disc of area 1/N centered at v, where N is a
sufficiently large integer. Let D+ and D− denote the union of all discs which correspond
to the elements of V with positive and negative weights, respectively. By the Ham-
sandwich Theorem, there is a straight line l(N) such that the area of the intersection
of D+ with any half-plane bounded by l(N) is n/(2N), and the same is true for D−.
Choose an infinite sequence N(1) < N(2) < . . . such that the corresponding lines l(Ni)
converge to a straight line l, as i tends to infinity. Clearly, l must connect a point of
positive weight weight with a point of negative weight, and it meets the requirements in
the claim.

It is not hard to come up with a point set V satisfying the conditions in Lemma 8.1,
which permits only one balanced halving line. (See Figure 2.)

The above argument easily generalizes to any d-dimensional set V in general position,
whose elements are colored with d colors. However, the analogue of Theorem 1.3 does
not hold in 3 and higher dimensions.

Definition 8.2. A set of points in d-space is said to be in general position, if no d + 1
of them lie on a hyperplane.
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Figure 2: A 2-colored point set with a unique balanced halving line

Let U = U1 ∪ . . .∪ Ud be a set of dn points in general position in d-space, where each
Ui consists of n points and is called a color class.

A hyperplane h determined by (d elements of) V is called balanced if each open
half-space bounded by h contains the same number of elements from each color class.

Obviously, all points a balanced hyperplane are of different colors. By straightforward
generalization of the proof of Claim 8.1, we also obtain that if n is odd, then U =
U1 ∪ . . . ∪ Ud always permits at least one balanced halving hyperplane.

Claim 8.3. For every d ≥ 3, there exists a set U of dn points in general position in
d-space, which consists of d color classes of size n and satisfies the following condition:

(i) if n is even, then U does not permit a balanced hyperplane;

(ii) if n is odd, then U permits precisely one balanced hyperplane.

Proof: We present the construction only for d = 3; the other constructions are very
similar.

Suppose first that n is even. Let {a, b, c, d} be the vertex set of a regular tetrahedron
centered at o. Replace a, b, c, d and o by five point sets, A, B, C, D, and O, respectively.
Suppose that each of these sets is equally spaced along a line parallel to od, with a
sufficiently small distance ε > 0, and let |A| = |B| = |C| = |D| = n/2, and |O| = n.
Finally, slightly perturb the points so that A∪B ∪C ∪D∪O will be in general position.

Let U1 := A ∪ B, U2 := C ∪ D, and U3 := O. Suppose, in order to obtain a
contradiction, that U := U1 ∪ U2 ∪ U3 permits a balanced hyperplane h. Clearly, h must
pass through three points of different colors, say, u ∈ A, v ∈ C, and w ∈ O. Now B and
D are on different sides of h, which implies that both open half-spaces bounded by h
must contain at least n/2 points of each color. Counting the points u, v, and w belonging
to h, each color class has at least n + 1 elements, a contradiction.

If n is odd, then the construction is the same, except that |A| = |C| = (n + 1)/2 and
|B| = |D| = (n − 1)/2. Now a balanced hyperplane h must pass through one element in
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each of the sets A, C, and O, say, u, v, and w, resp. Moreover, since there are at least
(n − 1)/2 elements of U2 in the open half-space opposite to D, v must be the last point
of C in the direction od. Similarly, u is the last point of A in the same direction, and w
is also uniquely determined.
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