Crossroads in Flatland

Janos Pach'

Drawing is one of the most ancient human activities. Our ancestors drew
their pictures (pictographs or, simply, “graphs”) on walls of caves, nowadays
we use mostly computer screens for this purpose. From the mathematical
point of view, there is not much difference: both surfaces are “flat,” they
are topologically equivalent.

1 Crossings — the Brick Factory Problem

Every graph consists of vertices and edges. The vertex set of a graph G is
a finite set V(G), and its edge set, E(G), is a collection of unordered pairs
from V(G). By a drawing of G, we mean a representation of G in the plane
such that each vertex is represented by a distinct point and each edge by a
simple (non-selfintersecting) continuous arc connecting the corresponding
two points. If it is clear whether we talk about an “abstract” graph G or
its planar representation, these points and arcs will also be called vertices
and edges, respectively. For simplicity, we assume that in a drawing (a) no
edge passes through any vertex other than its endpoints, (b) no two edges
touch each other (i.e., if two edges have a common interior point, then at
this point they properly cross each other), and (c) no three edges cross at
the same point.

Every graph has many different drawings. If G can be drawn in such
a way that no two edges cross each other, then G is planar. According to
an observation of Istvan Féary [11], if G is planar then it has a drawing, in
which every edge is represented by a straight-line segment.

Not every graph is planar. It is well known that K5, the complete graph
with 5 vertices, and K33, the complete bipartite graph with 3 vertices in
its classes are not planar. According to Kuratowski’s famous theorem, a
graph is planar if and only if it has no subgraph which can be obtained from
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K35 or from K3 3 by subdividing some (or all) of itsedges with distinct new
vertices. In the next section, we give a completely different representation
of planar graphs (see Theorem 2.3).

If G is not planar then it cannot be drawn in the plane without crossing.
Paul Turén [38] raised the following problem: find a drawing of G, for which
the number of crossings is minimum. This number is called the crossing
number of G and is denoted by CR(G). More precisely, Turdn’s (still un-
solved) original problem was to determine CR(K, ), for every n,m > 3.
According to an assertion of Zarankiewicz, which was down-graded from
theorem to conjecture [14], we have
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(cf. [34], [20]).

Turan used to refer to this question as the “brick factory problem,”
because it occurred to him at a factory yard, where, as forced labour during
World War II, he moved waggons filled with bricks from kilns to storage
places. According to his recollections, it was not a very tough job, except
that they had to push much harder at the crossings. Had this been the only
“practical application” of crossing numbers, much fewer people would have
tried to estimate CR(G) during the past quarter of a century. In the early
eighties, it turned out that the chip area required for the realization (VLSI
layout) of an electrical circuit is closely related to the crossing number of
the underlying graph [22]. This discovery gave an impetus to research in
the subject.

2 Thrackles — Conway’s Conjecture

A drawing of a graph is called a thrackle, if any two edges which do not
share an endpoint cross precisely once, and if two edges share an endpoint
then they have no other point in common.

It is easy to verify that e.g. Cjy, a cycle of length 4, cannot be drawn as
a thrackle, but any other cycle can [41]. If a graph cannot be drawn as a
thrackle, then the same is true for all graphs that contain it as a subgraph.
Thus, a thrackle does not contain a cycle of length 4, and, according to
an old theorem of Erdéds in extremal graph theory, the number of its edges
cannot exceed n®/?, where n denotes the number of its vertices.
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The following old conjecture states much more.

Conjecture (J. Conway). Ewvery thrackle has at most as many edges as
vertices.

The first upper bound on the number of edges of a thrackle, which is
linear in n, was found in [23].

2.1 Theorem ([23]). Ewvery thrackle has at most twice as many edges as
vertices.

Thrackle and planar graph are, in a certain sense, opposite notions: in
the former any two edges intersect, in the latter there is no crossing pair of
edges. Yet the next theorem shows how similar these concepts are.

A drawing of a graph is said to be a generalized thrackle if every pair of
its edges intersect an odd number of times. Here the common endpoint of
two edges also counts as a point of intersection. Clearly, every thrackle is
a generalized thrackle, but not the other way around. For example, a cycle
of length 4 can be drawn as a generalized thrackle, but not as a thrackle.

2.2 Theorem ([23]). A bipartite graph can be drawn as a thrackle if and
only if it is planar.

According to an old observation of Erdos, every graph has a bipartite
subgraph which contains at least half of its edges. Clearly, every planar
graph of n > 3 vertices has at most 2n — 4 edges. Hence, Theorem 2.2
immediately implies that every thrackle with n > 3 vertices has at most
2(2n —4) = 4n — 8 edges. This statement is slightly weaker than Theorem
2.1.

In a drawing of a graph, a triple of internally disjoint paths (P;(u,v),
Py(u,v), P3(u,v)) between the same pair of vertices (u,v) is called a tri-
furcation. (The three paths cannot have any vertices in common, other
than u and v, but they can cross at points different from their vertices.)
A trifurcation (Py(u,v), Py(u,v), P3(u,v)) is said to be a converter if the
cyclic order of the initial pieces of P;, P, and P3; around u is opposite to
the cyclic order of their final pieces around v.

2.3 Theorem ([23]). A graph is planar if and only if it has a drawing, in
which every trifurcation is a converter.

The second half of the theorem is trivial: if a graph is planar, then
it can be drawn without crossing, and, clearly, every trifurcation in this
drawing is a converter. The first half of the statement can be proved using
Kuratowski’s theorem.

Recently, G. Cairns and Y. Nikolayevsky [7] has improved the factor
two in Theorem 2.1 to one and a half.
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3 Different Crossing Numbers?

As is illustrated by Theorem 2.3, the investigation of crossings in graphs of-
ten requires parity arguments. This phenomenon can be partially explained
by the ‘banal’ fact that if we start out from the interior of a simple (non-
selfintersecting) closed curve in the plane, then we find ourselves inside or
outside of the curve depending on whether we crossed it an even or an odd
number of times.

Next we define three variants of the notion of crossing number.

(1) The rectilinear crossing number, LIN-CR(G), of a graph G is the mini-
mum number of crossings in a drawing of GG, in which every edge is repre-
sented by a straight-line segment.

(2) The pairwise crossing number of G, PAIR-CR(G), is the minimum num-
ber of crossing pairs of edges over all drawings of G. (Here the edges can
be represented by arbitrary continuous curves, so that two edges may cross
more than once, but every pair of edges can contribute to PAIR-CR(G) at
most one.)

(3) The odd-crossing number of G, ODD-CR(G), is the minimum number of

those pairs of edges which cross an odd number of times, over all drawings
of G.

It readily follows from the definitions that

ODD-CR((G) < PAIR-CR(G) < CR(G) < LIN-CR(G).

Bienstock and Dean [6] exhibited a series of graphs with crossing number
4, whose rectilinear crossing numbers are arbitrary large. However, we
cannot rule out the possibility that

ODD-CR(G) = PAIR-CR(G) = CR(G),

for every graph G.

The determination of the odd-crossing number can be rephrased as a
purely combinatorial problem, thus the possible coincidence of the above
three crossing numbers would offer a spark of hope that there exists an
efficient approximation algorithm for computing their value.

According to a remarkable theorem of Hanani (alias Chojnacki) [8] and
William Tutte [39], if a graph G can be drawn in the plane so that any pair of
its edges cross an even number of times, then it can also be drawn without
any crossing. In other words, oDD-CR(G) = 0 implies that CR(G) = 0.
Note that in this case, by the observation of Fary mentioned in Section 2,
we also have that LIN-CR(G) = 0.
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The main difficulty in this problem is that a graph has so many essen-
tially different drawings that the computation of any of the above crossing
numbers, for a graph of only 15 vertices, appears to be a hopelessly difficult
task even for a very fast computer [10].

3.1 Theorem [12],[31]. The computation of the crossing number, the pair-
wise crossing number, and the odd-crossing number are NP-complete prob-
lems.

All we can show is that the three parameters in Theorem 3.1, Cr(G),
PAIR-CR(G), and OoDD-CR(G), are not completely unrelated.

3.2 Theorem [31]. For any graph G, we have

Cr(G) < 2(opD-CR(G))2

The proof of the last statement is based on the following sharpening of
the Hanani-Tutte Theorem.

3.3 Theorem [31]. An arbitrary drawing of any graph in the plane can be
re-drawn in such a way that no edge, which originally crossed every other
edge an even number of times, would participate in any crossing.

In [28], we apply the original form of the Hanani-Tutte Theorem to
answer a question raised in robotics [19].

4 Straight-line Drawings

For “straight-line thrackles,” Conway’s conjecture discussed in Section 2
had been settled by H. Hopf-E. Pannwitz [15] and (independently) by Paul
Erdds much before the problem was raised.

If every edge of a graph is drawn by a straight-line segment, then we
call the drawing a geometric graph [24], [25], [26]. Two geometric graphs
are considered isomorphic (identical), if and only if there is a rigid motion
of the plane which takes one into the other.

Hopf-Pannwitz—Erdés Theorem. If any two edges of a geometric graph
intersect (in an endpoint or an internal point), then it can have at most as
many edges as vertices.

The systematic study of extremal problems for geometric graphs was
initiated by S. Avital-H. Hanani [4], Erdés, Micha Perles, and Yaakov
Kupitz [21]. In particular, they asked the following question: what is the
maximum number of edges of a geometric graph of n vertices, which does
not have k pairwise disjoint edges? (Here, by “disjoint” we mean that they
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cannot cross and cannot even share an endpoint.) Denote this maximum
by ex(n).

Using this notation, the above theorem says that es(n) = n, for every
n > 2. Noga Alon and Erdés [2] proved that e3(n) < 6n. Since then, this
bound was reduced by a factor of two [13]. It had been an open problem
for a long time to decide whether ex(n) is linear in n for every fixed k > 3.

4.1 Theorem [32]. For every k and every n, we have ex(n) < (k — 1)*n.

This bound was improved successively by Géza Téth—Pavel Valtr [37],
and by Téth to ex(n) < 100k?n. It is very likely that the dependence of
ex(n) on k is also (roughly) linear.

Analogously, one can try to determine the maximum number of edges of
a geometric graph with n vertices, which does not have k£ pairwise crossing
edges. Denote this maximum by fi(n). It follows from Euler’s Polyhedral
Formula that, for n > 2, every planar graph with n vertices has at most
3n — 6 edges. Equivalently, we have fy(n) = 3n — 6.

4.2 Theorem [1]. f3(n) = O(n).
4.3 Theorem [27]. For a fized k > 3, we have fi(n) = O(nlog”®n).

Recently, Valtr [40] has shown that fix(n) = O(nlogn), for any k& > 3,
but it can be conjectured that fy(n) = O(n). Moreover, it cannot be ruled
out that there exists a constant ¢ such that fx(n) < ckn, for every k and n.
However, we cannot even decide whether every complete geometric graph
with n vertices contains at least (a positive) constant times n pairwise
crossing edges. The strongest result in this direction is the following

4.4 Theorem [3]. Every complete geometric graph with n vertices contains
at least |\/n/12] pairwise crossing edges.

In a recent series of papers [16], [17], [18], we established some Ramsey-
type results for geometric graphs, closely related to the subject of this sec-
tion. In [9], we generalized the above results for geometric hypergraphs
(systems of simplices).

5 An Application in Computer Graphics

It is a pleasure for the mathematician to see his research generate some
interest outside his narrow field of studies. It is a source of even greater
satisfaction if his results can be applied in other disciplines or, at some
special and rare occasions, in practice.

During the past twenty years, combinatorial geometers have been fortu-
nate enough to experience this feeling quite often. Automated production
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lines revolutionized robotics, and started an avalanche of questions whose
solution required new combinatorial geometric tools [35]. Computer graph-
ics, whose group of users encompasses virtually everybody from engineers
to film-makers, has had a similar effect on our subject [5].

Finally, I would like to sketch a mathematical result which has applica-
tions in computer graphics. Most graphics packages available on the market
contain some (so-called warping or morphing) program suitable for deform-
ing figures or pictures. Originally, these programs were written for making
commercials and animated movies, but today they are widely used.

An important step in programs of this type is to fix a few basic points of
the original picture (say, the vertices of the straight-line drawing of a planar
graph), and then to choose new locations for these points. We would like to
re-draw the graph without creating any crossing. In general, we cannot now
insist that the edges be represented by segments, because such a drawing
may not exist. Our goal is to produce a drawing with polygonal edges,
whose total number of segments is small. The complexity and the running
time of the program is proportional to this number.

5.1 Theorem [33]. Every planar graph with n vertices can be re-drawn in
such a way that the new positions of the vertices are arbitrarily prescribed,
and each edge is represented by a polygonal path consisting of at most 24n
segments.

There is an O(n?)-time algorithm for constructing such a drawing.

The next result shows that Theorem 5.1 cannot be substantially im-
proved.

5.2 Theorem [33]. For every n, there erist a planar graph G, with n
vertices and an assignment of new locations for the vertices such that in
any polygonal drawing of G, there are at least n/100 edges composed of at
least n/100 segments.

The proof of this theorem is based on a result discovered by Leighton
[22] (and slightly generalized in [27]), which turned out to play a crucial role
in the solution of many other extremal and algorithmic problems related to
graph embeddings.

The bisection width of a graph is the minimum number of edges whose
removal splits the graph into two pieces such that there are no edges running
between them and the larger piece has at most twice as many vertices as
the smaller.

5.3 Theorem [22],[27]. Let G be a graph of n vertices whose degrees are
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dy,da, ..

.,dy. Then the bisection width of G is at most

1.58\1 16CR(G) + ) _ d2.
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