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Abstract. A straight-line drawing of a graph G is a mapping which assigns to
each vertex a point in the plane and to each edge a straight-line segment con-
necting the corresponding two points. The rectilinear crossing number of a graph
G, cr(G), is the minimum number of pairs of crossing edges in any straight-line
drawing of G. Determining or estimating cr(G) appears to be a difficult prob-
lem, and deciding if cr(G) ≤ k is known to be NP-hard. In fact, the asymptotic
behavior of cr(Kn) is still unknown.
In this paper, we present a deterministic n2+o(1)-time algorithm that finds a
straight-line drawing of any n-vertex graph G with cr(G)+ o(n4) pairs of cross-
ing edges. Together with the well-known Crossing Lemma due to Ajtai et al. and
Leighton, this result implies that for any dense n-vertex graph G, one can effi-
ciently find a straight-line drawing of G with (1 + o(1))cr(G) pairs of crossing
edges.

1 Introduction

A drawing of a graph G is a mapping f that assigns to each vertex a distinct point in
the plane and to each edge uv a continuous arc connecting f(u) and f(v), not passing
through the image of any other vertex. Two edges in a drawing cross if their interiors
have a point in common. The crossing number of G, denoted by cr(G), is the minimum
number of pairs of crossing edges in any drawing of G. Hence, cr(G) = 0 if and only
if G is planar. Determining or estimating the crossing number of a graph is one of the
oldest problems in graph theory, with over 700 papers written on the subject. We refrain
here from attempting to give an overview of the long history of crossing numbers and
their applications in discrete and computational geometry, and refer the reader to the
survey articles by Pach and Tóth [31], Schaefer [33], and the extensive bibliography
maintained by Vrt’o [40].

In the present paper, we focus on straight-line drawings of a graph G, that is, draw-
ings of G where the edges are represented by straight-line segments. We will assume
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that in all such drawings, no three vertices are collinear, and no point lies in the interior
of three distinct edges. The rectilinear crossing number of G, denoted by cr(G), is the
minimum number of pairs of crossing edges in any straight-line drawing of G. Clearly
cr(G) ≤ cr(G), and a theorem of Fáry [18] states that cr(G) = 0 when G is planar.
On the other hand, it was shown by Bienstock and Dean [9] that there are graphs with
crossing number four, whose rectilinear crossing numbers are arbitrarily large.

Determining the rectilinear crossing number of a graph appears to be a difficult
problem. In fact, the asymptotic value of cr(Kn) is still unknown. The exact values for
cr(Kn) are known for n ≤ 27 and n = 30, and for large n, the current best known
bounds are

0.379972

(
n

4

)
< cr(Kn) < 0.380473

(
n

4

)
,

due to Ábrego et al. [1] and Fabila-Monroy and López [17] respectively. For more
details on cr(Kn), including its striking connection to Sylvester’s four-point problem
[37,38], see [2,34].

From an algorithmic point of view, computing cr(G) is known to be NP-hard [8].
More precisely, it is known to be ∃R-complete, that is, complete for the existential
theory of the reals (see [32,33]). On the other hand, many researchers have designed
polynomial time algorithms for approximating crossing numbers of sparse graphs. In
particular, a seminal result of Hopcroft and Tarjan [25] is that there is a linear time
algorithm for testing planarity of a graph. Kawarabayashi and Reed [26] generalized
their result and established a linear time algorithm that decides whether cr(G) ≤ k
when k is fixed. Leighton and Rao [28] obtained an efficient algorithm that finds a
drawing of any bounded-degree n vertex graph G with at most O(log4 n)(n + cr(G))
pairs of crossing edges. This was later improved by Even, Guha, and Schieber [16]
to O(log3 n)(n + cr(G)), and further improved by Arora, Rao, and Vazirani [6] to
O(log2 n)(n+cr(G)). For more results on computing cr(G) for bounded degree graphs,
see [14].

For dense graphs G, very little is known about cr(G), and as mentioned above, not
even the asymptotic value of cr(Kn). Our main result is the following.

Theorem 1. There is a deterministic n2+o(1)-time algorithm for constructing a straight-
line drawing of any n-vertex graph G in the plane with cr(G) + O(n4/(log log n)δ)
crossing pairs of edges, where δ > 0 is an absolute constant.

A classic result of Ajtai et al. [5] and Leighton [27], known as the Crossing Lemma,
implies that the rectilinear crossing number of any n-vertex graph with e edges is at least
e3

64n2 −4n. Hence all n-vertex graphsG withΩ(n2) edges satisfy cr(G) ≥ Ω(n4). This
implies the following.

Corollary 1. There is a deterministic n2+o(1)-time algorithm for constructing a straight-
line drawing of any n-vertex graph G with |E(G)| ≥ εn2, where ε > 0 is fixed, such
that the drawing has at most (1 + o(1))cr(G) crossing pairs of edges.

A sequence (Gn : n = 1, 2, . . .) of graphs with |V (Gn)| = n is called quasi-
random with density p (where 0 < p < 1) if, for all subsetsX,Y ⊂ V (Gn), eGn

(X,Y ) =
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p|X||Y | + o(n2). An important result of Chung, Graham, and Wilson [12] shows that
being quasi-random with density p is equivalent to many other properties almost surely
satisfied by the random graph G(n, p). Studying properties of quasi-random graphs
has been an important research direction with numerous applications. In Section 5, we
prove the following result.

Theorem 2. Fix 0 < p < 1 and let (Gn : n = 1, 2, . . .) be a sequence of graphs that
is quasi-random with density p. Then

cr(Gn) = (1 + o(1))p2 · cr(Kn).

More generally, we show any two edge-weighted graphs which are close in cut-distance
have rectilinear crossing numbers which are close (see Lemma 3). For results on cross-
ing numbers of random graphs, consult [36].

Organization. In the next section, we collect several geometric results on planar point
sets and give an exponential time algorithm for computing the rectilinear crossing num-
ber of a (small) graph. In Section 3, we show that if two graphs are close in cut-distance,
then their rectilinear crossing numbers are approximately the same. In Section 4, we
prove Theorem 1. Finally in Section 5, we prove Theorem 2.

We omit floor and ceiling signs whenever they are not crucial. All logarithms are
base 2.

2 Order types and same-type transversals

Let V = (v1, . . . , vn) be an n-element point sequence in R2 in general position,
that is, no three members of V are collinear. The order type of V is the mapping
χ :
(
V
3

)
→ {+1,−1} (positive orientation, negative orientation), assigning each triple

of V its orientation. By setting vi = (xi, yi) ∈ R2, for i1 < i2 < i3,

χ({vi1 , vi2 , vi3}) = sgn det

 1 1 1
xi1 xi2 xi3
yi1 yi2 yi3

 .

Therefore, two n-element point sequences V = (v1, . . . , vn) and U = (u1, . . . , un)
have the same order type if they are “combinatorially equivalent." By lexicographically
ranking each triple (i1, i2, i3), where 1 ≤ i1 < i2 < i3 ≤ n, we can describe each order
type χ with the vector (χ1, χ2, . . .) ∈ {−1,+1}(

n
3), such that χj = +1 if and only if

χ({vi1 , vi2 , vi3}) > 0 and Rank(i1, i2, i3) = j. We will call vectors χ∗ ∈ {−1,+1}(
n
3)

abstract order types, and we say that an abstract order type χ∗ is realizable if there is
a point set V in the plane whose order type realizes χ∗. The concept of order types
was introduced by Goodman and Pollack [23] and has played a crucial role in gathering
knowledge about crossing numbers. See [23,22] for more background on order types.

Given k disjoint subsets V1, . . . , Vk ⊂ V , a transversal of (V1, . . . , Vk) is any k-
element sequence (v1, . . . , vk) such that vi ∈ Vi for all i. We say that the k-tuple of parts
(V1, . . . , Vk) has same-type transversals if all of its transversals have the same order
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type. One of the key ingredients in the proof of Theorem 1 is the following regularity
lemma for same-type transversals established by the authors in [20]. A partition on a
finite set V is called equitable if any two parts differ in size by at most one.

Theorem 3. There is an absolute constant C such that the following holds. For each
0 < ε < 1 and for any finite point set V in R2, there is an equitable partition V =
V1 ∪ V2 ∪ · · · ∪ VK , with 1/ε < K < ε−C , such that all but at most ε

(
K
4

)
quadruples

of parts {Vi1 , Vi2 , Vi3 , Vi4} have same-type transversals.

For small graphs G = (V,E) with |V (G)| = K, we can compute cr(G) as follows.
We generate

(
K
3

)
polynomials f1, f2, . . . , f(K3 ) ∈ R[x1, . . . , xK , y1, . . . , yK ], where

for 1 ≤ i1 < i2 < i3 ≤ K and Rank(i1, i2, i3) = j, we have

fj = det

 1 1 1
xi1 xi2 xi3
yi1 yi2 yi3

 .

Fix an abstract order type χ∗ ∈ {+1,−1}(
K
3 ), and let j1, . . . , jr be the indices for

which χ∗j` = +1, and let j′1, . . . , j
′
s be the indices for which χ∗j′` = −1. In order to

decide if χ∗ is realizable, we need to see if there are real solutions to the polynomial
system

fj1 > 0, . . . , fjr > 0 fj′1 < 0, . . . , fj′s < 0.

This is a special case of the satisfiability problem in the existential theory of the re-
als (see [10]). By an algorithm of Basu, Pollack, and Roy [7], we can decide if the
polynomial system above has real solutions in 2O(K logK) time. Moreover, if there are
solutions, the algorithm will output a solution (x1, . . . , xK , y1, . . . , yK), where each
coordinate uses at most 2O(K logK) bits. Hence if χ∗ is realizable, we obtain a point set
V = {v1, . . . , vK} in the plane that realizes χ∗, and each point has at most 2O(K logK)

bits.
If we do obtain such a point set V , we then compute the minimum number of pairs

of crossing edges over all straight-line drawings of G which uses V as its vertex set.
This can be done in 2O(K logK) time. By repeating the procedure above over all 2(

K
3 )

abstract order types χ∗, we have the following.

Lemma 1. Given a graph G on K vertices, we can find a straight-line drawing of G
with cr(G) pairs of crossing edges in 2O(K3) time.

See [3,4] for an alternative heuristic method for computing cr(G).

3 Cut-distance and the Frieze–Kannan regularity lemma

An edge weighted graph G = (V,E) is a graph with weights wG(uv) ∈ [0, 1] associ-
ated with each edge uv ∈ E(G). For convenience, set wG(uv) = 0 if uv 6∈ E(G). For
S, T ⊂ V (G), we define
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eG(S, T ) =
∑

u∈S,v∈T
wG(uv).

Note that if the sets S and T have a nonempty intersection, the weights of the edges
running in S ∩T are counted twice. Let G and G′ be two edge weighted labeled graphs
with the same vertex set V = {v1, . . . , vn}. The cut-distance between G and G′ is
defined as

d(G,G′) = max
S,T⊂V

|eG(S, T )− eG′(S, T )| .

Hence, the cut-distance between two labeled graphs measures how different the two
graphs are when considering the size of various cuts. This concept has played a crucial
role in the work of Frieze and Kannan [21] on efficient approximation algorithms for
dense graphs. See [11] and the book [29] for more results on cut-distance.

We generalize the concept of crossing numbers to edge weighted graphs as follows.
Let D be a straight-line drawing of G in the plane, and let XD ⊂

(
E(G)

2

)
denote the

set of pairs of crossing edges in the drawing. The rectilinear crossing number of the
edge-weighted graph G is defined as

cr(G) = min
D

∑
(uv,st)∈XD

wG(uv) · wG(st),

where the minimum is taken over all straight-line drawings of G. Thus for any un-
weighted graph G = (V,E), we can assign weights wG(uv) = 1 for uv ∈ E(G) and
wG(uv) = 0 for uv 6∈ E(G) so that the definition of cr(G) remains consistent. By
copying the proof of Lemma 1 almost verbatim, we have the following lemma.

Lemma 2. Let G be an edge weighted graph on K vertices, where the weight of each
edge uses at most B bits. Then we can find a straight-line drawing of G with cr(G)
weighted edge crossings in 2O(K3)B2 time.

Another key ingredient used in the proof of Theorem 1 is a variant of Szemerédi’s
regularity lemma developed by Frieze and Kannan. Szemerédi’s regularity lemma [39]
is one of the most powerful tools in modern combinatorics and gives a rough struc-
tural characterization of all graphs. According to the lemma, for every ε > 0 there
is K = K(ε) such that every graph has an equitable vertex partition into at most K
parts such that all but at most an ε fraction of the pairs of parts behave “regularly."4

The dependence of K on 1/ε is notoriously strong. It follows from the proof that K(ε)
may be taken to be an exponential tower of twos of height ε−O(1). Gowers [24] used
a probabilistic construction to show that such an enormous bound is indeed necessary.
This is quite unfortunate, because in algorithmic applications of the regularity lemma
this parameter typically has a negative impact on the efficiency. Consult [13], [35], [19]
for other proofs that improve on various aspects of the result.

4 For a pair (Vi, Vj) of vertex subsets, the density d(Vi, Vj) is defined as eG(Vi,Vj)

|Vi||Vj |
. The pair

(Vi, Vj) is called ε-regular if for all V ′
i ⊂ Vi and V ′

j ⊂ Vj with |V ′
i | ≥ ε|Vi| and |V ′

j | ≥ ε|Vj |,
we have |d(V ′

i , V
′
j )− d(Vi, Vj)| ≤ ε.
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Frieze and Kannan [21] developed a weaker notion of regularity which is sufficient
for certain algorithmic applications, and for which the dependence on the approxima-
tion parameter ε is much better. Let ε > 0 and let G = (V,E) be a graph on n vertices.
An equitable partition P : V = V1 ∪ · · · ∪ VK is said to be ε-Frieze-Kannan-regular if
for all subsets S, T ⊂ V (G), we have∣∣∣∣∣∣eG(S, T )−

∑
1≤i,j≤K

eG(Vi, Vj)
|S ∩ Vi||T ∩ Vj |
|Vi||Vj |

∣∣∣∣∣∣ < εn2.

Frieze and Kannan [21] showed that for any ε > 0, every graph G = (V,E) has an
ε-Frieze-Kannan-regular partition withK parts, where 1/ε < K < 2O(ε−2). Moreover,
such a partition can be found in randomized O(n2)-time. For the algorithm we present
in the next section, we will use the following more recent algorithmic version due to
Dellamonica et al.

Theorem 4 ([15]). There is an absolute constant c such that the following holds. For
each ε > 0 and for any graph G = (V,E) on n vertices, there is a deterministic
algorithm which finds an ε-Frieze-Kannan-regular partition on V with at most 2ε

−c

parts, and runs in 22
ε−c

n2-time.

Given an n-vertex graph G = (V,E), let P : V = V1 ∪ · · · ∪ VK be an ε-Frieze-
Kannan-regular partition obtained from Theorem 4. We now define two edge-weighted
graphs G/P and GP as follows. Let G/P be the edge-weighted graph on the vertex set
{1, . . . ,K} and with edge weights

wG/P(ij) =
eG(Vi, Vj)

(n/K)2
1 ≤ i 6= j ≤ K.

Let GP be an edge-weighted graph with vertex set V = V (G), and with edge weights

wGP (uv) =


eG(Vi,Vj)
(n/K)2 if u ∈ Vi, v ∈ Vj , 1 ≤ i 6= j ≤ K;

0 if u, v ∈ Vi, 1 ≤ i ≤ K.

Thus, the Frieze–Kannan regularity lemma says that d(G,GP) < εn2, which im-
plies thatG/P is a small graph that gives a good approximation ofG. We now prove the
following lemmas which establish a relationship between cr(G), cr(GP), and cr(G/P).

Lemma 3. Let ε ∈ (0, 1/2) and let G and G′ be two n-vertex edge-weighted graphs
on the same vertex set V . If d(G,G′) < εn2, then we have

|cr(G)− cr(G′)| ≤ ε 1
4C n4,

where C is an absolute constant from Theorem 3.

Proof: Consider a straight-line drawing D of G = (V,E) in the plane such that if
XD ⊂

(
E
2

)
denotes the set of pairs of crossing edges in D, we have
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cr(G) =
∑

(e1,e2)∈XD

wG(e1)wG(e2). (1)

With slight abuse of notation, let V be the point set in the plane representing the
vertices of G in the drawing D. We can assume that V is in general position. With
approximation parameter ε1/(4C), we apply Theorem 3 to the point set V and obtain
an equitable partition V = V1 ∪ · · · ∪ VK , where K ≤ ε−1/4, such that all but at
most ε1/(4C)

(
K
4

)
quadruples of parts (Vi1 , Vi2 , Vi3 , Vi4) have same-type transversals.

Let T ⊂
(
[K]
4

)
be the set of quadruples (i1, i2, i3, i4) such that (Vi1 , Vi2 , Vi3 , Vi4) has

same type transversal and every such transversal is in convex position. Then for each
such quadruple, we can order the elements (i1, i2, i3, i4) ∈ T so that every segment
with one endpoint in Vi1 and the other in Vi2 crosses every segment with one endpoint
in Vi3 and the other in Vi4 . Therefore, we have

cr(G) ≥
∑

(i1,i2,i3,i4)∈T

eG(Vi1 , Vi2)eG(Vi3 , Vi4). (2)

On the other hand, let us consider the drawing D′ of G′ on the same point set V =
V1 ∪ · · · ∪ VK . We say that the quadruple (v1, v2, v3, v4) ∈

(
V
4

)
is bad if two members

lie in a single part Vj , or if all four members lie in distinct parts Vi1 , Vi2 , Vi3 , Vi4 such
that (Vi1 , Vi2 , Vi3 , Vi4) does not have same-type transversals. By Theorem 3, we have
at most

K

(
dn/Ke

2

)(
n

2

)
+ ε

1
4C

(
K

4

)⌈ n
K

⌉4
≤ n4

4K
+Kn2 + ε

1
4C

(
n

4

)
≤ 2ε

1
4C

(
n

4

)
,

bad quadruples. Since each edge has weight at most one, we have

cr(G′) ≤
∑

(i1,i2,i3,i4)∈T

eG′(Vi1 , Vi2)eG′(Vi3 , Vi4) + 2ε
1

4C

(
n

4

)
.

Since d(G,G′) < εn2, and by (2), we have

cr(G′) ≤
∑

(i1,i2,i3,i4)∈T
eG′(Vi1 , Vi2)eG′(Vi3 , Vi4) + 2ε

1
4C

(
n
4

)
≤

∑
(i1,i2,i3,i4)∈T

(eG(Vi1 , Vi2) + εn2)(eG(Vi3 , Vi4) + εn2) + 2ε
1

4C

(
n
4

)
≤ cr(G) + ε1/2n4

2 + εn
4

4! + 2ε
1

4C

(
n
4

)
≤ cr(G) + ε

1
4C n4.

The last inequality follows from the fact that C is a sufficiently large constant. A sym-
metric argument also shows that cr(G) ≤ cr(G′)+ε

1
4C n4, and the statement follows.�
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Let G be an edge-weighted graph on the vertex set V = {1, . . . ,K} with weights
wG(i, j). The blow-up G[m] of G is the edge-weighted graph obtained from G by
replacing each vertex i by an independent set Ui of order m, and each edge between Ui
and Uj has weight wG(i, j) for i 6= j.

Lemma 4. Let G and G[m] be described as above. Then

0 ≤ cr(G[m])−m4cr(G) ≤ K3m4.

Proof: We start by proving the second inequality first. Fix a drawing D of G such
that if X denotes the set of pairs of crossing edges in D, we have∑

(e1,e2)∈X

wG(e1)wG(e2) = cr(G).

Let V be the point set in the plane representing the vertices ofG in the drawing. We can
assume that V is in general position. We draw the blow-up graph G[m] as follows. For
each point v ∈ V in the plane, we choose a very small δ and addm−1 points in the disk
centered at v with radius δ. These points will represent Uv . By choosing δ sufficiently
small, every quadruple of parts (Ui1 , Ui2 , Ui3 , Ui4) will have same-type transversals.
Moreover, we can do this so that the resulting point set is in general position. Finally if
uv ∈ E(G), we draw all edges between the point sets Uu and Uv . Let Xm denote the
set of pairs of crossing edges in our drawing of G[m].

Set U = U1 ∪ · · · ∪UK . We say that the quadruple (u1, u2, u3, u4) of points in U is
bad if two of its members lie in a single part Ui. Hence the number of bad quadruples
in U is at most K

(
m
2

)(
Km
2

)
. Since each edge has weight at most one, we have

cr(G[m]) ≤
∑

(e1,e2)∈Xm

wG[m](e1)wG[m](e2)

≤ m4cr(G) +K
(
m
2

)(
Km
2

)
≤ m4cr(G) +K3m4.

On the other hand, now consider a drawing D′ of G[m] such that if X ′ denotes the set
of pairs of crossing edges in D′, we have

cr(G[m]) =
∑

(e1,e2)∈X′
wG[m](e1)wG[m](e2).

Let V (G[m]) = U1 ∪ · · · ∪ UK . By selecting one point from each Ui, we obtain a
drawing of G which has at least cr(G) weighted pairs of crossing edges. Summing over
all of these mK distinct drawings of G, each weighted crossing appears mK−4 times.
Therefore,

cr(G[m]) ≥ cr(G) ·mK/mK−4 = m4cr(G).

This completes the proof. �
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4 Proof of Theorem 1

The algorithm. Input: Let G be a graph with vertex set V = {v1, v2, . . . , vn}.

1. Set ε = (log log n)
−1
2c , where c is defined in Theorem 4. We apply Theorem 4

to G with approximation parameter ε, and obtain an equitable partition P : V =
V1 ∪ · · · ∪ VK on our vertex set with the desired properties such that 1/ε < K <

2ε
−c

= 2
√
log logn. This can be done deterministically in n2+o(1)-time using the

algorithm of Dellamonica et al. [15].
2. Let G/P be the edge-weighted graph on the vertex set {1, . . . ,K} with edge

weights wG/P(ij) =
eG(Vi,Vj)
|Vi||Vj | . Using Lemma 2, we can find a drawing of G/P

with cr(G/P) weighted pairs of crossing edges. Let U = {u1, . . . , uK} be the
point set for such a drawing where each point uses at most 2O(K logK) bits. This
can be done in 2O(K3) = no(1) time.

3. We draw G = (V,E) as follows. Let L be the set of lines spanned by U , and let δ
be the minimum positive distance5 between the points in U and the lines in L. Note
that δ uses at most 2O(K logK) bits since the line spanned by any two points in U
will have the form y = m0x + b0, where m0 and b0 uses at most 2O(K logK) bits.
Therefore, the distance between a point in U and the line y = m0x+ b0 will use at
most 2O(K logK) bits. SetD(i, δ/10) to be the disk centered at ui with radius δ/10.
We place the points of Vi in D(i, δ/10) so that the point set V1 ∪ · · · ∪ VK is in
general position, and each point uses at most 2O(K logK) < O(n) bits. Notice that
every quadruple of parts (Vi1 , Vi2 , Vi3 , Vi4) has same-type transversals. We then
draw all edges of G on this point set. This can be done in O(n2) time.

4. Return: the drawing of G.

The total running time for the algorithm above is n2+o(1).
Let D be the drawing of G = (V,E) obtained from the algorithm above, where

V = {v1, . . . , vn} ⊂ R2, and let X denote the set of pairs of crossing edges in D. We
say that the quadruple of points {vi1 , vi2 , vi3 , vi4} in V is bad if two of its members lie
in a single diskD(j, δ/10). Hence there are at most n4/(2K) bad quadruples. Therefore

|X| ≤
( n
K

)4
cr(G/P) + n4

2K
. (3)

Just as above, let GP be the edge weighted graph with vertex set V (same as G), with
edge weights wGP (uv) = eG(Vi, Vj)/(n/K)2, if u ∈ Vi, v ∈ Vj and i 6= j, and
wGP (uv) = 0 otherwise. Since GP is an (n/K)-blow-up of G/P , by the proof of
Lemma 4, we have ( n

K

)4
cr(G/P) ≤ cr(GP). (4)

Since Theorem 4 implies that the cut-distance betweenG andGP satisfies d(G,GP) <
εn2, Lemma 3 implies that

5 The distance between a point and a line in the plane is the length of the line segment which
joins the point to the line and is perpendicular to the line.
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cr(GP) ≤ cr(G) + ε
1

4C n4. (5)

Putting together (3), (4), and (5), shows that

|X| < cr(G) +O

(
n4

(log log n)δ

)
,

where δ is an absolute constant. This completes the proof of Theorem 1.

5 The rectilinear crossing number of quasi-random graphs

Proof of Theorem 2. Let D be a straight-line drawing of Gn in the plane with exactly
cr(Gn) edge crossings, and let V = {v1, v2, . . . , vn} be the point set in the plane that
represents the vertices of Gn in the drawing. Without loss of generality, we can assume
no three members of V are collinear, no two members of V share the same x-coordinate,
and V is ordered by increasing x-coordinate.

Set ε = n−1/2C , where C is defined in Theorem 3. By Theorem 3, there is an
equitable partition V = V1 ∪ · · · ∪ VK into K parts, where K ≤ ε−C =

√
n, such that

all but at most ε
(
K
4

)
quadruples (Vi1 , Vi2 , Vi3 , Vi4) of parts have same-type transversals.

Let Q ⊂
(
V
4

)
be the set of quadruples in V that are in convex position. We say that a

quadruple (vi1 , vi2 , vi3 , vi4) ∈ Q is bad if two of its members lie in a single part Vj , or if
they lie in distinct parts of (Vj1 , Vj2 , Vj3 , Vj4) the does not have same-type transversals.
Hence the number of bad quadruples in Q is at most

K

(
n/K

2

)(
n

2

)
+ ε

(
K

4

)⌈ n
K

⌉4
≤ n4

4K
+ ε

(
n

4

)
.

Let T denote the number of quadruples of parts (Vi1 , Vi2 , Vi3 , Vi4), where each such
quadruple (Vi1 , Vi2 , Vi3 , Vi4) has same-type transversals and each such transversal is in
convex position. Then we have

T ·
( n
K

)4
≥ |Q| −

(
n4

4K
+ ε

(
n

4

))
≥ cr(Kn)−

(
n4

4K
+ ε

(
n

4

))
.

Since
cr(Gn) ≥ T

(
pbn/Kc2 − o(n2)

)2
= Tp2bn/Kc4 − o(n4),

this implies

cr(Gn) ≥ p2cr(Kn)− p2
(
n4

4K
+ ε

(
n

4

))
− o(n4) = p2cr(Kn)− o(n4).

On the other hand, drawingGn in the plane by placing its vertices on a point set that
minimizes the number of quadruples in convex position, one can follow the arguments
above to show that

cr(Gn) ≤ p2cr(Kn) + o(n4).

This completes the proof of Theorem 2. ut
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6 Concluding remarks

Pach et al. [30] introduced the following alternative notion of crossing number. For
any positive integer k ≥ 1, the geometric k-planar crossing number of G, denoted
by crk, is the minimum number of crossings between edges of the same color over all
k-edge-colorings of G and all straight-line drawings of G. By following the proof of
Theorem 1 almost verbatim, we have the following theorem. We note that one needs to
slightly modify the proof of Lemma 3, by coloring the edges of G′ between parts Vi1
and Vi2 (Vi3 and Vi4 ), so that the number of edges in color i between the two parts in
G′ is roughly the same as the number of edges in color i between the two parts in G.

Theorem 5. Let k ≥ 1 be a fixed constant. Given any n-vertex graph G, there is a de-
terministic n2+o(1)-time algorithm that finds a straight-line drawing of G in the plane,
and a k-coloring of the edges in G, such that the number of monochromatic pairs of
crossing edges in the drawing is at most crk(G) + O(n4/(log log n)δ), where δ is an
absolute constant.

We suspect that Theorem 1 also holds for other crossing number variants.
Let us also remark that the rectilinear crossing number is a testable parameter, which

means that there is a constant time randomized algorithm for approximating the recti-
linear crossing number. More precisely, for each ε > 0 there is t = t(ε) > 0 such
that the following holds. If G is a graph on n vertices, by sampling a random induced
subgraph H of G on t vertices, we can approximate with probability of success at least
.99 the rectilinear crossing number of G with error at most εn4. We do this by noting
that the random sample H is, with probability at least .99, close in cut-distance to G
(see the Lovász book [29] for details). By Lemma 3, if they are close in cut-distance,
we get that cr(G) is within εn4 of cr(H)n

4

t4 .
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