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Abstra
tLet L be a 
olle
tion of n pairwise disjoint segments in general positionin the plane. We show that one 
an �nd a sub
olle
tion of 
(n1=3) segmentsthat 
an be 
ompleted to a non
rossing simple path by adding re
tilinear edgesbetween endpoints of pairs of segments. On the other hand, there is a set L ofn segments for whi
h no subset of size 2n1=2 or more 
an be 
ompleted to su
ha path.1 Introdu
tionSin
e the publi
ation of the seminal paper of Erd}os and Szekeres [3℄, many similarresults have been dis
overed, establishing the existen
e of various regular sub
on�gu-rations in large geometri
 arrangements. The 
lassi
al tool for proving su
h theoremsis Ramsey theory [2℄. However, the size of the regular substru
tures guaranteed byRamsey's theorem are usually very small (at most logarithmi
) in terms of the size nof the underlying arrangement. In most 
ases, the results are far from optimal. One
an obtain better bounds (n" for some " > 0) by introdu
ing some linear orders onthe elements of the arrangement and applying some Dilworth-type theorems [1℄ forpartially ordered sets [9℄, [5℄, [8℄. A simple one-dimensional prototype of su
h a state-ment is the Erd}os-Szekeres lemma: any sequen
e of n real numbers has a monotonein
reasing or monotone de
reasing subsequen
e of length dpne. In this note, we givea new appli
ation of this idea.�Resear
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Figure 1: An arrangement of segments showing that f(n) � 2p2nA 
olle
tion L of segments in the plane is in general position if no two elements ofL are parallel, all of their endpoints are distin
t, and no three endpoints are 
ollinear.A polygonal path P = p1p2 : : : pn is 
alled simple if no pair of its verti
es 
oin
ide,i.e., pi 6= pj whenever i 6= j. It is 
alled non
rossing if no two edges share an interiorpoint. A polygonal path P is 
alled alternating with respe
t to L if every other edgeof P belongs to L.We 
onsider the following old problem of unknown origin: what is the maximumlength f(n) of an alternating path that 
an be found in any 
olle
tion of n pairwisedisjoint segments in the plane in general position? This question was in
luded in a listof \Open problems in 
omputational geometry" 
olle
ted and annotated by Urrutia[11℄. The easy 
onstru
tion des
ribed there 
an be slightly improved to show thatf(n) � 2p2pn for n = 2k2. Consider a 2k-gon ins
ribed in a 
ir
le C and repla
eea
h of its edges e with k pairwise disjoint 
hords of C, almost parallel to e, that arefarther away from the 
enter of C than e is. (See Figure 1.) It seems likely that theorder of magnitude of this bound is not far from optimal. For some similar problems,see [4℄, [6℄, [7℄, [10℄.First we 
onsider the spe
ial 
ase when all segments 
ross the same line.Theorem 1. Let L be a 
olle
tion of n pairwise disjoint segments in general positionin the plane, all of whose members 
ross a given line. Then one 
an sele
t 
(n1=2)segments from L that 
an be 
ompleted to a non
rossing simple alternating path.The following result is an easy 
orollary of Theorem 1.Theorem 2. The maximum length f(n) of an alternating path that 
an be found inany 
olle
tion of n pairwise disjoint segments in the plane satis�es f(n) = 
(n1=3).To see that the latter result follows from Theorem 1, observe that (e.g., by theDilworth theorem) any 
olle
tion L of n pairwise disjoint segments has a sub
olle
tionL1 
onsisting of least n1=3 segments whose proje
tions to the x-axis are pairwise2



disjoint, or a sub
olle
tion L2 
onsisting of at least n2=3 segments, all of whi
h 
anbe 
rossed by a line parallel to the y-axis. In the �rst 
ase, the elements of L1 
an be
onne
ted to form an alternating path. In the se
ond 
ase, we 
an apply Theorem 1.2 Proof of Theorem 1Assume without loss of generality that all segments 
ross the y-axis, no two of themare parallel, and all 2n 
oordinates of their endpoints are distin
t. The above-belowrelation between the 
rossings of the segments with the y-axis indu
es a natural linearorder on the elements of L. We apply the Erd}os-Szekeres lemma to �nd a subsequen
eof L 
onsisting of dpne segments with in
reasing or de
reasing slopes with respe
tto this order. Sin
e we 
an always 
ip the plane about the y-axis, we may assumethat the slopes of the elements of this subsequen
e are monotone in
reasing. In whatfollows, for 
onvenien
e we assume that pn and all other numbers that appear inthe argument (ex
ept the 
oordinates of the endpoints) are integers satisfying thene
essary divisibility 
onditions so that we do not have to use \
oor" and \
eiling"operations. This will not e�e
t the asymptoti
 results obtained in this paper.To be more pre
ise, we �nd a sequen
e of at least pn segments s1; : : : ; sm (m =pn) of L su
h that if i < j, then si is above sj and the slope of si is smaller thanthat of sj (see Figure 2).Partition s1; : : : ; sm into k = m=5 groups, ea
h 
onsisting of 5 
onse
utive seg-ments. That is, let Gi = fs5(i�1)+1; : : : ; s5(i�1)+5g for every 1 � i � k. For ea
h Gi,apply again the Erd}os-Szekeres lemma and �nd a subsequen
e of 3 segments su
hthat the x-
oordinates of their right endpoints form an in
reasing or a de
reasingsequen
e. By 
ipping the plane about the x-axis, if ne
essary, we 
an also assumethat for at least half of the Gis, these sequen
es are de
reasing. From now on, wedisregard all other segments. Summarizing: we now have k=2 groups L1; : : : ; Lk=2,ea
h 
onsisting of 3 elements of L. For ea
h 1 � i � k=2, let Li = f`i1; `i2; `i3g, where`ab is above `a0b0 and its slope is smaller, whenever a < a0, or if a = a0 and b < b0.Moreover, for a �xed a and any b < b0, the x-
oordinate of the right endpoint of `ab islarger than that of `ab0 . Let S := L1 [ : : : [ Lk=2.Denote by pab and qab the left endpoint and the right endpoint of `ab , respe
tively.For any two points r; s, let [r; s℄ stand for the segment 
onne
ting r and s.De�ne a set of auxiliary segments as follows. For 1 � a � k=2 and b = 1; 2, letzab = [qab ; qab+1℄. We say that zab is bad, if there is a segment in S that meets the interiorof zab . For any segment `tj 2 S meeting the interior of zab , we have t > a, be
ause allelements of [t<aLt lie stri
tly above zab , otherwise they would 
ross `ab . De�ne thewitness index of a bad segment zab as the smallest index t > a with the property thatthere exists an `tj meeting the interior of zab .Lemma 2.1. If the witness index of a bad segment zab is t, then `t1 meets zab . Moreover,qt1 must belong to the interior of the region en
losed by the y-axis, `ab , `ab+1, and zab .3
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Figure 2: The segments li1; li2; li3Proof. We know that t > a and that for some j the segment `tj 
rosses zab . Assumethat j > 1. Let W denote the region bounded by the y-axis, `ab+1, zab , and `tj. Thesegment `t1 lies above `tj, and the x-
oordinate of its right endpoint qt1 is larger thanthe x-
oordinate of qtj. Clearly, the interse
tion point r of `tj and zab is the rightmost
orner of the boundary of W . There is a point on `t1 whose x-
oordinate is the sameas that of r. This point must lie above r and outside the region W . Sin
e `t1 
rossesthe y-axis above `tj and below `ab+1, at a boundary point of R, and it has a pointoutside W , it must have another 
rossing with the boundary of W . Using the fa
tthat the elements of S are pairwise disjoint, this se
ond 
rossing must belong to zab .As for the se
ond part of the lemma, let R denote the region bounded by they-axis, `ab , `ab+1, and zab . We have seen that `t1 meets the boundary of R (at a pointof zab ). Sin
e `t1 is disjoint from both `ab and `ab+1, and it interse
ts the y-axis below`ab+1, it follows that `t1 
annot 
ross the boundary of R a se
ond time. Therefore, qt1must belong to the interior of R.Lemma 2.2. No two di�erent bad segments 
an have the same witness index.Proof. Assume to the 
ontrary that t is the witness index of two bad segments, zaband za0b0 . Suppose without loss of generality that `ab lies above `a0b0 . We know that bothof them lie above `t1. As in the proof of Lemma 2.1, let R denote the region boundedby the y-axis, `ab , `ab+1, and zab . Similarly, let R0 denote the region bounded by they-axis, `a0b0 , `a0b0+1, and za0b0 . R and R0 do not overlap. Indeed, sin
e the elements of4



S are pairwise disjoint, R and R0 
ould overlap only if `a0b0 
rossed zab . However, thiswould 
ontradi
t the minimality of t.On the other hand, by Lemma 2.1, `t1 must interse
t both zab and za0b0 , and its rightendpoint qt1 must belong to the interiors of both R and R0. We thus obtained thedesired 
ontradi
tion.Now we are in a position to prove Theorem 1.By Lemma 2.2, the number of bad segments is at most k=2. We say that an indexi (1 � i � k=2) is good if at least one of the segments zi1; zi2 is not bad. Obviously, atleast k=2 � k=22 = k=4 indi
es between 1 and k=2 are good. Assume without loss ofgenerality that the �rst k=4 indi
es are good. To 
omplete the proof it is suÆ
ientto show how to draw a non
rossing simple alternating path P that uses the segments`i2; `i3 (and perhaps even `i1) for 1 � i � k=4 = 
(pn).Let the �rst points of P be q11 ; p11; q12; p12; q13; p13; in this order. That is, so far wehave built a \zigzag" path that uses the segments `11; `12; `13. Sin
e 2 is a good index,there exists a segment z2j (j = 1 or 2) whi
h is not bad. Let us extend P by addingthe verti
es p2j ; q2j ; q2j+1, and hen
e adding the edges `2j (from left to right) and z2j .Next we 
an add the point p2j+1 and, if j = 1, also the points q23; p23, zigzagging justlike before. Continuing in the same manner, we build a path P using at least twoedges from ea
h group Li (i � k=4). It is easy to 
he
k that P is a non
rossing path,be
ause (1) its edges belonging to L � S are pairwise disjoint; (2) its edges to the leftof the y-axis do not 
ross any other edge, by the assumption that the slopes of theelements of S form an in
reasing sequen
e; (3) its edges to the right of the y-axis arenot bad, therefore they do not 
ross any other edge of P . This 
ompletes the proofof Theorem 1.Referen
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