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Abstract

We solve a problem of R. Nandakumar by proving that there is no tiling of the plane
with pairwise noncongruent triangles of equal area and equal perimeter. We also show
that any tiling of a convex polygon with more than three sides with finitely many
triangles contains a pair of triangles that share a full side.

1 Introduction

In his blog, R. Nandakumar [7, 8] raised several interesting questions on tilings. They have
triggered a lot of research in geometry and topology. In particular, he and Ramana Rao [9]
conjectured that for every natural number 𝑛, any plane convex body can be partitioned into
𝑛 convex pieces of equal area and perimeter. After some preliminary results [1, 5] indicating
that the problem is closely related to questions in equivariant topology, the conjecture was
settled in the affirmative by Blagojević and Ziegler [2] in the special case where 𝑛 is a prime
power. All other cases, including the case 𝑛 = 6, are open.

Nandakumar also asked the following interesting variant of the last question. A family
of closed triangles that together cover the whole plane is said to form a tiling if no two of its
members share an interior point.

Problem 1. (Nandakumar [8]) Is it possible to tile the plane with pairwise noncongruent
triangles of the same area and perimeter?

The aim of this note is to show that the answer to this question is in the negative.

Theorem 2. There is no tiling of the plane with pairwise noncongruent triangles of the
same area and the same perimeter.

We start with a trivial observation.
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Figure 1: Periodic tiling with no two triangles sharing a side.

Observation 3. If two triangles of the same area and perimeter share a side, then they
are congruent.

Indeed, if two triangles, 𝑥𝑦𝑧 and 𝑥𝑦𝑧′, have the same perimeter, then 𝑧 and 𝑧′ must lie on a
common ellipse with foci 𝑥 and 𝑦. On the other hand, if their areas are also the same, the
distances of 𝑧 and 𝑧′ from the line 𝑥𝑦 line must be equal. Consequently, if 𝑥𝑦𝑧 and 𝑥𝑦𝑧′ do
not coincide, one can obtain one from the other by a reflection through the line 𝑥𝑦, or the
midpoint of the segment 𝑥𝑦, or the orthogonal bisector of this segment.

Therefore, in order to prove Theorem 2, it is sufficient to establish the following result.

Theorem 4. Let 𝒯 be tiling of the plane with triangles of unit perimeter, each of which has
area at least 𝜖 > 0. Then there are two triangles in 𝒯 that share a side.

In the periodic tiling depicted in Fig. 1, no two triangles share a side. Therefore, Theo-
rem 4 does not hold without the assumption that all triangles have the same perimeter.

Another way of enforcing that two triangles of a tiling share a side by imposing a condition
on the lengths of the sides of the participating triangles. We say that a tiling is locally finite
if any bounded region intersects only a finite number of its members.

Theorem 5. Let 𝒯 be a locally finite tiling of the plane with triangles, and suppose that the
lengths of their sides belong to interval [1, 2). Then there are two triangles in 𝒯 that share
a side.

By properly scaling the tiling depicted in Fig. 1, we obtain an example showing that
Theorem 5 does not remain true if we replace the interval [1, 2) by its closure, [1, 2].

One of the main ideas of the proof of Theorem 2 in a simplified form can be used to
obtain a result on triangular tilings of a convex 𝑘-gon with 𝑘 > 3.

Theorem 6. Let 𝑘 ≥ 4. In any tiling of a convex 𝑘-gon with finitely many triangles, there
are two triangles that share an edge.
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Figure 2: Tiling a triangle with triangles not sharing a side. A triangle is recursively subdi-
vided into 4 pieces.

...

Figure 3: Tiling of a square with infinitely many triangles, no pair of which share a side.

We note that, while revising the paper, it was pointed out to us by Roman Karasev and
Pavel Kozhevnikov that Theorem 6 for case 𝑘 = 4 is a known Russian mathematics olympiad
problem, which was published in Kvant [6].

The tiling depicted in Figure 2 shows that Theorem 6 is false for 𝑘 = 3. The tiling in
Figure 3 shows that Theorem 6 does not hold for infinite tilings.

The rest of this note is organized as follows. In Section 2, we establish Theorem 6. The
proof of Theorem 4 (which implies Theorem 2) is similar, but more involved. It requires
careful asymptotic estimates of certain parameters and is presented in a separate section
(Section 3). The proof of Theorem 5 is given in Section 4.

For many other problems on tilings, consult [3] and [8].
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2 Tiling a convex polygon—Proof of Theorem 6

Consider a convex 𝑘-gon 𝑃 which is tiled with 𝑡 triangles such that no two of them share
a side. In what follows, by a side we will always mean a side of one of the 𝑡 triangles, so
that the total number of sides is 3𝑡. We use the term vertex for the vertices of the triangles
(including the vertices of 𝑃 ). Define a simple graph 𝐺 on this vertex set by connecting two
vertices with an edge if the segment between them belongs to the side of a triangle and
contains no other vertex.

Obviously, 𝐺 is a connected planar graph with 𝑓(𝐺) = 𝑡 + 1 faces. The number of
vertices of 𝐺 is 𝑣(𝐺) = 𝑣bd + 𝑣int, where 𝑣bd and 𝑣int denote the number of vertices lying on
the boundary of 𝑃 and in the interior of 𝑃 , respectively, and 𝑣bd ≥ 𝑘. By Euler’s polyhedral
formula, the number of edges of 𝐺 satisfies

𝑒(𝐺) = 𝑣(𝐺) + 𝑓(𝐺)− 2 = 𝑣bd + 𝑣int + 𝑡− 1.

The number of edges along the boundary of 𝑃 is 𝑣bd, and every edge in the interior of 𝑃
belongs to the side of precisely two triangles. Denote by 𝑣*int ≤ 𝑣int the number of vertices in
the interior of 𝑃 that subdivide (that is, lie in the interior of) a side of a triangle. In fact,
each such vertex subdivides precisely one side. Double counting the edges, we obtain

2𝑒(𝐺) = 3𝑡+ 𝑣*int + 𝑣bd.

Comparing the last two equations gives

𝑣bd + 2𝑣int − 𝑣*int = 𝑡+ 2. (1)

A minimal segment that can be decomposed into sides of triangles in two different ways
is called a stretch. The total number of triangles whose sides participate in such a decompo-
sition (that is, lie along the stretch) is called the size of the stretch. Since no two triangles
share a side, the size of every stretch is at least 3. If a stretch has size 𝑠, then there are
precisely 𝑠− 2 ≥ 𝑠

3
vertices in its interior that subdivide a side. Observe that each of the 𝑣*int

vertices in the interior of 𝑃 that subdivide a side lies in the interior of precisely one stretch.
Let Σ denote the sum of the sizes of all stretches. Since every side of a triangle, except for

the 𝑣bd sides that lie on the boundary of 𝑃 , contributes precisely one to this sum (and those
on the boundary contribute zero, due to convexity), we have that Σ = 3𝑡− 𝑣bd. Along each
stretch, the number of subdividing vertices is at least one-third of the size of the stretch.
Therefore, the total number of subdividing vertices is at least Σ

3
. That is,

𝑣*int ≥
3𝑡− 𝑣bd

3
= 𝑡− 𝑣bd

3
,

whence
𝑡 ≤ 𝑣*int +

𝑣bd
3

.

Plugging this inequality into (1), we obtain that

𝑣bd + 3(𝑣int − 𝑣*int) ≤ 3.
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Figure 4: Tiling of a rectangle with triangles. The thick segment is a stretch of size 4
with two subdividing vertices marked by grey dots. The only interior vertex which is not a
subdividing vertex is marked by a black dot.

This can hold only if 𝑣bd = 3 and 𝑣int = 𝑣*int. In particular, 𝑘 ≤ 𝑣bd must also be equal to 3.
This completes the proof of Theorem 6. �

The above proof also shows that if 𝑃 is a triangle (𝑘 = 3), then any tiling of 𝑃 with
triangles such that no two triangles share a sides satisfies that

(i) there is no vertex subdividing any side of 𝑃 ,
(ii) every vertex in the interior of 𝑃 must subdivide a side, and
(iii) the size of every stretch is exactly 3.

Despite all these limitations, for any 𝑘 > 1, a triangle can be cut into 3𝑘+1 smaller triangles
in several different ways without having two pieces that share a side. For example, this can
be achieved by recursively subdividing one of the triangles into 4 pieces; see, e.g., Fig. 2.

3 Equal perimeter tilings—Proof of Theorem 4

Here we extend the ideas of the proof of Theorem 6 given in the previous section from a finite
tiling of a polygon to tilings of the whole plane. We start with a quick overview. Assume for
a contradiction that there is a tiling with no pair of triangles sharing a side which satisfies
the conditions in Theorem 4. We want to apply the computation described in the previous
section to a large but bounded portion of this tiling. In general, we will not be able to
apply Theorem 6 directly, because there is no guarantee that there exists a large part of the
tiling whose union is a convex polygon. For this reason, as a “boundary effect”, some small
error terms will creep into our calculations. Nevertheless, we will be able to conclude that,
analogously to condition (iii) at the end of the last section, most stretches in the tiling have
size 3. Out of the three sides along a stretch of size 3, one is as long as the other 2 combined.
We call the former side long, while the other two sides along the same stretch are called
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short. Of course, there may be a short side in one stretch that is much longer than a long
side in another. Overall, there are twice as many short sides as long sides, but their total
lengths are exactly the same. We deduce a strong triangle inequality for the short and long
sides of a single triangle. Summing up these inequalities for all triangles, and combining the
obtained bound with the above facts, we will arrive at the desired contradiction. Next, we
spell out the details of the proof.

Proof of Theorem 4. Assume for a contradiction that there is a tiling 𝒯∞ of the plane
satisfying the conditions in Theorem 4, but not having two triangles that share a side. Since
every triangle has area at least 𝜖 > 0 and unit perimeter, the tiling must be locally finite.
The perimeter of each triangle is 1, which implies that the areas of the triangles are also
bounded from above, by the constant 𝛿 =

√
3/36. Moreover, each side of a triangle has to

be longer than 𝜖′ = 4𝜖, otherwise, its area would be smaller than 𝜖. At the end of the proof,
we will use the following strong triangle inequality: the total length of any two sides of a
triangle in our tiling exceeds the length of the third side by at least some fixed 𝜖′′ > 0. The
existence of such 𝜖′′ follows from a compactness argument.

For the rest of the proof, we think of 𝜖, 𝛿, 𝜖′, and 𝜖′′ as fixed positive constants. Their
exact values are not relevant for our argument.

Let 𝑟 > 0 be a sufficiently large number to be specified later, and choose an open circular
disk 𝐷(𝑟) of radius 𝑟. Let 𝒯0 denote the family of all triangles in 𝑇 ∈ 𝒯∞ that have a
nonempty intersection with 𝐷(𝑟). The union of these triangles is a connected set, but not
necessarily simply connected. Filling up the possible holes with other triangles in 𝒯∞, we
turn this set into a simply connected polygonal region 𝑃 . Let 𝒯 denote the family of all
triangles 𝑇 ∈ 𝒯∞ that belong to 𝑃 . The union of these triangles is 𝑃 . Let 𝒯 ′ ⊂ 𝒯∞ denote
the family of triangles that touch the boundary of 𝑃 from outside.

Since the diameter of every triangle is at most 1/2, all members of 𝒯 ′ lie in the annulus
𝐷(𝑟 + 1) ∖𝐷(𝑟), where 𝐷(𝑟 + 1) is the disk of radius 𝑟 + 1 concentric with 𝐷(𝑟). Using the
above lower and upper bounds on the areas of the triangles, and denoting the number of
triangles in 𝒯 (and 𝒯 ′) by 𝑡 (and 𝑡′, respectively), we have

𝑡 = |𝒯 | ≥ 𝑟2𝜋

𝛿
= Ω(𝑟2),

𝑡′ = |𝒯 ′| ≤ (𝑟 + 1)2𝜋 − 𝑟2𝜋

𝜖
= 𝑂(𝑟).

(2)

Here we use the asymptotic notation with respect the choice of 𝑟.

When speaking of vertices and sides, we mean the vertices and sides of the triangles in
𝒯 . As no two triangles share a side, the total number of sides is 3𝑡. Define a simple graph
𝐺 on the set of vertices by connecting two vertices by an edge if the segment between them
belongs to a side and contains no other vertex.

Obviously, 𝐺 is a connected planar graph with 𝑓(𝐺) = 𝑡+1 faces, including the exterior
face. Let 𝑣(𝐺) and 𝑒(𝐺) denote the number of vertices and the number of edges in 𝐺,
respectively. By Euler’s polyhedral formula, we have

𝑒(𝐺) = 𝑣(𝐺) + 𝑓(𝐺)− 2 = 𝑣(𝐺) + 𝑡− 1. (3)
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Let us call an edge a boundary edge if it belongs to the boundary of the polygon 𝑃 . A
boundary edge is said to be full if it is the full side of a triangle in 𝒯 , and partial if it is a
proper part of a side. (Note that partial boundary edges did not show up in the proof of
Theorem 6, because there 𝑃 was a convex polygon.) Let 𝑒full and 𝑒part stand for the number
of full and partial boundary edges, respectively.

Note that all boundary edges are contained in the union of the boundaries of the triangles
in 𝒯 ′. The length of any side is at least 𝜖′. Thus, in view of (2), the number of full boundary
edges satisfies the inequality

𝑒full ≤
𝑡′

𝜖′
= 𝑂(𝑟). (4)

To bound the number of partial boundary edges, it is enough to observe that every partial
boundary edge contains a vertex of a triangle 𝑇 ∈ 𝒯 ′, and any vertex of 𝑇 belongs to at
most one partial boundary edge. Hence, we have

𝑒part ≤ 3𝑡′ = 𝑂(𝑟). (5)

A stretch is a minimal segment that can be decomposed into sides (of triangles in 𝒯 )
and partial boundary edges in two different ways. (Note that in the proof of Theorem 6 we
did not have to include boundary edges in the definition of a stretch, because in that setting
all stretches lied in the interior of 𝑃 .) The number of sides belonging to (contained in) a
stretch is called the size of the stretch. Observe that sides contained in the boundary of 𝑃
(full boundary edges) do not belong to any stretch, but every other side belongs to a unique
one. Thus, the total size of the stretches is equal 3𝑡 − 𝑒full. We call a stretch improper if
it contains a partial boundary edge. Otherwise, it is called a proper stretch. The size of a
proper stretch is at least 3, the size of an improper stretch is at least 2. We call a proper
stretch of size 3 tight, and denote the number of tight stretches by 𝜎tight. A stretch is said
to be loose if it is not tight. Let 𝐿loose denote the total length of all loose stretches.

Summing up the lengths of tight and loose stretches, we obtain

3𝑡− 𝑒full = 3𝜎tight + 𝐿loose,

whence

𝑡 = 𝜎tight +
𝐿loose

3
+

𝑒full
3

. (6)

A vertex is called subdividing if it is the interior point of a side. Let 𝑣* denote the number
of subdividing vertices. A subdividing vertex is an interior point of a single side and, hence,
of a single stretch. As in the proof of Theorem 6, the number of subdividing vertices in the
interior of a proper stretch of size 𝑠 is exactly 𝑠− 2. The number of subdividing vertices of
an improper stretch of size 𝑠 is at least 𝑠− 1. Thus, any loose stretch of size 𝑠 has at least
𝑠/2 subdividing vertices. Hence, the total number of subdividing vertices satisfies

𝑣* ≥ 𝜎tight +
𝐿loose

2
. (7)
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Figure 5: Part of a tiling without two triangles sharing an edge. The short and long parts of
each tight stretch (dashed) are marked by s and l, respectively. Loose stretches are marked
thick and red. One partial and one full boundary edge is marked.

The sum of the number of edges on all faces of 𝐺 is equal to 2𝑒(𝐺). The 𝑡 triangles have
3𝑡 + 𝑣* edges in total, while the infinite face has 𝑒full + 𝑒part edges (namely, the boundary
edges). Hence,

2𝑒(𝐺) = 3𝑡+ 𝑣* + 𝑒full + 𝑒part. (8)

Comparing this with (3), we get 2𝑣* + 2𝑡− 2 ≤ 2𝑒(𝐺) = 3𝑡+ 𝑣* + 𝑒full + 𝑒part, so that

𝑣* ≤ 𝑡+ 𝑒full + 𝑒part + 2.

If we plug into this inequality the estimates (6) and (7), we conclude that

𝐿loose ≤ 8𝑒full + 6𝑒part + 12.

Taking (4) and (5) into account, this implies

𝐿loose = 𝑂(𝑟). (9)

Since the number of sides on loose stretches as well as the number of sides that are full
boundary edges is 𝑂(𝑟), we should concentrate on the tight stretches containing most of the
3𝑡 = Ω(𝑟2) sides. We call the longest side on any tight stretch long and the other two sides
on the same tight stretch short. The sides not belonging to any tight stretch are neither long
nor short.

Along each tight stretch, the length of the long side is equal to the sum of the lengths
of the two short sides. Therefore, the total length of all short sides is the same as the total
length of all long sides. Define the quantity 𝑊 as
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𝑊 =

(︂
2

3
− 𝜖′′

)︂
(#long sides)− 1

3
(#short sides)

+ (total length of short sides)− (total length of long sides).

Since each tight stretch has one long and two short sides, we have #long sides = 𝜎tight

and #short sides = 2𝜎tight. The last two terms of 𝑊 cancel out. Thus,

𝑊 = −𝜖′′𝜎tight. (10)

On the other hand, we can compute 𝑊 by adding up the contributions of the triangles
𝑇 ∈ 𝒯 . We classify the triangles in 𝒯 as follows. If a triangle has a side that it neither short,
nor long, we call it exceptional. If 𝑇 is not exceptional and it has 𝑖 long sides, we say that
𝑇 is of type 𝑖, for 𝑖 = 0, 1, 2, 3. If 𝑇 is of

type 0, its contribution to 𝑊 is 0, as the total length of its short sides is the perimeter of
𝑇 , which is equal to 1

3
(#short sides of T) = 1.

type 1, its contribution to 𝑊 is the total length of its two short sides minus the length of
its long side minus 𝜖′′, which is nonnegative, according to the definition of 𝜖′′.
type 2, its contribution to 𝑊 is 2(length of its short side)− 2𝜖′′ ≥ 2𝜖′ − 2𝜖′′ ≥ 0.
type 3, its contribution to 𝑊 is equal to 1− 3𝜖′′ > 0.

The only triangles whose contribution to 𝑊 can be negative are the exceptional ones.
The contribution of each exceptional triangle is is at least −2

3
. The number of these triangles

in 𝒯 is at most 𝐿loose+𝑒full, so by (4) and (9) we obtain −𝑊 = 𝑂(𝑟). Comparing this bound
to (10), we have

𝜎tight = 𝑂(𝑟).

Plugging (4), (9), and this bound into (6), we conclude that 𝑡 = 𝑂(𝑟), which contradicts (2).
The contradiction proves the theorem. �

4 Triangles with similar sides—Proof of Theorem 5

Theorem 5 is an easy corollary to the following result.

Theorem 7. In any locally finite tiling of the plane with triangles, there is a triangle with
a side that is the union of one or more sides of other triangles.

Proof. Assume we have a tiling 𝒯 contradicting the statement of the theorem, and let 𝑝𝑠𝑡
be any triangle in 𝒯 . As 𝑝𝑡 cannot be obtained as the union of sides of other triangles, 𝑝 or
𝑡 must be an interior point of a side of another triangle along the line 𝑝𝑡. Similar statements
are true for the other two sides of the triangle 𝑝𝑠𝑡, but no vertex can be an interior point of
more than one side in the tiling. Thus, there are three triangles along the lines 𝑝𝑡, 𝑡𝑠, and
𝑠𝑝, that contain 𝑝, 𝑡, and 𝑠, respectively, in this cyclic order. Similar statements hold for all
triangles in the tiling.
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Figure 6: Illustration for the proof of Theorem 7.

We have seen that there is a unique triangle 𝑇 ∈ 𝒯 that has 𝑝 as an interior point of
one of its sides. Assume without loss of generality that this side of 𝑇 belongs to the line
ℓ containing 𝑝𝑡. Notice that there is precisely one other triangle in 𝒯 , different from 𝑝𝑠𝑡,
whose vertex is 𝑝, and this triangle must also have a side contained in ℓ. (Indeed, if there
were a triangle in 𝒯 with 𝑝 as a vertex that does not have a side contained in ℓ, it would
not satisfy the cyclic property described in the previous paragraph.) In the same way, for
any other vertex 𝑝′ of the tiling, there are precisely two triangles with this vertex, and there
is a line that contains one side of each. Let 𝑝𝑞𝑟 and 𝑝𝑠𝑡 be the two triangles containing 𝑝 as
a vertex, where 𝑝, 𝑟, and 𝑠 are collinear; see Figure 6.

Since 𝑝 is an interior point of a side along ℓ, we conclude that 𝑞 must be an interior point
of a side along the line 𝑞𝑟 and 𝑡 must be an interior point of a side along the line 𝑠𝑡. Let
𝑞𝑢𝑣 be the other triangle with vertex 𝑞 along ℓ, where 𝑣 lies on the line 𝑞𝑟. As 𝑞 is not an
interior point of a side along the line ℓ, so 𝑢 must be an interior point of a side along ℓ:
either of the side 𝑞𝑝 or of 𝑝𝑡 (as the line ℓ is “blocked” by another triangle at 𝑡). Finally,
consider the other triangle of the tiling that has 𝑢 as a vertex. It must have another vertex
𝑤 along ℓ (in fact, in the segment 𝑢𝑡, because ℓ is “blocked” at 𝑡) and a third vertex 𝑧 on the
ray emanating from 𝑢 toward 𝑣 (see Figure 6). Now 𝑢 is the interior point of a side along
ℓ, so 𝑤 must be an interior point of a side along the line 𝑤𝑧. This is possible only if 𝑤 = 𝑡
and 𝑧 lies on the line 𝑠𝑡, because this is the first line “blocking” ℓ. The ray from 𝑢 toward
𝑣 (containing 𝑧) does not intersect the line 𝑠𝑡 (which is also supposed to contain 𝑧). This
contradiction proves the theorem. �

Two triangles of a locally finite triangular tiling 𝒯 are called neighbors if they share a
boundary segment. It follows from the proof of the last theorem that for any triangle 𝑇 ∈ 𝒯 ,
either 𝑇 itself, or one of its neighbors, second neighbors, or third neighbors has a side that
is the union of one or more sides of other triangles.
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