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Abstract

For d > 2 and n > d +1, let P = {p1, . . . , pn} be a set of points in Rd whose
convex hull contains the origin O in its interior. We show that if P∪{O} is in
general position, then there exists a d-tuple Q = {pi1 , . . . , pid} ⊂ P such that O is
not contained in the convex hull of Q∪{p} for any p ∈ P\Q. Generalizations of
this property are also considered.

We also show that for non-empty, finite point sets A1, . . . , Ad+1 in Rd , if the
origin is contained in the convex hull of Ai∪A j for all 1≤ i < j≤ d+1, then there
is a simplex S containing the origin such that |S∩Ai|= 1 for every 1≤ i≤ d +1.
This is a generalization of Bárány’s colored Carathéodory theorem, and dually, it
gives a spherical version of Lovász’ colored Helly theorem.
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1 Introduction
Let P be a finite point set in Rd , in general position with respect to the origin O, in
the sense that no k elements of P lie in a (k− 1)-dimensional linear subspace of Rd

(2≤ k ≤ d). We say that P surrounds the origin if for every Q⊂ P with |Q|= d, there
exists an x ∈ P\Q such that the origin is contained in conv ({x}∪Q), the convex hull
of {x}∪Q.

In the special case d = 2, consider a planar point set P = {p1, p2, . . . , pn}, whose
elements are listed and enumerated mod n in cyclic order, as they can be seen from the
origin. Clearly, P surrounds the origin if and only if for every i, there exists j such that
the triangle pi pi+1 p j contains the origin in its interior. From this, it can be deduced
that n must be odd. This so-called “antipodality” property of point sets was explored
by Lovász [8] and others [4, 9] to bound the maximum number of “halving lines” of a
set of n points in the plane.

R. Strausz [10] discovered the following interesting property of planar point sets P
surrounding the origin.

Proposition 1 (Strausz). For any coloring of the elements of P with three colors such
that every color is used at least once, there is a rainbow triangle which contains the
origin in its interior, that is, a triangle whose vertices are of different colors.

Using the terminology of [1], we can say that the 3-uniform hypergraph consisting
of all triples in P whose convex hulls contain the origin is tight.

It turns out, somewhat counter-intuitively, that in three and higher dimensions,
there exists no nontrivial point set that surrounds the origin. By an application of
Barnette’s inequality for the minimal number of facets of a simplicial polytope, we
show the following.

Theorem 2. Let d > 2 and let P be a finite point set in Rd in general position with
respect to the origin, and suppose that |P|> d +1. Then P contains a d-tuple Q such
that the convex hull of Q∪{x} does not contain the origin for any x ∈ P.

The above property can be generalized as follows. For any 0 ≤ k ≤ d + 1, we say
that the set P⊂ Rd has property S(k), if for every Q⊂ P with |Q|= k, there exists an
R⊂ P\Q with |R|= d +1− k, such that the origin is contained in conv (Q∪R).

Obviously, property S(k) depends on the choice of origin, and it is monotonic in
the sense that property S(k) is stronger than property S(k−1). Carathéodory’s theorem
(see [6]) states that if the origin is contained in conv P, then it is contained in the convex
hull of some (d + 1)-tuple of P, or simply, O ∈ conv P implies property S(0). In fact,
we may triangulate P from any given point of P which implies that properties S(0) and
S(1) are equivalent.

At the other end of the spectrum, it is easy to show that if |P|> d +1, then P does
not have property S(d + 1) (This immediately follows by triangulating the point set).
Theorem 2 tells us that for d > 2 and |P| ≥ d + 1, properties S(d + 1) and S(d) are
equivalent. The following two questions arise.
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Problem 3. Let d ≥ 2 be fixed.

1. What is the largest integer k = k(d) such that there are arbitrarily large finite
point sets P⊂Rd in general position with respect to the origin that have property
S(k)?

2. What is the smallest integer K = K(d) such that there is no finite point set P⊂Rd

in general position with respect to the origin with more than d + 1 elements,
which has property S(K +1)?

Clearly, we have k(d)≤ K(d), for every d.

We will prove Theorem 2 in Section 2, and in Section 3 we use the Gale transform
to give an equivalent formulation of Problem 3 in terms of facets of convex polytopes.
From this viewpoint it will be easy to extract the following lower bound on k(d).

Theorem 4. For every integer d ≥ 2, there exist arbitrarily large point sets in Rd in
general position with respect to the origin with property S(bd

2c+ 1). In other words,
k(d)≥ bd

2c+1.

From Theorems 2 and 4 it follows that k(2) = 2 = K(2) and k(3) = 2 = K(3). It
would be interesting to know if there are values of d for which k(d) < K(d) holds.

In Section 4 we return to R. Strausz’ original observation concerning 3-colorings
of planar point sets that surround the origin. We discovered that Proposition 1 is a
consequence of the following.

Theorem 5. Let A1, . . . ,Ad+1 be non-empty, finite point sets in Rd . If the origin is
contained in the convex hull of Ai ∪A j for all 1 ≤ i < j ≤ d + 1, then the origin is
contained in some simplex S with |S∩Ai|= 1 for every 1≤ i≤ d +1.

To see how this relates to Proposition 1, consider a 3-coloring of a planar point
set P that surrounds the origin, that is, a partition of P into non-empty parts A1, A2,
A3. If the origin is not contained in the convex hull of, say A1∪A2, then for any point
a1 ∈ A1 and any point of a2 ∈ A2, the fact that P surrounds the origin implies that
there exists a point a3 which must belong to A3, such that the origin is contained in the
triangle a1a2a3. On the other hand, if the origin is contained in the convex hulls of the
pairwise unions, Ai∪A j, then there exists a rainbow triangle that contains the origin,
by Theorem 5.

Another interesting special case of Theorem 5 is when the origin is contained in the
convex hull of Ai for every 1 ≤ i ≤ d + 1. This is Bárány’s version of Carathéodory’s
theorem [2], which is often called the Colored Carathédory Theorem.

There is a well-known dual statement to Bárány’s theorem, often called the Col-
ored Helly Theorem, which had been discovered earlier by Lovász (see Section 5).
In Section 5 we establish a dual version of Theorem 5 (Theorem 11), which can be
interpreted as a colored version of the Spherical Helly Theorem (see [6] for details).
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2 Proof of Theorem 2
A simplicial polytope is a convex polytope for which every k-dimensional face is a
k-simplex. In particular, if all the (d + 1)-tuples of a point set P ⊂ Rd are affinely
independent, then conv P is a simplicial polytope, and if P is also in convex position
then the number of vertices of conv P equals |P|.

Let P be a d-dimensional polytope. For 0 ≤ k ≤ d− 1 we denote by fk(P) the
number of k-dimensional faces of P. A special case of Barnette’s lower bound theorem
[3] states that if P is a simplicial polytope, then we must have

fd−1(P)≥ (d−1) f0(P)− (d +1)(d−2),

which for d = 3 is an equality by Euler’s polyhedral formula.

Proof of Theorem 2. For d ≥ 3, let P be an n-point set in Rd (n ≥ d + 1) in general
position with respect to the origin. We will show that if P surrounds the origin, then
n = d +1 which will prove Theorem 2.

First, project P from the origin to the unit sphere centered at the origin, to obtain
a point set P′ in convex position. It is clear that P′ is also in general position with
respect to the origin and that P′ surrounds the origin if and only if P does. In fact, it
suffices to check this for the case when P is a simplex. Moreover, by projecting some
of the points slightly farther away from the origin, if necessary, we can assume that P′

is not only in general position with respect to the origin, but that all the (d +1)-tuples
of P′ are affinely independent. Therefore conv P′ is a simplicial polytope on n vertices,
which we denote by S.

Let v be a vertex of S. Since P′ is in general position with respect to the origin,
the line passing through v and O intersects the relative interior of a unique facet of S,
which gives us a function

λ : {vertices of F}→ {facets of F}.

Now, if P surrounds the origin, for every facet F of S, there must exist a vertex v of S
such that the origin is contained in the simplex spanned by v and F . This implies that
λ(v) = F . Therefore the function λ is surjective, and we must have f0(S) ≥ fd−1(S).
By Barnette’s inequality, we obtain

n = f0(S)≥ (d−1) f0(S)− (d +1)(d−2).

Since d ≥ 3, this implies n≤ d +1, as required.

Remark. We found several other proofs of Theorem 2. One can show that if there is an
n-point set in Rd (d > 3) that surrounds the origin, one can, by a suitable projection,
get an (n− 1)-point set in Rd−1 that surrounds the origin. Thus we can reduce the
problem to R3.

Another approach is by counting simplices of triangulations of an n-point set in
Rd , analogously to the argument in [5].
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3 k-surrounding sets
A point set P in general position with respect to the origin O is said to be k-surrounding,
or is said to have property S(k), if any k-element subset of P can be extended to a
(d +1)-element subset of P that contains O in its interior.

Proof of Theorem 4. The case when d is odd follows from the case when d is even.
To see this, suppose P ⊂ R2k has property S(k + 1), and consider P as a subset of the
hyperplane {(x1, . . . ,x2k,−1)} ⊂R2k+1, such that P surrounds the point (0, . . . ,0,−1).
Let Q = P∪{(0, . . . ,0,1)}. It is easily seen that Q has property S(k+1): Let X ⊂Q be
of size k +1. If X ⊂ P, there exists a set Y ⊂ P with |Y |= k such that (0, . . . ,0,−1) ∈
conv X ∪Y . Then the origin is contained in conv (X ∪Y ∪{(0, . . . ,0,1)}). Otherwise,
X = X ′∪{(0, . . . ,0,1)}, where X ′ ⊂ P and |X ′|= k. Taking into account that property
S(k + 1) implies property S(k), there exists a set Y ⊂ P with |Y | = k + 1 such that
(0, . . . ,0,−1) ∈ conv X ′ ∪Y , and consequently, the origin is contained in conv X ∪Y .
Therefore, it suffices to consider the case when d is even.

To complete the proof of Theorem 4, it will be more convenient to transform the
problem via the well known Gale transform. (For details concerning the Gale trans-
form, we refer the reader to [7] or [11].)

Let d ≥ 2 be an integer and suppose P ⊂ Rd is in general position with respect
to the origin, |P| = n, and P has property S(k). The Gale transform of P∪{O} is a
(|P|+ 1)-element vector configuration in Rn−d , which we denote by V∪{1}. Here
|V|= n and the vector 1 corresponds to the origin O in the “primal” space.

Property S(k) corresponds to the following property of V: For every U ⊂ V with
|U| = n− k, there exists W ⊂ U with |W| = n−d−1, such that (nW ·1)(nW ·v) < 0
for every v ∈ V\W. Here, nW, is some fixed vector orthogonal to W, and, ·, denotes
the usual dot product.

In particular, property S(k) implies that there is an (n−d−1)-dimensional hyper-
plane H through the origin with normal vector n such that (n · 1)(n · v) < 0 for every
v ∈ V. Therefore, if we extend the vectors of V to rays, they will intersect H−1. The
set of intersection points, P∗, is a set of n points in general position in Rn−d−1 with the
following property, denoted by S∗(k): Among any n− k points of P∗, there are some
n−d−1 that form a facet of conv P∗.

In fact, this necessary condition is also sufficient, for one can choose an appropriate
vector 1 in Rn−d , which yields a corresponding point set P ⊂ Rd with property S(k).
Summarizing:

Observation 6. There exist n points in Rd satisfying property S(k) if and only if there
exist n points in Rn−d−1 satisfying property S∗(k).

We now complete the proof of Theorem 4. First note that for d = 2, the regular
(2n+1)-gon has property S(2). It remains to exhibit arbitrarily large point sets in Rd

for even d ≥ 4 with property S(d
2 +1).
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For positive integers k and n > 2k− 1, let C(n,k) denote the cyclic polytope on
n vertices in Rn−2k+1. The facets of C(n,k) have a simple characterization known as
Gale’s evenness condition (see [7] or [11]). Using this characterization, it is easy to
show that when n is odd, C(n,k) has property S∗(k). Hence, by Observation 6, there
exist n points in R2k−2 with property S(k).

By Observation 6, Problem 3 can be reformulated in terms of the property S∗(k).
We obtain the following.

Problem 7. Let d ≥ 2 be fixed.

1. What is the largest integer k = k(d) such that there exists arbitrarily large finite
point sets P in general position in R|P|−d−1 that have property S∗(k)?

2. What is the smallest integer K = K(d) such that there exists no finite point set
P in general position in R|P|−d−1 with more than d + 1 elements, which has
property S∗(K +1)?

4 Proof of Theorem 5
Let Sd−1 denote the (d−1)-dimensional unit sphere in Rd centered at the origin. By
central projection from the origin it is clear that it suffices to prove Theorem 5 for
point sets on Sd−1. For the proof it will also be convinient to make a general position
assumption. We say that a finite point set A ⊂ Sd−1 is in general position if any 1 ≤
k ≤ d points of A span a k-dimensional linear subspace of Rd . Thus a set of points is
in general position on Sd−1 if and only if it is in general position with respect to the
origin in (as a point set in Rd). We will prove the following.

Theorem 8. Let A1, . . . ,Ad+1 be disjoint, non-empty, finite point sets such that A1 ∪
·· · ∪ Ad+1 is in general position on Sd−1. If the origin is contained in the convex hull
of Ai∪A j for all 1≤ i < j ≤ d +1, then the origin is contained in some simplex S with
|S∩Ai|= 1 for every 1≤ i≤ d +1.

It is clear that Theorem 8 implies Theorem 5. For an infinite sequence of convex
sets {K j}∞

j=1 converging to a compact convex set K in Rd , if the origin is contained in
every K j, then the origin is contained in K as well. Thus we may replace the points
of

S
Ai from Theorem 5 by convergent sequences of points in general position on

Sd−1, obtaining an infinite sequence of point sets {C j}∞
j=1, where each C j = A(1, j)

∪·· ·∪ A(d+1, j) satisfies the conditions of Theorem 8. Therefore we can find an infinite
sequence {S j}∞

j=1 of simplices containing the origin such that |S j∩A(i, j)|= 1 for every
1 ≤ i ≤ d + 1. The sequence {S j} converges to a (possibly degenerate) simplex S,
where |S∩Ai|= 1 for every 1≤ i≤ d +1, which must contain the origin as well.

The fact that a point set is in general position on Sd−1 implies that any d points of
A are contained in some open hemisphere H ⊂ Sd−1. For 0 ≤ k ≤ d, it makes sense
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to speak of a k-simplex of A, that is, the spherical convex hull of some k + 1 points
of A, which is denoted by convS . More generally, if X is contained in some open
hemisphere, then convS X is the intersection of all open hemispheres that contain X .

Remark. This is not the standard definition of the spherical convex hull, and it might
be more appropriate to call it the strong spherical convex hull. A subset K ⊂ Sd−1 is
called strongly convex if it is contained in an open hemisphere, and for every pair of
points x and y in K, the shortest arc from x to y is contained in K (see [6]). By this
definition, we require a set to be contained in some open hemisphere in order to have
a convex hull. It is also important to note that a point set in general position on Sd−1

contains the origin in its affine convex hull if and only if it is not contained in any open
hemisphere. Thus the point sets that contain the origin in their affine convex hull are
precisely the ones for which the spherical convex hull is undefined.

Lemma 9. For d ≥ 2, let A1, . . . ,Ad be disjoint, non-empty, finite point sets on Sd−1

such that A1∪ ·· · ∪Ad is in general position, and suppose Ai∪A j is not contained in
any open hemisphere, for any 1 ≤ i < j ≤ d. Let U denote the union of all (d− 1)-
simplices spanned by the d-tuples consisting of a single point from each Ai. If U does
not cover Sd−1, then for some 1 ≤ i ≤ d there exists an open hemisphere H such that
Ai ⊂ H ⊂U.

The proof of Lemma 9 requires a basic topological fact (Claim 10, below) which
follows by considering the (Brouwer) degree of a mapping f : Sk→ Sk, but for com-
pleteness we also give a direct proof.

For d ≥ 2, let K be a finite collection of (d− 1)-simplices on Sd−1. A point p ∈
Sd−1 will be called generic with respect to K provided that p is not contained in any
of the faces of the simplices of K of dimension less than d− 1. In other words, p
is generic with respect to K if and only if p does not belong to the boundary of any
member of K. For a generic point p, let the order of p with respect to K denote the
number of (d−1)-simplices of K which contain p in their relative interiors. (We may
omit the ‘with respect to K’ when it is clear from the situation what K is).

Claim 10. For k ≥ 2, let B = {a1, . . . ,ak,b1, . . . ,bk} be distinct points in general po-
sition on Sk−1. Let K denote the collection of all (k−1)-simplices formed by k-tuples
of B with no repeated indices. Either the order of every generic point is even, or the
order of every generic point is odd.

Proof. Let L be the union of faces of the simplices of K, of dimension less than k−1.
Then Sk−1 \L is a collection of finitely many nice open parts, and any pair of generic
points can be connected by a path on Sk−1 that does not pass through any faces of
dimension less than k− 2. Thus it suffices to consider how the order changes as we
pass through a face of dimension k− 2. For any face F of dimension k− 2, there are
precisely two points ai and bi (for a particular 1≤ i≤ k) such that convS (F∪{ai}) and
convS (F ∪{bi}) are (k−1)-simplices of K. Let H be the unique great (k−2)-sphere
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that contains F . If ai and bi are contained in the same open hemisphere bounded by
H, then the order changes by ±2 as we pass through F . If ai and bi are contained in
opposite open hemispheres bounded by H, then the order stays the same as we pass
through F .

Proof of Lemma 9. Suppose U does not cover Sd−1. Since U is the union of finitely
many simplices, U is closed and has a boundary which is a subset of finitely many
(d − 2)-faces of simplices of U . Let p be a point of the boundary of U with the
property that it is contained in the relative interior of a unique (d− 2)-face. Clearly
such a point must exist, so suppose p is contained in the relative interior of the unique
(d−2)-face, F = convS {a1, . . . , ad−1}, where ai ∈ Ai.

There is a unique great (d−2)-sphere, H, which contains the points a1, . . . , ad−1
and bounds disjoint open hemispheres H+ and H−. If there exists points x+ ∈ Ad ∩
H+ and x− ∈ Ad ∩H−, then p belongs to the (d−1)-simplices convS ({x+}∪F) and
convS ({x−}∪F), which have disjoint relative interiors, share the common face F , and
belong to U . This is impossible since p is a boundary point of U , so we may assume
that Ad ⊂ H−.

For every 1≤ i≤ d−1, we must have Ai∩H+ 6= /0. If not, there exists an Ai such
that Ai∪Ad ⊂ H ∪H−, which, by the general position assumption, means that Ai∪Ad
is contained in some open hemisphere. Pick points a ∈ Ad ⊂ H− and pi ∈ Ai ∩H+,
and let bi = H ∩ convS {pi,a}. It follows from the general position assumption that
the set of points J = {a1, . . . , ad−1, b1, . . . , bd−1} is in general position on H. Let K
denote the set of (d−2)-simplices spanned by the (d−1)-tuples of J with no repeated
indices. By our choice of p, it follows that p is a generic point in H with respect to K.

Let G 6= F be a (d− 2)-simplex of K. It follows from how we defined the points
of J, that any point in the relative interior of G is contained in the relative interior of a
(d−1)-simplex spanned by U , for instance,

x ∈ int convS {a1,a2,b3,b4, . . . ,bd−1} ⊂ int convS {a,a1,a2, p3, p4, . . . , pd−1}.

This means that p is covered only once (in H) by the (d−2)-simplices of K, and hence
has order 1. So by Claim 10, with k = d− 1, the simplices of K must cover H, and
therefore

Ad ⊂ (H−∪H)⊂
[

X∈K

convS ({a}∪X),

which completes the proof.

Proof of Theorem 8. The sets A1, . . . ,Ad are in general position on Sd−1 and satisfy
the conditions of Lemma 9. Thus they define the set U . If there exists a point a ∈
Ad+1 such that {−a} ∩U 6= /0, then −a is contained in some (d− 1)-simplex, S of
U , which means that the origin is contained in conv ({a}∪ S). On the other hand, if
(−Ad+1)∩U = /0, then U cannot cover Sd−1, so by Lemma 9 there is some 1≤ i≤ d
and an open hemisphere H such that Ai∪Ad+1 ⊂H ⊂U , which is a contradiction.
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5 A Colored Spherical Helly Theorem.
An open hemisphere H ⊂ Sd−1 determines an antipodal pair of normal vectors, and
the one contained in H we refer to as the pole of H.

The Spherical Helly Theorem states that for any collection C of compact strongly
convex sets on Sd−1, there is a point in common to every member of C if and only if
every d + 1 or fewer members of C have a point in common. This can be proved as a
consequence of Helly’s theorem in Rd . Moreover, if the members of C have no point
in common, there exist open hemispheres H1, . . . , Hd+1 and sets K1, . . . , Kd+1 in C
such that Ki ⊂Hi and H1∩·· ·∩Hd+1 = /0. This in turn implies that the poles of the Hi
are not contained in any open hemisphere.

The Colored Helly Theorem states that if C1, . . . ,Cd+1 are collections of compact
convex sets in Rd , and every selection of sets from distinct Ci have a point in common,
then, for some 1≤ i≤ d +1, there is a point in common to every member of Ci.

We can now state the dual version of Theorem 5. It can be interpreted as a colored
version of the Spherical Helly Theorem, and it implies the Colored Helly Theorem.

Theorem 11. Let C1, . . . ,Cd+1 be non-empty, finite collections of compact strongly
convex sets on Sd−1. If every selection of sets from distinct Ci have a point in common,
then for some 1≤ i < j≤ d +1 there is a point in common to every member of Ci∪C j.

Proof. Suppose for contradiction that for each pair of collections Ci,C j (1 ≤ i < j ≤
d + 1), the intersection of the members of Ci ∪C j is empty. By the Spherical Helly
Theorem there exist sets K1, . . . , Kd+1 ∈ Ci∪C j, and open hemispheres H1, . . . ,Hd+1
with Ki ⊂ Hi such that H1∩ ·· · ∩Hd+1 = /0. We associate the open hemispheres with
points a1, . . . , ad+1 (the poles of the Hi), and it follows that they are not contained
in any open hemisphere. We define sets Ai and A j as follows: Let the point am ∈ Ai
if Km ∈ Ci and am ∈ A j if Km ∈ C j. This gives us point sets A1, . . . , Ad+1, at most
one of which is empty. If there is an Ai that is empty, choose any K ∈ Ci and an open
hemisphere H such that K ⊂ H. Let a be the pole of H and set Ai = {a}.

By construction, the sets Ai are non-empty and they satisfy the condition that Ai∪
A j is not contained in any open hemisphere. By Theorem 5, there exist points a1 ∈ A1,
. . . , ad+1 ∈ Ad+1 that are not contained in any open hemisphere. This implies that
the corresponding hemispheres H1, . . . , Hd+1 have no point in common, which is a
contradiction, since each Hi contains a K ∈ Ci.

We show that Theorem 11 implies the Colored Helly Theorem. Given collections
C1, . . . ,Cd+1, let D be a large disk that contains every member of C1 ∪ ·· · ∪Cd+1. If
there is a point in common to every member of a subcollection of C1∪·· ·∪Cd+1, then
this point must be in D as well. Let Cd+2 = {D}.

We regard Rd as an affine hyperplane in Rd+1 (which does not pass through the
origin) and centrally project the members of C1 ∪ ·· · ∪Cd+2 onto Sd . This provides
a bijection between Rd and the points of an open hemisphere of Sd . If the original
collections satisfy the hypothesis of the Colored Helly Theorem, then the projected
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collections will satisfy the hypothesis of Theorem 11, and since we can find a point in
common to every member of two collections, one of these collections must be different
from Cd+2. So indeed Theorem 11 implies Lovász’ colored Helly theorem.

Remark. The previous argument implicitly shows that Theorem 11 (and thus Theorem
5, too) is tight in the sense that we cannot hope for a point in common to three of the
collections. If such a statement were true, then it would imply that we could find a
point in common to two of the collections in Lovász’ colored Helly theorem, but this
is clearly not true. It is also easy to see that if we reduce the number of collections
in Theorem 11, then there may not be a point in common to every member of even a
single collection.

Remark. While preparing this manuscript we were made aware that Theorems 5 and
11 were independently discovered by J. L. Arocha, I. Bárány, J. Bracho, R. Fabila and
L. Montejano.
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