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Abstract

We show that every graph G with maximum degree three has a straight-line drawing in
the plane using edges of at most five different slopes. Moreover, if G is connected and has
at least one vertex of degree less than three, then four directions suffice.

1 Introduction

A planar layout of a graph G is called a straight-line drawing if the vertices of G are represented
by distinct points in the plane and every edge is represented by a straight-line segment connecting
the corresponding pair of points and not passing through any other point representing a vertex.
If it leads to no confusion, in notation and terminology we make no distinction between a vertex
and the corresponding point and between an edge and the corresponding segment. The slope of
an edge of the layout is the slope of the segment representing it. Layouts with few slopes and
few bends have been extensively studied in “graph drawing” [2]. In particular, Ungar proved
that every three-connected cubic planar graph (i.e., every vertex has degree three) can be drawn
using only vertical and horizontal straight-line edges and altogether at most three bends on the
outer-face [8].

Wade and Chu [9] introduced the following graph parameter: The slope number of a graph
G is the smallest number s with the property that G has a straight-line drawing with edges of at
most s distinct slopes and with no bends. Obviously, if G has a vertex of degree d, then its slope
number is at least dd/2e, because, according to the above definitions, in a proper drawing two
edges are not allowed to partially overlap. The question arises whether the slope number can be
bounded from above by any function of the maximum degree d (see [3]). Barát, Matoušek, and
Wood [1] and, independently, Pach and Pálvölgyi [7] proved that the answer is no for d ≥ 5.
Trivially, every graph of maximum degree two has slope number at most three. What happens
if d = 3 or 4?

The aim of this note is to establish the following theorem.
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Theorem 1. Every graph of maximum degree at most three has slope number at most five.

Our terminology is somewhat unorthodox: by the slope of a line `, we mean the angle α
modulo π such that a counterclockwise rotation through α takes the x-axis to a position parallel
to `. The slope of an edge (segment) is the slope of the line containing it. In particular, the
slopes of the lines y = x and y = −x are π/4 and −π/4, and they are called Northeast (or
Southwest) and Northwest (or Southeast) lines, respectively.

For any two points p1 = (x1, y1), p2 = (x2, y2) ∈ R2, we say that p2 is to the North (or to the
South of p1 if x2 = x1 and y2 > y1 (or y2 < y1). Analogously, we say that p2 is to the Northeast
(to the Northwest) of p1 if y2 > y1 and p1p2 is a Northeast (Northwest) line. Directions are
often abbreviated by their first letters: N, NE, E, SE, etc. These four directions are referred to
as basic. That is, a line ` is said to be of one of the four basic directions if ` is parallel to one
of the axes or to one of the NE and NW lines y = x and y = −x.

The main tool of our proof is the following result of independent interest.

Theorem 2. Let G be a connected graph that is not a cycle and whose every vertex has degree
at most three. Suppose that G has at least one vertex of degree less than three, and denote by
v1, ..., vm the vertices of degree at most two (m ≥ 1).

Then, for any sequence x1, x2, . . . , xm of real numbers, linearly independent over the ratio-
nals, G has a straight-line drawing with the following properties:

(1) Vertex vi is mapped into a point with x-coordinate x(vi) = xi (1 ≤ i ≤ m);

(2) The slope of every edge is 0, π/2, π/4, or −π/4.

(3) No vertex is to the North of any vertex of degree two.

(4) No vertex is to the North or to the Northwest of any vertex of degree one.

It was shown by Dujmović at al. [3] that every planar graph with maximum degree three
has a drawing with noncrossing straight-line edges of at most three different slopes, except that
three edges of the outer-face may have a bend.

Eppstein [6], Duncan et al. [4], and Barát et al. [1] studied another parameter, the geometric
thickness of a graph, which is closely related to the slope number.

Max Engelstein [5], a student from Stuyvesant High School, New York has shown that every
graph of maximum degree three that has a Hamiltonian cycle can be drawn with edges of at
most five different slopes.

2 Embedding cycles

Let C be a straight-line drawing of a cycle in the plane. A vertex v of C is said to be a turning
point if the slopes of the two edges meeting at v are not the same.

We start with two simple auxiliary statements.

Lemma 2.1. Let C be a straight-line drawing of a cycle such that the slope of every edge is 0,
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π/4, or −π/4. Then the x-coordinates of the vertices of C are not independent over the rational
numbers.

Moreover, there is a vanishing linear combination of the x-coordinates of the vertices, with
as many nonzero (rational) coefficients as many turning points C has.

Proof. Let v1, v2, . . . , vn denote the vertices of C in cyclic order (vn+1 = v1). Let x(vi) and y(vi)
be the coordinates of vi. For any i (1 ≤ i ≤ n), we have y(vi+1) − y(vi) = λi (x(vi+1) − x(vi)) ,
where λi = 0, 1, or −1, depending on the slope of the edge vivi+1. Adding up these equations
for all i, the left-hand sides add up to zero, while the sum of the right-hand sides is a linear
combination of the numbers x(v1), x(v2), . . . , x(vn) with integer coefficients of absolute value at
most two.

Thus, we are done with the first statement of the lemma, unless all of these coefficients are
zero. Obviously, this could happen if and only if λ1 = λ2 = . . . = λn, which is impossible,
because then all points of C would be collinear, contradicting our assumption that in a proper
straight-line drawing no edge is allowed to pass through any vertex other than its endpoints.

To prove the second statement, it is sufficient to notice that the coefficient of x(vi) vanishes
if and only if vi is not a turning point. 2

Lemma 2.1 shows that Theorem 2 does not hold if G is a cycle. Nevertheless, according to
the next claim, cycles satisfy a very similar condition. Observe, that the main difference is that
here we have an exceptional vertex, denoted by v0.

Lemma 2.2. Let C be a cycle with vertices v0, v1, . . . , vm, in this cyclic order.

Then, for any real numbers x1, x2, . . . , xm, linearly independent over the rationals, C has a
straight-line drawing with the following properties:

(1) Vertex vi is mapped into a point with x-coordinate x(vi) = xi (1 ≤ i ≤ m);

(2) The slope of every edge is 0, π/4, or −π/4.

(3) No vertex is to the North of any other vertex.

(4) No vertex has a larger y-coordinate than y(v0).

Proof. We can assume without loss of generality that x2 > x1. Place v1 at any point (x1, 0) of
the x-axis. Assume that for some i < m, we have already determined the positions of v1, v2, . . . vi,
satisfying conditions (1)–(3). If xi+1 > xi, then place vi+1 at the (unique) point Southeast of
vi, whose x-coordinate is xi+1. If xi+1 < xi, then put vi+1 at the point West of xi, whose
x-coordinate is xi+1. Clearly, this placement of vi+1 satisfies (1)–(3), and the segment vivi+1

does not pass through any point vj with j < i.

After m steps, we obtain a noncrossing straight-line drawing of the path v1v2 . . . vm, satisfying
conditions (1)–(3). We still have to find a right location for v0. Let RW and RSE denote the
rays (half-lines) starting at v1 and pointing to the West and to the Southeast. Further, let R be
the ray starting at vm and pointing to the Northeast. It follows from the construction that all
points v2, . . . , vm lie in the convex cone below the x-axis, enclosed by the rays RW and RSE .

Place v0 at the intersection point of R and the x-axis. Obviously, the segment vmv0 does
not pass through any other vertex vj (0 < j < m). Otherwise, we could find a drawing of the
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cycle vjvj+1 . . . vm with slopes 0, π/4, and −π/4. By Lemma 2.1, this would imply that the
numbers xj, xj+1, . . . , xm are not independent over the rationals, contradicting our assumption.
It is also clear that the horizontal segment v0v1 does not pass through any vertex different from
its endpoints because all other vertices are below the horizontal line determined by v0v1. Hence,
we obtain a proper straight-line drawing of C satisfying conditions (1),(2), and (4).

It remains to verify (3). The only thing we have to check is that x(v0) does not coincide
with any other x(vi). Suppose it does, that is, x(v0) = x(vi) = xi for some i > 0. By the second
statement of Lemma 2.1, there is a vanishing linear combination

λ0x(v0) + λ1x1 + λ2x2 + . . . + λmxm = 0

with rational coefficients λi, where the number of nonzero coefficients is at least the number
of turning points, which cannot be smaller than three. Therefore, if in this linear combina-
tion we replace x(v0) by xi, we still obtain a nontrivial rational combination of the numbers
x1, x2, . . . , xm. This contradicts our assumption that these numbers are independent over the
rationals. 2

3 The embedding procedure: Proof of Theorem 2

First we settle Theorem 2 in a special case.

Lemma 3.1 Suppose that m, k ≥ 2 and let G be a graph consisting of two disjoint cycles,
C = {v0, v1, . . . , vm} and C ′ = {v′0, v′1, . . . , v′m}, connected by a single edge v0v

′
0.

Then, for any sequence x1, x2, . . . , xm, x′
1, x

′
2, . . . , x

′
k of real numbers, linearly independent

over the rationals, G has a straight-line drawing satisfying the following conditions:

(1) The vertices vi and v′j are mapped into points with x-coordinates x(vi) = xi (1 ≤ i ≤ m) and
x(vj) = x′

j (1 ≤ j ≤ k).

(2) The slope of every edge is 0, π/2, π/4, or −π/4.

(3) No vertex is to the North of any vertex of degree two.

Proof of Lemma 3.1. Apply Lemma 2.2 to cycle C with vertices v0, v1, . . . , vm, with assigned
x-coordinates x1, x2, . . . , xm, and analogously, to the cycle C ′, with vertices v′0, v

′
1, . . . , v

′
k and

assigned x-coordinates x′
1, x

′
2, . . . , x

′
k. For simplicity, the resulting drawings are also denoted by

C and C ′.

Let x0 and x′
0 denote the x-coordinates of v0 ∈ C and v′0 ∈ C ′. It follows from Lemma 2.1

that x0 is a linear combination of x1, x2, . . . , xm, and x′
0 is a linear combination of x′

1, x
′
2, . . . , x

′
k)

with rational coefficients. Therefore, if x0 = x′
0, then there is a nontrivial linear combination of

x1, x2, . . . , xm, x′
1, x

′
2, . . . , x

′
k that gives 0, contradicting the assumption that these numbers are

independent over the rationals. Thus, we can conclude that x0 6= x′
0. Assume without loss of

generality that x0 < x′
0. Reflect C ′ about the x-axis, and shift it in the vertical direction so

that v′0 ends up to the Northeast from v0. Clearly, we can add the missing edge v0v
′
0. Let D

denote the resulting drawing of G. We claim that D meets all the requirements of the Theorem.
Conditions (1), (2), and (3) are obviously satisfied, we only have to check that no vertex lies
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in the interior of an edge. It follows from Lemma 2.2 that the y-coordinates of v1, . . . , vm are
all smaller than or equal to the y-coordinate of v0 and the y-coordinates of v′1, . . . , v

′
k are all

greater than or equal to the y-coordinate of v ′
0. We also have y(v0) < y(v′0). Therefore, there is

no vertex in the interior of v0v
′
0. Moreover, no edge of C (resp. C ′) can contain any vertex of

v′0, v
′
1, . . . , v

′
k (resp. v0, v1, . . . , vm) in its interior. 2

The rest of the proof is by induction on the number of vertices of G. The statement is trivial
if the number of vertices is at most two. Suppose that we have already established Theorem 2
for all graphs with fewer than n vertices.

Suppose that G has n vertices, it is not a cycle and not the union of two cycles connected
by one edge. Let v1, v2, . . . , vm be the vertices of G with degree less than three, and let the
x-coordinates assigned to them be x1, x2, . . . , xm.

We distinguish several cases.

Case 1: G has a vertex of degree one.

Assume, without loss of generality, that v1 is such a vertex. If G has no vertex of degree three,
then it consists of a simple path P = v1v2 . . . vm, say. Place vm at the point (xm, 0). In general,
assuming that vi+1 has already been embedded for some i < m, and xi < xi+1, place vi at the
point West of vi+1, whose x-coordinate is xi. If xi > xi+1, then put vi at the point Northeast
of vi+1, whose x-coordinate is xi. The resulting drawing of G = P meets all the requirements
of the theorem. To see this, it is sufficient to notice that if vj would be Northwest of vm for
some j < m, then we could apply Lemma 2.1 to the cycle vjvj+1 . . . vm, and conclude that the
numbers xj, xj+1, . . . , xm are dependent over the rationals. This contradicts our assumption.

Assume next that v1 is of degree one, and that G has at least one vertex of degree three.
Suppose without loss of generality that v1v2 . . . vkw is a path in G, whose internal vertices are of
degree two, but the degree of w is three. Let G′ denote the graph obtained from G by removing
the vertices v1, v2, . . . , vk. Obviously, G′ is a connected graph, in which the degree of w is two.

If G′ is a cycle, then apply Lemma 2.2 to C = G′ with w playing the role of the vertex v0

which has no preassigned x-coordinate. We obtain an embedding of G′ with edges of slopes
0, π/4, and −π/4 such that x(vi) = xi for all i > k and there is no vertex to the North, to the
Northeast, or to the Northwest of w. By Lemma 2.1, the numbers x(w), xk+1, . . . , xm are not
independent over the rationals. Therefore, x(w) 6= xk, so we can place vk at the point to the
Northwest or to the Northeast of w, whose x-coordinate is xk, depending on whether x(w) > xk

or x(w) < xk. After this, embed vk−1, . . . , v1, in this order, so that vi is either to the Northeast
or to the West of vi+1 and x(vi) = xi. According to property (4) in Lemma 2.1, the path
v1v2 . . . vk lies entirely above G′, so that no point of G can lie to the North or to the Northwest
of v1.

If G′ is not a cycle, then use the induction hypothesis to find an embedding of G′ that
satisfies all conditions of Theorem 2, with x(w) = xk and x(vi) = xi for every i > k. Now place
vk very far from w, to the North of it, and draw vk−1, . . . , v1, in this order, in precisely the same
way as in the previous case. Now if vk is far enough, then none of the points vk, vk−1, . . . , v1 is
to the Northwest or to the Northeast of any vertex of G′. It remains to check that condition (4)
is true for v1, but this follows from the fact that there is no point of G whose y-coordinate is
larger than that of v1.
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From now on, we can and will assume that G has no vertex of degree one.

A graph with four vertices and five edges between them is said to be a Θ-graph.

Case 2: G contains a Θ-subgraph.

Suppose that G has a Θ-subgraph with vertices a, b, c, d, and edges ab, bc, ac, ad, bd. If
neither c nor d has a third neighbor, then G is identical to this graph, which can easily be drawn
in the plane with all conditions of the theorem satisfied.

If c and d are connected by an edge, then all four points of the Θ-subgraph have degree three,
so that G has no other vertices. So G is a complete graph of four vertices, and it has a drawing
that meets the requirements.

Suppose that c and d have a common neighbor e 6= a, b. If e has no further neighbor, then
a, b, c, d, e are the only vertices of G, and again we can easily find a proper drawing. Thus, we
can assume that e has a third neighbor f . By the induction hypothesis, G′ = G \ {a, b, c, d, e}
has a drawing satisfying the conditions of Theorem 2. In particular, no vertex of G ′ is to the
North of f (and to the Northwest of f , provided that the degree of f in G′ is one). Further,
consider a drawing H of the subgraph of G induced by the vertices a, b, c, d, e, which satisfies
the requirements. We distinguish two subcases.

If the degree of f in G′ is one, then take a very small homothetic copy of H (i.e., similar
copy in parallel position), and rotate it about e in the clockwise direction through 3π/4. There
is no point of this drawing, denoted by H ′, to the Southeast of e, so that we can translate it
into a position in which e is to the Northwest of f ∈ V (G′) and very close to it. Connecting
now e to f , we obtain a drawing of G satisfying the conditions. Note that it was important to
make H ′ very small and to place it very close to f , to make sure that none of its vertices is to
the North of any vertex of G′ whose degree is at most two, or to the Northwest of any vertex of
degree one (other than f).

If the degree of f in G′ is two, then we follow the same procedure, except that now H ′ is a
small copy of H, rotated by π. We translate H ′ into a position in which e is to the North of f ,
and connect e to f by a vertical segment. It is again clear that the resulting drawing of G meets
the requirements in Theorem 2. Thus, we are done if c and d have a common neighbor e.

Suppose now that only one of c and d has a third neighbor, different from a and b. Suppose,
without loss of generality, that this vertex is c, so that the degree of d is two. Then in G ′ =
G\{a, b, d}, the degree of c is one. Apply the induction hypothesis to G′ so that the x-coordinate
originally assigned to d is now assigned to c (which had no preassigned x-coordinate in G). In
the resulting drawing, we can easily reinsert the remaining vertices, a, b, d, by adding a very
small square whose lowest vertex is at c and whose diagonals are parallel to the coordinate axes.
The highest vertex of this square will represent d, and the other two vertices will represent a
and b.

We are left with the case when both c and d have a third neighbor, other than a and b, but
these neighbors are different. Denote them by c′ and d′, respectively. Create a new graph G′

from G, by removing a, b, c, d and adding a new vertex v, which is connected to c ′ and d′. Draw
G′ using the induction hypothesis, and reinsert a, b, c, d in a small neighborhood of v so that
they form the vertex set of a very small square with diagonal ab. (See Figure 1.) As before, we
have to choose this square sufficiently small to make sure that a, b, c, d are not to the North of
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any vertex w 6= c′, d′, v of G′, whose degree is at most two, or to the Northwest of any vertex of
degree one. Thus, we are done if G has a Θ-subgraph.

So, from now on we assume that G has no Θ-subgraph.

Figure 1. Replacing v by Θ.

Case 3: G has no cycle that passes through a vertex of degree two.

Since G is not three-regular, it contains at least one vertex of degree two. Consider a
decomposition of G into two-connected blocks and edges. If a block contains a vertex of degree
two, then it consists of a single edge. The block decomposition has a treelike structure, so that
there is a vertex w of degree two, such that G can be obtained as the union of two graphs, G1

and G2, having only the vertex w in common, and there is no vertex of degree two in G1.

By the induction hypothesis, for any assignment of rationally independent x-coordinates to
all vertices of degree less than three, G1 and G2 have proper straight-line embeddings (drawings)
satisfying conditions (1)–(4) of the theorem. The only vertex of G1 with a preassigned x-
coordinate is w. Applying a vertical translation, if necessary, we can achieve that in both
drawings w is mapped into the same point. Using the induction hypothesis, we obtain that in
the union of these two drawings, there is no vertex in G1 or G2 to the North or to the Northwest
of w, because the degree of w in G1 and G2 is one (property (4)). This is stronger than what
we need: indeed, in G the degree of w is two, so that we require only that there is no point of
G to the North of w (property (3)).

The superposition of the drawings of G1 and G2 satisfies all conditions of the theorem. Only
two problems may occur:

1. A vertex of G1 may end up at a point to the North of a vertex of G2 with degree two.

2. The (unique) edges in G1 and G2, incident to w, may partially overlap.

Notice that both of these events can be avoided by enlarging the drawing of G1, if necessary,
from the point w, and rotating it about w by π/4 in the clockwise direction. The latter operation
is needed only if problem 2 occurs. This completes the induction step in the case when G has
no cycle passing through a vertex of degree two.

It remains to analyze the last case.

Case 4: G has a cycle passing through a vertex of degree two.

By assumption, G itself is not a cycle. Therefore, we can also find a shortest cycle C whose
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vertices are denoted by v, u1, . . . , uk, in this order, where the degree of v is two and the degree
of u1 is three. The length of C is k + 1.

It follows from the minimality of C that ui and uj are not connected by an edge of G, for
any |i − j| > 1. Moreover, if |i − j| > 2, then ui and uj do not even have a common neighbor
(1 ≤ i 6= j ≤ k). This implies that any vertex v ∈ V (G \ C) has at most three neighbors on
C, and these neighbors must be consecutive on C. However, three consecutive vertices of C,
together with their common neighbor, would form a Θ-subgraph in G (see Case 2). Hence, we
can assume that every vertex belonging to G \ C is joined to at most two vertices on C.

Let Bi denote the set of all vertices of G\C that have precisely i neighbors on C (i = 0, 1, 2).
Thus, we have V (G\C) = B0∪B1∪B2. Further, B1 = B2

1 ∪B3
1 , where an element of B1 belongs

to B2
1 or B3

1 , according to whether its degree in G is two or three.

Consider the list v1, v2, . . . , vm of all vertices of G with degree two. (Recall that we have
already settled the case when G has a vertex of degree one.) Assume without loss of generality
that v1 = v and that vi belongs to C if and only if 1 ≤ i ≤ j for some j ≤ m.

Let x denote the assignment of x-coordinates to the vertices of G with degree two, that is,
x = (x(v1), x(v2), . . . ,x(vm))= (x1, x2, . . . , xm). Given G, C, x, and a real parameter L, we
define the following so-called Embedding Procedure(G,C,x, L) to construct a drawing of
G that meets all requirements of the theorem, and satisfies the additional condition that the
y-coordinate of every vertex of C is at least L higher than the y-coordinates of all other vertices
of G.

Step 1: If G′ := G \ C is not a cycle, then construct recursively a drawing of G′ := G \ C
satisfying the conditions of Theorem 2 with the assignment x′ of x-coordinates x(vi) = xi for
j < i ≤ m, and x(u′

1) = x1, where u′
1 is the unique vertex in G \ C, connected by an edge to

u1 ∈ V (C).

If G′ = G \ C is a cycle, then, by assumption, there are at least two edges between C and
G′. One of them connects u1 to u′

1. Let uαu′
α be another such edge, where uα ∈ C and u′

α ∈ G′.
Since the maximum degree is three, u′

1 6= u′
α. Now construct recursively a drawing of G′ := G\C

satisfying the conditions of Lemma 2.2, with the assignment x′ of x-coordinates x(vi) = xi for
j < i ≤ m, x(u′

1) = x1, and with exceptional vertex u′
α.

Step 2: For each element of B2
1 ∪ B2, take two rays starting at this vertex, pointing to the

Northwest and to the North. Further, take a vertical ray pointing to the North from each
element of B3

1 and each element of the set Bx := {(x2, 0), (x3, 0), . . . , (xj , 0)}. Let R denote
the set of all of these rays. Choose the x-axis above all points of G′ and all intersection points
between the rays in R.

For any uh (1 ≤ h ≤ k) whose degree in G is three, define N(uh) as the unique neighbor of
uh in G \ C. If uh has degree two in G, then uh = vi for some 1 ≤ i ≤ j, and let N(uh) be the
point (xi, 0).

Step 3: Recursively place u1, u2, . . . uk on the rays belonging to R, as follows. Place u1 on the
vertical ray starting at N(u1) = u′

1 such that y(u1) = L. Suppose that for some i < k we have
already placed u1, u2, . . . ui, so that L ≤ y(u1) ≤ y(u2) ≤ . . . ≤ y(ui) and there is no vertex to
the West of ui. Next we determine the place of ui+1.
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If N(ui+1) ∈ B2
1 , then let r ∈ R be the ray starting at N(ui+1) and pointing to the Northwest.

If N(ui+1) ∈ B3
1 ∪ Bx, let r ∈ R be the ray starting at N(ui+1) and pointing to the North. In

both cases, place ui+1 on r: if ui lies on the left-hand side of r, then put ui+1 to the Northeast
of ui; otherwise, put ui+1 to the West of ui.

If N(ui+1) ∈ B2, then let r ∈ R be the ray starting at N(ui+1) and pointing to the North,
or, if we have already placed a point on this ray, let r be the other ray from N(ui+1), pointing
to the Northwest, and proceed as before.

G’

Ru
u

u12u
3

4

Figure 2. Recursively place u1, u2, . . . uk on the rays belonging to R.

Step 4: Suppose we have already placed uk. It remains to find the right position for u0 := v,
which has only two neighbors, u1 and uk. Let r be the ray at u1, pointing to the North. If uk

lies on the left-hand side of r, then put u0 on r to the Northeast of uk; otherwise, put u0 on r,
to the West of uk.

During the whole procedure, we have never placed a vertex on any edge, and all other
conditions of Theorem 2 are satisfied 2.

Remark that the y-coordinates of the vertices u0 = v, u1, . . . , uk are at least L higher than
the y-coordinates of all vertices in G \ C. If we fix G,C, and x, and let L tend to infinity,
the coordinates of the vertices given by the above Embedding Procedure(G,C,x, L) change
continuously.

u
u1

k
u1

uk

u0

u0

Figure 3. Find the right position for u0.
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4 Proof of Theorem 1

We are going to show that any graph G with maximum degree three permits a straight-line
drawing using only the four basic directions (of slopes 0, π/2, π/4, and −π/4), and perhaps one
further direction, which is almost vertical and is used for at most one edge in each connected
component of G.

Denote the connected components of G by G1, G2, . . . , Gt. If a component Gs is not three-
regular, or if it is a complete graph with four vertices, then, by Theorem 2, it can be drawn
using only the four basic directions. If Gs has a Θ-subgraph, one can argue in the same way as
in Case 2 of the proof of Theorem 2: Embed recursively the rest of the graph, and attach to it a
small copy of this subgraph such that all edges of the Θ-subgraph, as well as the edges used for
the attachment, are parallel to one of the four basic directions. Actually, in this case, Gs itself
can be drawn using the four basic directions, so the fifth direction is not needed.

Thus, in the rest of the proof we can assume that Gs is three-regular, it has more than four
vertices, and it contains no Θ-subgraph. For simplicity, we drop the subscript and we write G
instead of Gs. Choose a shortest cycle C = u0u1 . . . uk in G. Each vertex of C has precisely one
neighbor in G \C. On the other hand, as in the proof of the last case of Theorem 2, all vertices
in G \ C have at most two neighbors in C.

We distinguish two cases.

Case 1. G \ C is a cycle. Since G is three-regular, C and G \ C are of the same size and the
remaining edges of G form a matching between the vertices of C and the vertices of G \ C. For
any i, 0 ≤ i ≤ k, let u′

i denote the vertex of G \C which is connected to ui. Denote the vertices
of G \C by v0, v1, . . . , vk, in cyclic order, so that v1 = u′

1. Then we have vi = u′
0, for some i > 1.

Apply Lemma 2.2 to G \ C with a rationally independent assignment x of x-coordinates to the
vertices v1, . . . , vk, such that x(v1) = 1, x(vi) =

√
2, and the x-coordinates of the other vertices

are all greater than
√

2. (Recall that v0 is an exceptional vertex with no assigned x-coordinate.)
It is not hard to see that if we follow the construction described in the proof of Lemma 2.2, we
also have x(v0) >

√
2.

Case 2. G \ C is not a cycle. Let u′
0 denote the neighbor of u0 in G \ C. Since G has no

Θ-subgraph, u′
0 cannot be joined to both u1 and uk. Assume without loss of generality that u′

0

is not connected to u1. Let u′
1 denote the neighbor of u1 in G \ C.

Fix a rationally independent assignment x of x-coordinates to the vertices of degree at most
two in G \ C, such that x(u′

0) =
√

2, x(u′
1) = 1, and the x-coordinates of the other vertices are

all greater than
√

2. Consider a drawing of G \ C, meeting the requirements of Theorem 2.

Now in both cases, let G′ denote the graph obtained from G after the removal of the edge
u0u

′
0. Clearly G \ C = G′ \ C, and for any L, Embedding Procedure(G′, C,x, L) gives a

drawing of G′. It follows from the construction, that x(u0) = x(u1) = x(u′
1) = 1, x(u′

0) =√
2. Therefore, for any sufficiently small ε > 0 there is an L > 0 such that Embedding

Procedure(G′, C,x, L) gives a drawing of G′, in which the slope of the line connecting u0 and
u′

0 is π
2

+ ε.

We want to add the segment u0u
′
0 to this drawing. Since there is no vertex with x-coordinate

between 1 and
√

2, the segment u0u
′
0 cannot pass through any vertex of G.
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Summarizing: if ε is sufficiently small (that is, if L is sufficiently large), then each component
of the graph has a proper drawing in which all edges are of one of the four basic directions, with
the exception of at most one edge whose slope is π

2
+ ε. If we choose an ε > 0 that works for

all components, then the whole graph can be drawn using only at most five directions. This
concludes the proof of Theorem 1. 2

5 Algorithm and concluding remarks

Based on the proof, it is not hard to design an algorithm to find a proper drawing, in quadratic
time.

First, if our graph is a circle, we have no problem drawing it in O(n) steps. If our graph has
a vertex of degree one then the procedure of Case 1 of the proof of Theorem 2 requires at most
O(m) time when we reinsert v1, . . . , vm.

We can check if our graph has any Θ-subgraph in O(n) time. If we find one, we can proceed
by induction as in Case 2 of the proof of Theorem 2. We can reinsert the Θ-subgraph as described
in Case 2 in O(1) time.

Now assume that we have a vertex v of degree two. Execute a breadth first search from any
vertex, and take a minimal vertex of degree two, that is, a vertex v of degree two, all of whose
descendants are of degree three. If there is an edge in the graph connecting a descendant of
v with a non-descendant, then there is a cycle through v; we can find a minimal one with a
breadth first search from it and proceed as in Case 4. Otherwise, v can play the role of w in
Case 3, and we can proceed recursively.

Finally, if the graph is 3-regular, then we draw each component separately, except the last
step, when we have to pick an ε small enough simultaneously for all components, this takes O(n)
steps. We only have to find the greatest slope and pick an ε such that π

2
+ ε is even steeper.

We believe that this algorithm is far from being optimal. It may perform a breadth first
search for each induction step, which is probably not necessary. One may be able to replace this
step by repeatedly updating the results of the first search. We cannot even rule out that the
problem can be solved in linear time.
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[3] V. Dujmović, M. Suderman, and D.R. Wood: Really straight graph drawings, in: Graph

Drawing (GD’04), J. Pach, ed., Lecture Notes in Computer Science 3383, Springer-Verlag, Berlin,
2005, 122–132.

11



[4] C. A. Duncan, D. Eppstein, and S.G. Kobourov: The geometric thickness of low degree
graphs, in: Proc. 20th ACM Symp. on Computational Geometry (SoCG’04), ACM Press, 2004,
340–346.

[5] M. Engelstein: Drawing graphs with few slopes, Research paper submitted to the Intel
Competition for high school students, New York, October 2005.

[6] D. Eppstein: Separating thickness from geometric thickness, in: Towards a Theory of Geo-

metric Graphs (J. Pach, ed.), Contemporary Mathematics 342, Amer. Math. Soc, Providence,
2004, 75–86.

[7] J. Pach and D. Pálvölgyi: Bounded-degree graphs can have arbitrarily large slope numbers,
Electronic J. Combinatorics 13/1 (2006), N1.

[8] P. Ungar: On diagrams representing maps, J. London Math. Soc. 28 (1953), 336–342.

[9] G. A. Wade and J. H. Chu: Drawability of complete graphs using a minimal slope set, The

Computer J. 37 (1994), 139–142.

12


