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From Tarski’s Plank Problem to Simultaneous
Approximation

Andrey Kupavskii and János Pach

Abstract. A slab (or plank) is the part of the d-dimensional Euclidean space that lies between two parallel hyperplanes. The
distance between the these hyperplanes is called the width of the slab. It is conjectured that the members of any infinite family
of slabs with divergent total width can be translated so that the translates together cover the whole d-dimensional space. We
prove a slightly weaker version of this conjecture, which can be regarded as a converse of Bang’s theorem, also known as
Tarski’s plank problem.

This result enables us to settle an old conjecture of Makai and Pach on simultaneous approximation of polynomials. We
say that an infinite sequence 𝑆 of positive numbers controls all polynomials of degree at most d if there exists a sequence of
points in the plane whose x-coordinates form the sequence S, such that the graph of every polynomial of degree at most d
passes within vertical distance 1 from at least one of the points. We prove that a sequence S has this property if and only if
the sum of the reciprocals of the d-th powers of its elements is divergent.

1. TARSKI’S PLANK PROBLEM AND ITS AFFINE VERSION. The closed set of points 𝑆 lying between
two parallel hyperplanes in R𝑑 at distance 𝑤 from each other is called a slab (or plank) of width 𝑤. Given a
convex body 𝐶 ⊂ R𝑑, its width 𝑤(𝐶) is the smallest number 𝑤 such that there is a slab of width 𝑤 that covers
𝐶.

In 1932, Alfred Tarski [18] made the following attractive conjecture.

Tarski’s plank problem. If a sequence of slabs covers a convex body 𝐶, then the total width of the slabs is at
least 𝑤(𝐶).

Tarski found a beautiful proof of his conjecture in the special case where 𝐶 is a closed disk. His argument
was based on the following fact discovered by Archimedes more than two thousand years ago. Let 𝐷 be a disk of
radius 1

2
in the (𝑥, 𝑦)-plane R2, and let 𝐻 denote the hemisphere of radius 1

2
, concentric with 𝐷, that lies in the

closed half-space above R2. No matter how we place a 2-dimensional slab 𝑆 of width 𝑤 in the plane such that
both of its boundary lines intersect 𝐷, the surface area of the vertical projection of 𝑆 ∩𝐷 to the hemisphere 𝐻
is always equal to 1

2
𝜋𝑤; see Fig. 1. Suppose now that a system of slabs 𝑆1, 𝑆2, . . . completely covers 𝐷. We can

assume without loss of generality that the boundary lines of every slab intersect 𝐷. Otherwise, we could replace
one of the slabs with a narrower one. The vertical projections of the slabs cover 𝐻 , therefore the sum of the areas
of these projections, 1

2
𝜋𝑤(𝑆1) +

1
2
𝜋𝑤(𝑆2) + . . ., is at least 𝐴𝑟𝑒𝑎(𝐻) = 𝜋

2
. Thus, we have that

𝑤(𝑆1) + 𝑤(𝑆2) + . . . ≥ 1 = 𝑤(𝐷),

as required.

A slight modification of the above argument also settles the analogous problem in the case where 𝐶 is a 3-
dimensional ball 𝐵3 of unit diameter. Now let 𝐻 denote the whole sphere bounding 𝐵3, so that 𝐴𝑟𝑒𝑎(𝐻) = 𝜋.
Suppose that 𝑆1, 𝑆2, . . . is a system of 3-dimensional slabs that altogether cover 𝐵3, with the property that the
boundary planes of each 𝑆𝑖 intersect 𝐵3. By the Archimedean observation, for every 𝑖, the surface area of 𝑆𝑖 ∩𝐻
is equal to 𝜋𝑤(𝑆𝑖). Since the slabs must also cover 𝐻 , we have∑︁

𝑖

𝐴𝑟𝑒𝑎(𝑆𝑖 ∩𝐻) =
∑︁
𝑖

𝜋𝑤(𝑆𝑖) ≥ 𝐴𝑟𝑒𝑎(𝐻) = 𝜋,

which again yields that
∑︀

𝑖 𝑤(𝑆𝑖) ≥ 𝑤(𝐵3) = 1.
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Figure 1. Tarski’s proof for a disk of unit diameter.

One may naively hope that the above argument allows a straightforward generalization to higher dimensional
balls or even to convex bodies of other shapes. This is not the case. It took almost twenty years before Thøger
Bang [2], [3] managed to prove Tarski’s conjecture, using quite different ideas. He also formulated a more general
conjecture that he was unable to settle. To state Bang’s conjecture, we need some notation.

A unit vector v perpendicular to the bounding hyperplanes of a slab 𝑆 is called the normal vector of 𝑆. Given
a convex body 𝐶 and a unit vector v ∈ R𝑑, let 𝑤(𝐶,v) denote the width of 𝐶 in direction v, that is, the smallest
number 𝑤 such that there is a slab of width 𝑤 with normal vector v that contains 𝐶. For example, if 𝐶 is a
𝑑-dimensional ball of unit diameter, then 𝑤(𝐶,v) = 1 for any unit vector v ∈ R𝑑.

Bang’s affine plank problem. Let 𝑆1, 𝑆2, . . . be a sequence of slabs in R𝑑 with normal vectors v1,v2, . . . and
widths 𝑤(𝑆1), 𝑤(𝑆2), . . . , respectively, and suppose that their union covers a convex body 𝐶.

Then we have ∑︁
𝑖

𝑤(𝑆𝑖)

𝑤(𝐶,v𝑖)
≥ 1.

This conjecture is still open. Bang [4] verified it for systems consisting of only two slabs (see also [16]), but
it is not known to be true even for triples. It was a sensational breakthrough, when in 1991 Keith Ball [1] settled
the conjecture in the affirmative for centrally symmetric convex bodies 𝐶. On the other hand, some results of
Richard Gardner [9] indicate that the affine plank problem cannot be solved by any argument similar to Tarski’s.

2. A CONVERSE OF TARSKI’S PROBLEM. Tarski’s conjecture, that is, Bang’s theorem, states that if a
sequence of slabs cover a convex body 𝐶 ⊂ R𝑑, then their total width must be large. One can reverse this
question, as follows. Suppose that we have a sequence of slabs 𝑆1, 𝑆2, . . . of large total width. Is it always
possible to cover 𝐶 with congruent copies of the 𝑆𝑖? The answer is simple. Take a slab 𝑆 of width 𝑤(𝐶) that
contains 𝐶, and denote its normal vector by v. If

∑︀
𝑖 𝑤(𝑆𝑖) ≥ 𝑤(𝐶), we can rotate each 𝑆𝑖 into a position

perpendicular to v. Now we can translate these slabs so that their union will cover 𝑆 and, hence 𝐶.
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The problem becomes more interesting if we permit only translations, but no rotation. We say that a sequence
of slabs 𝑆1, 𝑆2, . . . permits a translative covering of a subset 𝐶 ⊆ R𝑑 if there are suitable translates 𝑆′

𝑖 of
𝑆𝑖 (𝑖 = 1, 2, . . .) such that ∪𝑖𝑆

′
𝑖 ⊇ 𝐶.

If each of the slabs has width greater than some positive constant 𝜖, then each can be used to cover a full-
dimensional ball of diameter 𝜖. Since any convex body 𝐶 can be covered by finitely many balls of diameter 𝜖,
these slabs permit a translative covering of 𝐶.

However, it is not clear whether the condition that the total width of the slabs is divergent is sufficient to
guarantee that they permit a translative covering of a ball of unit diameter. If this is true, then any sequence
of slabs with divergent total width also permits a translative covering of the whole space R𝑑. Indeed, any such
sequence can be partitioned into infinitely many subsequences, each having divergent total width. Choose any
covering of R𝑑 with balls 𝐵1, 𝐵2, . . . of unit diameter, and for each 𝐵𝑖, use translates of the slabs belonging to the
𝑖th subsequence to cover 𝐵𝑖 (𝑖 = 1, 2, . . .). Endre Makai and János Pach [15] made the following conjecture;
see also [5], Section 3.4.

Makai–Pach translative plank conjecture. Let 𝑑 be a positive integer. A sequence of slabs in R𝑑 with widths
𝑤1, 𝑤2, . . . permits a translative covering of R𝑑 if and only if

∑︀∞
𝑖=1 𝑤𝑖 = ∞.

The “only if” part is quite easy. It also follows directly from Bang’s theorem. If
∑︀∞

𝑖=1 𝑤𝑖 < 𝐷, then the slabs
do not even permit a translative covering of a ball of diameter 𝐷.

As for the “if” part, in the 2-dimensional case it was proved in [15] and, according to [10], independently,
by Paul Erdős and Ernst G. Straus (unpublished). In this case, there is a constant 𝑐 > 0 such that any system of
slabs in the plane with total width at least 𝑐 permits a translative covering of a disk of unit diameter, and hence
the conjecture is true. (See [11, 12] for some refinements.) For 𝑑 ≥ 3, the best known result is due to Helmut
Groemer [10]. He proved that for any 𝑑 ≥ 3, any sequence of slabs of widths 𝑤1, 𝑤2, . . ., satisfying

∞∑︁
𝑖=1

𝑤
𝑑+1
2

𝑖 = ∞,

permits a translative covering of R𝑑. In particular, for 𝑑 = 3, any sequence of slabs with widths 𝑤𝑖 =
1√
𝑖
(𝑖 =

1, 2, . . .) permits a translative covering of R3. Our next result shows that the same is true for much narrower
slabs, for example, for slabs of widths 𝑤𝑖 =

1
𝑖

for every 𝑖. This comes rather close to the truth; the last statement
is false, e.g., for the sequence 𝑤𝑖 = 1/𝑖1+𝜀 (𝑖 = 1, 2, . . .) with any 𝜀 > 0, because then we have

∑︀∞
𝑖=1 𝑤𝑖 < ∞.

Theorem 1. Let 𝑑 be a positive integer, and let 𝑤1 ≥ 𝑤2 ≥ . . . be a monotone decreasing infinite sequence of
positive numbers such that

lim sup
𝑛→∞

𝑤1 + 𝑤2 + . . .+ 𝑤𝑛

log(1/𝑤𝑛)
> 0.

Then any sequence of slabs 𝑆𝑖 of width 𝑤𝑖 (𝑖 = 1, 2, . . .) permits a translative covering of R𝑑.

Here, and in what follows, log stands for the natural logarithm.
Our proof is based on the following statement.

Theorem 2. Let 𝑑 be a positive integer, and let 𝑤1 ≥ 𝑤2 ≥ . . . ≥ 𝑤𝑛 be positive numbers such that

𝑤1 + 𝑤2 + . . .+ 𝑤𝑛 ≥ 3𝑑 log(2/𝑤𝑛).

Then any sequence of slabs 𝑆1, . . . , 𝑆𝑛 ⊂ R𝑑 with widths 𝑤1, . . . , 𝑤𝑛, resp., permits a translative covering of a
𝑑-dimensional ball of diameter 1− 𝑤𝑛/2.

Theorems 1 and 2 will be established in Section 4.
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3. APPLICATION TO APPROXIMATION OF POLYNOMIALS. For a fixed positive integer 𝑑, let 𝒫𝑑

denote the class of polynomials of degree at most 𝑑. Following [15], we say that a sequence of positive numbers
𝑥1, 𝑥2, . . . is 𝒫𝑑-controlling if there exist reals 𝑦1, 𝑦2, . . . with the property that for every polynomial 𝑝 ∈ 𝒫𝑑,
one can find an 𝑖 with

|𝑝(𝑥𝑖)− 𝑦𝑖| ≤ 1.

Roughly speaking, this means that the graph of every polynomial 𝑝 ∈ 𝒫𝑑 comes vertically close to at least one
point of the set {(𝑥𝑖, 𝑦𝑖) : 𝑖 = 1, 2 . . .}.

In Section 5, we study the following question. How sparse can a 𝒫𝑑-controlling sequence be? A similar
question, motivated by a problem of László Fejes Tóth [8], was studied in [6]. We will see that this question is
intimately related to the translative plank conjecture discussed in the previous section.

First, we show how the following assertion can be deduced from Theorem 1.

Corollary 1. Let 𝑑 be a positive integer and 𝑥1 ≤ 𝑥2 ≤ . . . be a monotone increasing infinite sequence of
positive numbers. If

lim sup
𝑛→∞

(︂
1

𝑥𝑑
1

+
1

𝑥𝑑
2

+ . . .+
1

𝑥𝑑
𝑛

)︂⧸︁
log 𝑥𝑛 > 0,

then the sequence 𝑥1, 𝑥2, . . . is 𝒫𝑑-controlling.

Proof of Corollary 1. Let 𝑥1 ≤ 𝑥2 ≤ . . . be an infinite sequence of positive numbers satisfying the assump-
tions. We have to find a sequence of reals 𝑦1, 𝑦2, . . . such that for any polynomial 𝑝(𝑥) =

∑︀𝑑
𝑗=0 𝑎𝑗𝑥

𝑗 with real
coefficients 𝑎𝑗 , there exists a positive integer 𝑖 with |𝑝(𝑥𝑖)− 𝑦𝑖| ≤ 1. See Fig. 2.

Figure 2. Controlling polynomials of degree at most 𝑑.

Write 𝑝(𝑥) in the form 𝑝(𝑥) = ⟨x,a⟩, where x = (1, 𝑥, . . . , 𝑥𝑑), a = (𝑎0, 𝑎1, . . . , 𝑎𝑑) ∈ R𝑑+1, and ⟨.⟩
stands for the scalar product. Using this notation, we have x𝑖 = (1, 𝑥𝑖, . . . , 𝑥

𝑑
𝑖 ) and the inequality |𝑝(𝑥𝑖)− 𝑦𝑖| ≤

1 can be rewritten as

𝑦𝑖 − 1 ≤ ⟨x𝑖,a⟩ ≤ 𝑦𝑖 + 1.
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For a fixed 𝑖, the locus of points a ∈ R𝑑+1 satisfying this double inequality is a slab 𝑆𝑖 ⊂ R𝑑+1 of width
𝑤𝑖 =

2
‖x𝑖‖

= 2

(
∑︀𝑑

𝑗=0 𝑥
2𝑗
𝑖 )1/2

, with normal vector x𝑖. The sequence 𝑥1, 𝑥2, . . . is 𝒫𝑑-controlling if and only if the

sequence of slabs 𝑆1, 𝑆2, . . . permits a translative covering of R𝑑+1.

We distinguish two cases. If 𝑥𝑖 ≤ 3 for infinitely many (and, hence, for all) integers 𝑖, then for the widths of
the corresponding slabs we have 𝑤𝑖 >

1
3𝑑

. Thus, these slabs permit a translative covering of R𝑑+1.
Suppose next that 𝑥𝑖 > 3 for all 𝑖 ≥ 𝑚. Then the sequence 𝑤𝑚 ≥ 𝑤𝑚+1 ≥ 𝑤𝑚+2 ≥ . . . satisfies the condi-

tion of Theorem 1. Indeed, we have 𝑤𝑖 ≥ 1

𝑥𝑑𝑖
for all 𝑖 ≥ 𝑚, which implies that

lim sup
𝑛→∞

𝑤𝑚 + 𝑤𝑚+1 + . . .+ 𝑤𝑛

log(1/𝑤𝑛)
≥ lim sup

𝑛→∞

(︂
1

𝑥𝑑
1

+
1

𝑥𝑑
2

+ . . .+
1

𝑥𝑑
𝑛

)︂⧸︁
log 𝑥𝑛 > 0.

Thus, by Theorem 1, the sequence of slabs 𝑆𝑚, 𝑆𝑚+1, 𝑆𝑚+2, . . . permits a translative covering of R𝑑+1, which
in turn implies that the sequence 𝑥1 ≤ 𝑥2 ≤ . . . is 𝒫𝑑-controlling.

Note that the above proof yields that for a sequence of positive numbers 𝑥1 ≤ 𝑥2 ≤ . . . to be 𝒫𝑑-controlling, it
is necessary that

∑︀∞
𝑖=1

2

𝑥𝑑𝑖
≥

∑︀∞
𝑖=1 𝑤𝑖 = ∞. Moreover, if the translative plank conjecture stated in the previous

section is true, this condition is also sufficient.

In the proof of Corollary 1, we applied Theorem 1 to a very special sequence of slabs 𝑆𝑖, whose normal vectors
lie on a moment curve 𝛾(𝑥) = (1, 𝑥, 𝑥2, . . . , 𝑥𝑑) ⊂ R𝑑+1. Exploring the natural ordering of these vectors along
the curve, in Section 5 we will be able to show that the above condition is indeed necessary and sufficient, without
proving the translative plank conjecture.

Theorem 3. Let 𝑑 be a positive integer and 𝑥1 ≤ 𝑥2 ≤ . . . be a monotone increasing infinite sequence of positive
numbers. The sequence 𝑥1, 𝑥2, . . . is 𝒫𝑑-controlling if and only if

∑︀∞
𝑖=1

1

𝑥𝑑𝑖
= ∞.

This theorem settles Conjecture 3.2.B in [15].

4. PROOFS OF THEOREMS 1 AND 2. We start with the proof of Theorem 2. Then we deduce Theorem 1
from Theorem 2.

The proof of Theorem 2 is based on some ideas that go back (at least) to Claude Ambrose Rogers [17, 7].

Proof of Theorem 2. Every slab 𝑆 ⊂ R𝑑 can be expressed in the form

𝑆 = {x ∈ R𝑑 : �̄� ≤ ⟨v,x⟩ ≤ �̄�+ 𝑤},

where v and 𝑤 are the unit normal vector and the width of 𝑆, respectively, and �̄� is a suitable real number.

Fix a sequence of slabs 𝑆1, . . . , 𝑆𝑛 ⊂ R𝑑 meeting the requirements of the theorem. We may assume that
𝑤1 < 1, otherwise we can cover a ball 𝐵 of diameter 1 with a translate of the first slab. Consider the modified
sequence of slabs 𝑆′

1, . . . , 𝑆
′
𝑛, where each 𝑆′

𝑖 is obtained from 𝑆𝑖 by reducing its width by a factor of 2. More
precisely, if

𝑆𝑖 = {x ∈ R𝑑 : �̄�𝑖 ≤ ⟨v𝑖,x⟩ ≤ �̄�𝑖 + 𝑤𝑖},

then let

𝑆′
𝑖 = {x ∈ R𝑑 : �̄�𝑖 + 𝑤𝑖/4 ≤ ⟨v𝑖,x⟩ ≤ �̄�𝑖 + 3𝑤𝑖/4}.

We describe a greedy algorithm to cover a large part of the unit diameter ball 𝐵 with suitable translates of
𝑆′
1, . . . , 𝑆

′
𝑛. Set 𝐾0 = 𝐵. For 𝑖 = 1, . . . , 𝑛, let 𝐾𝑖−1 denote the set of points of 𝐵 not covered by the translates
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of 𝑆′
1, . . . , 𝑆

′
𝑖−1 selected during the first 𝑖− 1 steps of the algorithm. In step 𝑖, we choose a constant 𝑏𝑖 so that

the translate

𝑇 (𝑆′
𝑖) = {x ∈ R𝑑 : 𝑏𝑖 + 𝑤𝑖/4 ≤ ⟨v𝑖,x⟩ ≤ 𝑏𝑖 + 3𝑤𝑖/4}

covers at least a 𝑤𝑖/3-fraction of the volume of 𝐾𝑖−1, i.e., we have

𝑉 𝑜𝑙(𝐾𝑖−1∖𝑇 (𝑆′
𝑖)) ≤ (1− 𝑤𝑖/3)𝑉 𝑜𝑙(𝐾𝑖−1).

Then 𝐾𝑖 = 𝐾𝑖−1∖𝑇 (𝑆′
𝑖). It is not difficult to see that such a 𝑏𝑖 exists. Indeed, fix a sequence 𝑏1𝑖 , . . . , 𝑏

⌈2/𝑤𝑖⌉
𝑖

with the property that the union of translates of 𝑆′
𝑖,

⌈2/𝑤𝑖⌉⋃︁
𝑗=1

{x ∈ R𝑑 : 𝑏𝑗𝑖 + 𝑤𝑖/4 ≤ ⟨vi,x⟩ ≤ 𝑏𝑗𝑖 + 3𝑤𝑖/4},

completely covers 𝐵. Since 𝐾𝑖−1 ⊆ 𝐵, it follows by the pigeonhole principle that at least one of these translates
will cover at least a 1

⌈2/𝑤𝑖⌉
-fraction of the volume of 𝐾𝑖−1. Notice that 1

⌈2/𝑤𝑖⌉
> 1

1+2/𝑤𝑖
= 𝑤𝑖

2+𝑤𝑖
> 𝑤𝑖

3
.

Figure 3. After 𝑛 steps, the uncovered part of 𝐵 contains no ball of radius 𝑤𝑛/4.

After 𝑛 steps, the volume of the set of uncovered points of 𝐵 satisfies

𝑉 𝑜𝑙(𝐾𝑛) ≤ 𝑉 𝑜𝑙(𝐵)
𝑛∏︁

𝑖=1

(1− 𝑤𝑖/3) < 𝑉 𝑜𝑙(𝐵) exp

{︃
−1

3

𝑛∑︁
𝑖=1

𝑤𝑖

}︃
.

Using the assumption on
∑︀𝑛

𝑖=1 𝑤𝑖, we obtain

𝑉 𝑜𝑙(𝐾𝑛) < 𝑉 𝑜𝑙(𝐵) exp{−𝑑 log(2/𝑤𝑛)} = 𝑉 𝑜𝑙(𝐵)
(︁𝑤𝑛

2

)︁𝑑

.
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Therefore, the set 𝐾𝑛 ⊆ 𝐵 does not contain a ball of radius 𝑤𝑛/4. See Fig. 3. This implies that every point of 𝐵
is at distance at most 𝑤𝑛/4 from the surface of 𝐵 or from one of the selected translates 𝑇 (𝑆′

𝑖) (𝑖 = 1, . . . , 𝑛).
In other words, expanding each 𝑇 (𝑆′

𝑖) by a factor of 2 around its hyperplane of symmetry, we obtain a translate
of 𝑆𝑖, and the union of these translates,

𝑛⋃︁
𝑖=1

{x ∈ R𝑑 : 𝑏𝑖 ≤ ⟨v𝑖,x⟩ ≤ 𝑏𝑖 + 𝑤𝑖},

covers the ball of radius 1/2− 𝑤𝑛/4, concentric with 𝐵.

Proof of Theorem 1. It follows from the condition of the theorem that the sequence of slabs 𝑆𝑖 can be split into
infinitely many finite subsequences 𝒮𝑗 = (𝑆𝑖𝑗+1, 𝑆𝑖𝑗+2, . . . , 𝑆𝑖𝑗+1

) for 𝑗 = 1, 2, . . . , where 0 = 𝑖1 < 𝑖2 <
𝑖3 < . . . , and

𝑤𝑖𝑗+1 + 𝑤𝑖𝑗+2 + . . .+ 𝑤𝑖𝑗+1
≥ 𝑐 log(1/𝑤𝑖𝑗+1

), (1)

for a suitable positive constant 𝑐 ≤ 1.
We can assume without loss of generality that 𝑤𝑖 ≤ 𝑐

3𝑑
holds for every 𝑖. Otherwise, if there are finitely many

exceptional indices 𝑖 with 𝑤𝑖 >
𝑐
3𝑑

, we simply discard the corresponding slabs. The remaining sequence will
meet the requirements of Theorem 1. If the number of exceptional indices is infinite, then we use the construction
of the covering for sequences of slabs with bounded widths, described in the beginning of Section 2.

For the same reason, it suffices to show that each subsequence 𝒮𝑗 = (𝑆𝑖𝑗+1, 𝑆𝑖𝑗+2, . . . , 𝑆𝑖𝑗+1
) permits a

translative covering of a ball of diameter 𝑐
6𝑑

. It follows from Theorem 2 that if

3𝑑

𝑐
(𝑤𝑖𝑗+1 + 𝑤𝑖𝑗+2 + . . .+ 𝑤𝑖𝑗+1

) ≥ 3𝑑 log(2/(
3𝑑

𝑐
𝑤𝑖𝑗+1

)), (2)

then the slabs 3𝑑
𝑐
𝑆 obtained from the elements 𝑆 ∈ 𝒮𝑗 by widening them by a factor of 3𝑑

𝑐
permit a translative

covering of a ball of diameter 1− 3𝑑
2𝑐
𝑤𝑖𝑗+1

. Therefore, by scaling, the strips 𝑆𝑖 permit a translative covering of
a ball of the diameter 𝑐

3𝑑
(1− 3𝑑

2𝑐
𝑤𝑖𝑗+1

) ≥ 𝑐
6𝑑
. In the last step, we used the assumption 𝑤𝑖𝑗+1

≤ 𝑐
3𝑑

.

It remains to verify is that (1) implies (2), but this reduces to the inequality 2𝑐 ≤ 3𝑑.

5. PROOF OF THEOREM 3. It follows from the remark right after the proof of Corollary 1 that we only
have to establish the “if” part of the theorem. That is, using the same notation as in the proof of Corollary 1, it
is sufficient to show that the sequence of slabs 𝑆𝑖 defined there permits a translative covering, provided that the
sum 1

𝑥𝑑1
+ 1

𝑥𝑑2
+ . . . is divergent. As we have seen, we can also assume without loss of generality that 𝑥𝑖 ≥ 3 for

every 𝑖.

In the proof of Corollary 1, we blindly applied Theorem 1 to the slabs 𝑆𝑖, without exploring their special
properties. To refine our argument, we are going to exploit the specifics of the slabs. Recall that 𝑆𝑖 has width
𝑤𝑖 >

1

𝑥𝑑𝑖
for every 𝑖, and its normal vector x𝑖 = (1, 𝑥𝑖, . . . , 𝑥

𝑑
𝑖 ) lies on the moment curve (1, 𝑥, 𝑥2, . . . , 𝑥𝑑).

First, we need an auxiliary lemma.

Lemma 1. Let 𝑑 be a positive integer, let 3 ≤ 𝑥1 ≤ 𝑥2 ≤ . . . be a finite or infinite sequence of reals, and let
x𝑖 = (1, 𝑥𝑖, 𝑥

2
𝑖 , . . . , 𝑥

𝑑
𝑖 ) for every 𝑖. Then there exist 𝑑+ 1 linearly independent vectors u1, . . . ,u𝑑+1 ∈ R𝑑+1

such that for every 𝑖 (𝑖 = 1, 2, . . .) and 𝑗 (𝑗 = 1, 2, . . . , 𝑑+ 1), we have

(𝑖)
⟨x𝑖+1,u1⟩
⟨x𝑖,u1⟩

≤ ⟨x𝑖+1,u𝑗⟩
⟨x𝑖,u𝑗⟩

,
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(𝑖𝑖) ⟨x𝑖,u𝑗⟩ ≥
1

3
‖x𝑖‖‖u𝑗‖.

Proof. Take the standard basis e1, . . . , e𝑑+1 in R𝑑+1, i.e., let 𝑒𝑖 denote the all-zero vector with a single 1 at the
𝑖-th position. Set u𝑗 := e𝑑+1−𝑗 + e𝑑+1 for 𝑗 = 1, . . . , 𝑑 and u𝑑+1 := e𝑑+1.

Condition (i) trivially holds for 𝑗 = 1 and it is very easy to check it for 𝑗 = 𝑑 + 1. For 𝑗 = 2, . . . , 𝑑, it
reduces to

𝑥𝑑−1
𝑖+1 + 𝑥𝑑

𝑖+1

𝑥𝑑−1
𝑖 + 𝑥𝑑

𝑖

≤
𝑥𝑑−𝑗
𝑖+1 + 𝑥𝑑

𝑖+1

𝑥𝑑−𝑗
𝑖 + 𝑥𝑑

𝑖

,

which is equivalent to

(𝑥𝑑−1
𝑖+1 + 𝑥𝑑

𝑖+1)(𝑥
𝑑−𝑗
𝑖 + 𝑥𝑑

𝑖 ) ≤ (𝑥𝑑−𝑗
𝑖+1 + 𝑥𝑑

𝑖+1)(𝑥
𝑑−1
𝑖 + 𝑥𝑑

𝑖 ).

The last inequality can be rewritten as

𝑥𝑑−𝑗
𝑖+1𝑥

𝑑−𝑗
𝑖 (𝑥𝑖+1 − 𝑥𝑖)(

𝑗−1∑︁
𝑘=0

𝑥𝑘
𝑖+1𝑥

𝑗−1−𝑘
𝑖 +

𝑗−2∑︁
𝑘=0

𝑥𝑘
𝑖+1𝑥

𝑗−2−𝑘
𝑖 − 𝑥𝑗−1

𝑖+1𝑥
𝑗−1
𝑖 ) ≤ 0,

or, dividing both sides by 𝑥𝑑−𝑗
𝑖+1𝑥

𝑑−𝑗
𝑖 (𝑥𝑖+1 − 𝑥𝑖), as

𝑗−1∑︁
𝑘=0

𝑥𝑘
𝑖+1𝑥

𝑗−1−𝑘
𝑖 +

𝑗−2∑︁
𝑘=0

𝑥𝑘
𝑖+1𝑥

𝑗−2−𝑘
𝑖 − 𝑥𝑗−1

𝑖+1𝑥
𝑗−1
𝑖 ≤ 0.

Using the fact 𝑥𝑖+1 ≥ 𝑥𝑖, and bounding each sum from above by its largest term multiplied by the number of
terms, we obtain that the left-hand side of the last inequality is at most

𝑗𝑥𝑗−1
𝑖+1 + (𝑗 − 1)𝑥𝑗−2

𝑖+1 − 𝑥𝑗−1
𝑖+1𝑥

𝑗−1
𝑖 < 𝑥𝑗−1

𝑖+1 (2𝑗 − 1− 𝑥𝑗−1
𝑖 ).

As 𝑥𝑖 ≥ 3, the right-hand side of this inequality is always nonpositive and (ii) holds.
It remains to verify condition (ii). Taking into account that 𝑥𝑖 ≥ 3, we have

⟨x𝑖,u𝑑+1⟩ = 𝑥𝑑
𝑖 ≥

1

2
‖x𝑖‖ =

1

2
‖x𝑖‖‖u𝑑+1‖.

On the other hand, for 𝑗 = 1, . . . , 𝑑, we obtain

⟨x𝑖,u𝑗⟩ = 𝑥𝑑−𝑗
𝑖 + 𝑥𝑑

𝑖 ≥
1

2
‖x𝑖‖ ≥ 1

3
‖x𝑖‖‖u𝑗‖.

This completes the proof of Lemma 1.

In order to establish Theorem 3, it is enough to prove that there is a constant 𝑐 = 𝑐(𝑑+ 1) such that any system
of slabs 𝑆𝑖 (𝑖 = 1, . . . , 𝑛) in R𝑑+1 whose normal vectors are (1, 𝑥𝑖, . . . , 𝑥

𝑑
𝑖 ) for some 3 ≤ 𝑥1 ≤ 𝑥2 ≤ . . . ≤ 𝑥𝑛

and whose total width is at least 𝑐, permits a translative covering of a ball of unit diameter. This is an immediate
corollary of Lemma 1 and the following assertion.
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Lemma 2. For every positive integer 𝑑, for any system of 𝑑+ 1 linearly independent vectors u1, . . . ,u𝑑+1 in
R𝑑+1, and for any 𝛾 > 0, there is a constant 𝑐 with the following property.

Given any system of slabs 𝑆𝑖 (𝑖 = 1, . . . , 𝑛) in R𝑑+1, whose normal vectors x𝑖 satisfy the conditions

(𝑖)
⟨x𝑖+1,u1⟩
⟨x𝑖,u1⟩

≤ ⟨x𝑖+1,u𝑗⟩
⟨x𝑖,u𝑗⟩

,

(𝑖𝑖) ⟨x𝑖,u𝑗⟩ ≥ 𝛾‖x𝑖‖‖u𝑗‖

for every 𝑖 and 𝑗, and whose total width
∑︀𝑛

𝑖=1 𝑤𝑖 is at least 𝑐, the slabs 𝑆𝑖 permit a translative covering of a
(𝑑+ 1)-dimensional ball of unit diameter.

The proof is based on a greedy algorithm for covering a large simplex in R𝑑+1 by the translates of 𝑆𝑖. One
of the vertices of the covered simplex is 0, and the others lie on the rays emanating from 0 in the directions
u1, ...,u𝑑+1. At each step, we place a new slab in such a way that the newly covered part of the ray in direction
u1 adjoins the previously covered part. Condition (i) guarantees that we do not leave any “hole” between the
translates uncovered. Condition (ii) ensures that the simplex completely covered at the end of the procedure is
”non-degenerate.” The ratio of any two of its sides is bounded from above by an absolute constant. Finally, we
will show that the side of this simplex along u1, and thus every other side, is sufficiently large, which implies
that the simplex contains a unit ball.

Proof. Instead of covering a ball of unit diameter, it will be more convenient to cover the simplex Δ with one
vertex in the origin 0 and the others at the points (vectors) u𝑗 (𝑗 = 1, . . . , 𝑑 + 1). By properly scaling these
vectors, if necessary, we can assume that Δ contains a ball of unit diameter.

Figure 4. We place the slabs one by one.

We place the slabs one by one. See Fig. 4. We place 𝑆′
1, a translate of 𝑆1, so that one of its boundary hyper-

planes passes through 0 and the other one cuts a simplex Δ1 out of the cone Γ of all linear combinations of the
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vectors u1, . . . ,u𝑑+1 with positive coefficients. According to our assumptions, we have ⟨x1,u𝑗⟩ > 0 for every
𝑗. Therefore, 𝑆′

1 does not separate Γ into two cones: 𝑆′
1 ∩ Γ is indeed a simplex Δ1.

We place a translate 𝑆′
2 of 𝑆2 in such a way that it adjoins Δ1 in its vertex along the ray emanating from 0 in

direction u1. As we will see later, due to condition (i), 𝑆′
2 and Δ1 overlap (in at least one point) along the rays

in direction u𝑖 for 𝑖 ≥ 2. Suppose that we have already placed 𝑆′
1, . . . , 𝑆

′
𝑖, the translates of 𝑆1, . . . , 𝑆𝑖, so that

their union covers a simplex Δ𝑖 with one vertex at the origin, and the others along the 𝑑+ 1 half-lines that span
the cone Γ. We also assume that the facet of Δ𝑖 opposite to the origin is a boundary hyperplane of 𝑆′

𝑖. Let p𝑖(𝑗)
denote the vertex of Δ𝑖 that belongs to the open half-line parallel to u𝑗 emanating from 0 (𝑗 = 1, . . . , 𝑑+ 1).

Next, we place a translate 𝑆′
𝑖+1 of 𝑆𝑖+1 so that one of its boundary hyperplanes, denoted by 𝜋, passes through

p𝑖(1), and the other one, 𝜋′, cuts the half-line parallel to u1 at a point p𝑖+1(1) with ‖p𝑖+1(1)‖ > ‖p𝑖(1)‖. That
is, p𝑖+1(1) is further away from the origin than p𝑖(1) is. Let p𝑖+1(2), . . . ,p𝑖+1(𝑑+ 1) denote the intersection
points of 𝜋′ with the half-lines parallel to u2, . . . ,u𝑑+1, respectively, and let Δ𝑖+1 be the simplex induced by
the vertices 0,p𝑖+1(1), . . . ,p𝑖+1(𝑑+ 1).

We have to verify that Δ𝑖+1 is entirely covered by the slabs 𝑆′
1, . . . , 𝑆

′
𝑖+1. By the induction hypothesis, Δ𝑖

was covered by the slabs 𝑆′
1, . . . , 𝑆

′
𝑖. Thus, it is sufficient to check that the hyperplane 𝜋 intersects every edge

0p𝑖(𝑗) of Δ𝑖, for 𝑗 = 1, . . . , 𝑑+ 1. Let 𝛼𝑗u𝑗 be the intersection point of 𝜋 with the half-line parallel to u𝑗 , and
let p𝑖(𝑗) = 𝛽𝑗u𝑗 . We have to prove that 𝛼𝑗 ≤ 𝛽𝑗 .

By definition, we have ⟨x𝑖+1,p𝑖(1)− 𝛼𝑗u𝑗⟩ = 0 and ⟨x𝑖,p𝑖(1)− 𝛽𝑗u𝑗⟩ = 0. From here, we get

𝛼𝑗

𝛽𝑗

=
⟨x𝑖+1,p𝑖(1)⟩
⟨x𝑖+1,u𝑗⟩

⧸︁⟨x𝑖,p𝑖(1)⟩
⟨x𝑖,u𝑗⟩

=
⟨x𝑖+1,p𝑖(1)⟩
⟨x𝑖,p𝑖(1)⟩

⧸︁⟨x𝑖+1,u𝑗⟩
⟨x𝑖,u𝑗⟩

=
⟨x𝑖+1,u1⟩
⟨x𝑖,u1⟩

⧸︁⟨x𝑖+1,u𝑗⟩
⟨x𝑖,u𝑗⟩

.

In view of assumption (i) of the lemma, the right-hand side of the above chain of equations is at most 1, as
required.

Observe that during the whole procedure the uncovered part of the cone Γ always remains convex and, hence,
connected. In the 𝑛th step, ∪𝑛

𝑖=1𝑆
′
𝑖 ⊃ Δ𝑛. By the construction, p𝑖(1) lies at least 𝑤𝑖 farther away from the origin

along the half-line parallel to u1 than p𝑖−1(1) does. Thus, we have

‖pn(1)‖ ≥
𝑛∑︁

𝑖=1

𝑤𝑖 ≥ 𝑐.

Using the fact that ⟨x𝑛,p𝑛(𝑗) − p𝑛(1)⟩ = 0 for every 𝑗 ≥ 2, and taking into account assumption (ii), we
obtain

‖p𝑛(𝑗)‖ ≥ ⟨x𝑛,p𝑛(𝑗)⟩
‖x𝑛‖

=
⟨x𝑛,p𝑛(1)⟩

‖x𝑛‖
≥ 𝛾‖pn(1)‖ ≥ 𝛾𝑐.

Thus, if 𝑐 is sufficiently large, we have ‖p𝑛(𝑗)‖ ≥ ‖u𝑗‖. This means that Δ𝑛 contains the simplex Δ defined in
the first paragraph of this proof. Hence, it also contains a ball of unit diameter, as required.

6. CONCLUDING REMARKS 1. As was mentioned in Section 2, the translative packing conjecture of Makai
and Pach is known to be true in the plane. Moreover, in [15] a stronger statement was proved: there exists a
constant 𝑐 such that every collection of strips with total width at least 𝑐 permits a translative covering of a disk
of diameter 1. In view of this, one can make the following even bolder conjecture.

Strong translative plank conjecture. For any positive integer 𝑑, there exists a constant 𝑐 = 𝑐(𝑑) such that every
sequence of slabs in R𝑑 with total width at least 𝑐 permits a translative covering of a unit diameter 𝑑-dimensional
ball.
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Suppose that the translative plank conjecture (see Section 2) is true for a positive integer 𝑑. Answering a
question in [15], Imre Z. Ruzsa [14] proved that then, for the same value of 𝑑, the strong translative plank
conjecture also holds. Thus, the two conjectures are equivalent.

2. We say that a sequence of positive numbers 𝑥1 ≤ 𝑥2 ≤ . . . is strongly 𝒫𝑑-controlling if there exist reals
𝑦1, 𝑦2, . . . with the property that, for every 𝜀 > 0 and for every polynomial 𝑝 of degree at most 𝑑, one can find
an 𝑖 with

|𝑓(𝑥𝑖)− 𝑦𝑖| ≤ 𝜀.

It is easy to see that the condition in Theorem 3 is sufficient to guarantee that the sequence 𝑥1, 𝑥2, . . . strongly
controls 𝒫𝑑 for every 𝑑.

Controlling sequences can be analogously defined for any other class of functions 𝑓 : R𝑘 → R𝑙. Several other
problems of this kind are discussed in [15] and [13].
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